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Abstract. The paper addresses discrete element (DEM) mootelthe heterogeneous
particulate solids where the normal interactiorwleein two deformable spherical particles
bonded via weaker solid interface is considerece ihegral interaction model aimed for
evaluation of the bond stiffness was developed,ravla@alytical expressions of the stiffness
parameters reflecting individual contribution ofethhwo particles and of the interface
properties are derived. Application of the devetbfi@EM model to particulate solid with
many particles is considered. The accuracy anduiftability of this approach are evaluated
by considering refined 3D Finite Element analysis.

1 INTRODUCTION

Many of real engineering materials are heterogemesolids. The focus of recent
investigation is heterogeneous particulate solidsting of solid particles of different size
and shape embedded into the homogeneous matrix.a3igalt-type materials containing
coarse particles and weak matrix may be considesedpresentative prototype of this model.
Here, the stiff particles possess elastic behayithe matrix has, however, very complex
mechanical properties including viscosity, loaderahd temperature dependent behaviour.
The above complexity makes it extremely difficaltabtain stress—strain state.

Among various numerical techniques recently use@malysis purposes using of them are
basically shared between two alternatives — theveational Finite Element Method (FEM)
and the relatively neviscrete Element Method (DEM). Due to the heter@ignof the
particulate solids the routine application of tHeEMFusing 3D continuum elements possesses
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serious difficulties.

The DEM was originally aimed for the numerical miidg of discontinuous materials.
Application of the DEM to solids requires serioledretical analysis of the link between
continuum and discrete parameters [1], [2]. Caloutaof particles interaction forces is the
most important issue of DEM technique. DEM intei@ct models were developed by
different scientific communities using different pgpaches. Two technically different,
particle-based and lattice-based, approached hese tbeveloped in the framework of DEM
when applied to simulate solids. Particle-basedraguh presents a rather straightforward
extension of the original DE method. The DE modetlaed to solids assume bilateral or
bonded interaction between particles and use thplsest contact laws such as linear contact
of spherical shapes of particles, see PotyondyGumitlal [3], Hentz, Donzé and Daudeville
[4], Rojeket al. [5].

An approach representing the continuum by mateaaticles interacting via the network
elements is called a lattice-type model. This typedels dating back the earlier work of
Herrmannet al. [6] is equivalent to structural network composegadviarious beam elements.
Theoretical analysis and comprehensive review @folanar elastic lattice models which hold
for micro-mechanical applications is given by Oat8tarzewski [7]. It was shown that the
models require to use of the rotational degredseeflom, therefore, they may be treated as a
counterpart of non-classical continua. The Timokbegpe beams are analysed by Karihaloo
et al. [8] and by Kozicki and Tejchman [9].

Most of applications are dealing with the homogerse solids. the problem of
inhomogeneity of solid is considered on the basidisordered lattice or structural network
by considering approach developed by Patyondy ami@ll [3].They have assumed normal
bond stiffness implemented as stiffness of contggpiarticles cemented by a finite-size piece
of interface material. Here, contribution of theeifiace was reflected by additional parallel
bond.

Analysis of the heterogeneous structure of the nahtever different length scales is
highly complicated. Several investigations dematsthow lattice type elements were also
able to reflect inhomogeneity of concrete. The éiphase element called generalized beam
(GB) element composed of three sub-beams was peesdry Liu et al.[10] To reduce
computational expenses the meso-scale model setmbd more attractive. The model
simulates concrete meso-structure by means ofeg-ttimensional lattice was considered by
Cusatiset al. [11]. Here, the lattice nodes are coincident Witk centres of coarse aggregate
pieces. Another type of applications concerns dsptancrete presenting a two-phase
composite of the asphalt mastic and the minerateggdes size of which varies in millimetre
scale. Extensive review of the DEM applicationgiigen in [12].

It is clear that modelling of particulate solidsstdl under development while knowledge
about the contribution of particular factors toithmeechanical behaviour is not satisfactory.

Investigation addresses the Discrete Element nafdible particulate solid, with emphasis

on the normal interaction between two deformableespal particles via weaker deformable
interface. The integral interaction model aimed éwaluation of the bond stiffness was
developed. This model is described by independestitgined analytical expressions of the
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stiffness parameters reflecting individual conttibn of the two particles and of the interface
properties.

2 PROBLEM DESCRIPTION

The original heterogeneous particulate solid is poged by particles of various sizes and
shapes (figure 1a). The particles are embeddedsoltd matrix. Macroscopically, geometry
of the solid is characterised by fraction of matradume and by fraction of the volume of
particulate aggregates. The scale of particlesaditionally interpreted as micro scale, but in
this case meso scale is more suitable. On the seEe-geometry is defined basically by
geometry and location of particles. Assuming smiaéshapes, the geometry of each particle
is defined by radiu® (figure 1b). If coarse distribution of particlesepails, no direct contact
between them is allowed while the inter-particlstance, or the value of the gapbecame
an important parameter.

Mechanical properties of the particulate solid iateoduced on meso-scale. The material
of particles is assumed to be elastic and isotrofmmposition of particles is generally
inhomogeneous, therefore, elasticity propertiesawth of the particle may be different and
characterized basically by the different elastiaitpduli E;, The matrix is assumed to be
homogeneous and isotropic. Elasticity propertiesthaf matrix are characterised by the
constant elasticity modulus;;. The case of weaker matrix is of major practicaknest,
therewithE;; < E;. The Poisson’s ratios are specified in the sameneraiThe matrix during

deformation obeys viscosity properties typicallyinked by use of Prony series.
a) b)

Figure 1. Heterogeneous particulate solid; a) general dgsepmputational model composed by spheres;
particle, 1- matrix

3 MULTI-LEVEL MODELLING CONCEPT

Formally, the above described heterogeneous phlatiécgolid can be regarded as the 3D
continuum and the stress-strain state of it cancbmputed directly by applying FE
discretization approach and volume elements. Tpwaach if it would be applied to real-
scale volumes is restricted, however, by availaomputer resources, mostly by the CPU
time. Consequently, it could be exploited exclulier validation purposes. Elaboration and
application of the multi-level modelling approashexpected to be more realistic.
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On the macroscopic level, the particulate solidegarded as a discrete system of the
bonded patrticles (figure 2c). Therewith, the diszmnodel is implemented in the form of
irregular triangular grid or lattice, structure vparticles imbedded into the nodes of the grid,
while grid lines are supposed to be deformable eotion elements.

Description of the connection element has to besidemed on the scale of particle by
considering representative volume (figua). This volume presents circular cylinder
composed by hemispheres connected by weaker io¢erf@aterial of finite size termed
usually a bond. Geometry of the model section (Bgea) is defined by its length and
diameter2R. Initial gap between particles is definedly(figure 2a).

c)

Figure 2. Multi-level modelling concept: a) representativ@ume; b) scheme of the normal interaction of
particles; c) macroscopic model of the particlegtem

The connection element may be characterised bgdhstitutive relationship in terms of
the force vectoF and displacements Finally, it is defined in conventional form:

F=[K]u . (1)

Here, [K]is the resultant normal stiffness matrix reflectingrious properties of

contacting particles and the interface. The retetidp (1) and connection stiffness may
calculated numerically by conducting various defation tests or applying analytical
methods. The effect of various factors includingnmaviscoelasticity and initial particles gap
sizelL4 could be studied numerically.

Once the connection element is characterised irame of the DE methodology, the
macroscopic analysis will follow the conventionalkip of the DEM. On the other hand, such
an element may be also regarded as synthetic 1WitRRiser-defined properties.

4 THE INTEGRAL NORMAL INTERACTION MODEL

lllustration of development of the connection edgmis restricted to the elastic normal
interaction. The connection element between twespal particles andj is defined through
the axial deformation of representative volumeuffeg2b). Deformation behaviour of element
is characterised by the normal inter-particle dispmentu, = u; + u;. Consequently, the
resultant constitutive relationship (1) of the cection element is transformed to simple
relationship relating the normal forég and displacements;:
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Fo = K, [, 2)

Here, K, is the resultant normal stiffness reflecting vasioproperties of contacting
particles and the bond per unit length. The st#i§, of this connection elemerd resultant
stiffness may calculated numerically by conductuagious deformation tests or applying
analytical methods Representative volume samplheflement model is a cylinder which
may interpreted as composite rod. To define th#ness, a generalised approach was
proposed on the basis of the semi-analytical beheory [13]. The 3D behaviour of
connection element is simplified assuming cylintiebe assembly of deformable generatrix
lines.

Each of the lines crosses regions of different hgeneity, i.e. regions occupied by particle
and interface. It means that generetrix is alwayBoinogeneous line composed by
sequentially connected sub lines. On the other hidwedcross-section of the cylinder may be
divided into subsections. Regarding the above ftatran, the cylinder volume may be
imaginary presented as assembly of differently tiedainhomogeneous regions. Since
stiffness nature is integral of material properbesr the volume, evaluation of the stiffness is
attributed to individual sub region. On this ba#i® resultant stiffness is obtained by
composition of sequentially and parallel connecsgdings, while each of the springs is
characterised using virtual displacement method.

This concept is demonstrated approach is demaedttay showing two basic models —
general model combining sequential and parallemelds (figure 3b, d) and the fully
sequential (FSI) model (figure 3a, c). The FSI madenprises three sequentially connected
springs. The stiffness of sprinds and k; reflect the contribution of particles and j
respectively. The stiffness of the middle spriggreflects contribution of region occupied by
interface material. There values are calculateoht®grating over respective volumes.
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Figure 3. Normal interaction of spheres interacting via iftee material: a, c) FSI model; b, d)
general model;
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The main differences of general model that an fater material is conditional divided into
subregions. The middle stiffness of sequential kaiit predefined is by the constant layer
located between the particles, while the stiffrafgsarallel bond is attributed to parallel bond
This model demonstrates that part of material, @affg distanced from the central line may
be attributed to the parallel spring.

Performance of the FSI model for wide range oftnedainterface elasticity modulus
propertiesE/Ey, for different interface thicknesky is examined by the applying 3D FE
discretisation of representative volume simulatisee Pilkaviius et al. [14], RimSaet al.
[15].

Behaviour of the model obtained for interface thieks ofL,=0.5mm is illustrated in
figure 4. Here variation of the stiffne&s against relative elasticity modulus of interfase i
plotted in logarithmic scale. Each of the graphespnts variation of the separate bond
stiffness parameters. The blue bold solid line dsdior resultant stiffneds,, thin solid cyan
line for thickness interface stiffnedgy, while the horizontal dashed lines indicates the
constant stiffness of particlés andk; respectively. The red bold dots indicate the eXdet
solution results obtained at selected points. Theva results illustrate the excellent
agreement of analytical model. It is also evidehgt then drop of the relative interface
modulus belowE; j/E,>12 the resultant stiffness is exclusively defingdifterface stiffness
and not depend on patrticles properties.
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Figure 4 Evaluation of theoretical and FE models by vamiaf resultant bond stiffness against relative
interface elasticity modulus propertigs/Eix

5 NUMERICAL SAMPLE OF PARTICULTATE SOLID

Numerical sample of the particulate solid was abe®d to illustrate discretization
technic. The system of eighteen identical sphenpaaticles having radiuR= 7.5 mm is
considered as representative sample (figure 5). rEhatively stiff elastic particles are
embedded into rectangular box fulfilled by weakescwelastic matrix. The geometry of the
box is defined by the length=112 mm, heighth =36 mm, and depthv =18 mm. The
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locations of particles are defined by locationshaf particles centres. All particles are located
in the mid plane of the box. Geometry of the pattite solid is defined by the distance
between the particle’s centress 15.5 mm and the gap between partitlgs 0.5 mm.

The rigid boundary conditions are assumed on th#oimoand implemented by fixing
centres particles to the bottom wall. Interactidrparticles with the vertical walls are softer,
where flexibility is imposed by introducing the dehable layer between the particles and the
box having minimal distancein out-of-plane direction is equal to 1 mm. Thadmg is
defined by the motion of particles 1, 2 andc@ntrolled by the prescribed displacement
u=0.5 mm.

Elasticity properties of granite are assigned fbofthe particles, Therewith, the Young’s
modulusE is equal to @0™°Pa, while the Poisson’s ratio is definedvas 0.25. Mechanical
properties of the homogeneous matrix respondinthéoasphalt bitumen were taken from.
Here, the time-independent elasticity propertiesdraracterised by Young moduli€qual
to 1.410° Pa and the Poisson’s ratio equal to 0.46 and itidigarelatively high
incompressibility. The time varying properties atefined by the Maxwell element and
expressed by coefficients of Prony series.
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Figure 5. Geometry and boundary conditions of particulatédsal mid-sections of the specified box
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6 DISCRETE ELEMENT MODEL

The DEM model of the above problem (figure 6) wavealoped to illustrate the discrete
approach. Schematically, the model is presentedragular triangular 2D structural network,
geometry of which is predefined by location of thedes. The model consists of eighteen
nodes representing particles. The model linesdcmetified as connection elements.
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Figure 6. The discrete model of the sample

The discrete boundary conditions are specified neuee the solid problem with the
discretization accuracy. The rigid boundary on bim¢tom is implemented by suppressing
motion of the corresponding nodes. Additional eletsedenoted by springs are added at
nodes 1, 5, 6 and 11 to implement the transverpdaime flexibility. The loading is specified
by the prescribed displacemendf nodes 1, 2 and 3.

Elasticity properties of the solid are specified gonnection elements Each of the element
is able to undertake normal load and the aboveuss®d normal interaction FSI model is
applied for evaluation of stiffness,. Regarding inter particle distancg=0.5mm the stiffness
Kosm=1.05-16N/m . Boundary springs represent matrix volume Whiovers not contacting
particle area&,=1.2- 16N/m.

7 THE SOLUTION ANALYSIS AND VERIFICATION OF THE DIS CRETE MODEL

Verification of the model is performed by analysis solutions of different models.
Numerical sample of the particulate solid descrilaxbve is considered for illustration
purposes. It is assumed that the FE model of therdgeneous 3D solid is more accurate
when compared to the discrete element model conddmsé&D elements.

To obtain the accurate solution the 3D FE moddhefsolid problem was generated by
using the commercial FEM ANSYS code [16]. Tetraloedtype volume elements SOLID
187 with 10 nodes were used for generation of tlwgleh As a result, the FE model
consisting of 830098 nodes and 549098 elementsdeasloped. In this context, the 2D
Discrete Element model having 22 nodes with 22 elegjof freedom and 41 elements seems
to be extraordinary simple. It should be noted 8iatFE model was solved in the linear and
the finite strain formulations while difference tveen the models lies in the range of 3 %.

Direct comparison of the above DE and FE modelsoisa simple task. Various indirect
approaches and various global and local criteridognysed for comparison purposes.
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Figure 7. Contour plots of the displacement magnitudethe mid-plane calculated: a) by the 3D FE; b) by
the DE models

The simplest evaluation could be done by visual ganison of the calculated images.
Contour plots of the displacement fields in the 4pi@he of the box are shown in Figure 7,
were colour scale indicate the displacement madeguThe colour pictures illustrate quite
good similarity of the linear FE (Figure 7a) and Hgure 7b) models. It is obvious that the
DE model properly reflects motion of the particheg the deformation behaviour of the weak
matrix requires local analysis.

The rough evaluation of the model properties maygdiee, regarding composing of solid
sample. The fraction value 35% of the particlesuna is considerably smaller compared to
the volume occupied by the matrix 65%; the volurhéhe interface material involved in the
DE model is even smaller ~25%. Because of diffezsni the model structure, the only nodal
displacements are directly comparable parameters

The deformation energy accumulated during loadvejuates deformation behaviour of
the entire solution domain and yields informatidroat the internal deformation behaviour.
The 3D FE analysis yields the value of internalrgné&Je = 0.0055J. The DE model yields
the valueUpeg = 0.0052J.

The differences between the models are motivateditigrent response of them under
action of the same prescribed displacementhereby, the energy balance held for all of
models indicates good conservation of energy. Tigken deformation energy indicates the
overestimated stiffness of the linear FE model. difference between energies of the FE and
DE models can be explained by different contributiof the local deformation modes

between the particles. Energy obtained by the DEeahe exceptionally attributed to the
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axial deformation model. The valugre= 0.0052J comprises 94.4 % of total deformation
energy obtained by the FEM. It means that totatrdaution of shear and bending modes is
smaller than 6.5 %.
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Figure 8. Local interaction analysis: a) geometry model incroascale; b) initial and final positions of
particles No. 6 and 7; ¢) contour plot of the pifat stress

Comparison of models may be done using formal raitdeuclidian norm of the nodal
displacements;, presents another global criterion. By compariragnitudes of translational
displacements, it was found that difference of ldispments norms of the DE model
lelloe = 1.357-1Gm and of the FE|le|.. = 1.466-10°m comprises 7.8% and indicates

relativity good global similarity.

Identity or similarity of the global criteria notenessary matches the local behaviour,
therefore, the detail local analysis required. Haostration of local effects, interaction of
particles 6 and 7 is considered (figure 8). Loo&traction analysis shows that particles
rotations are relatively small. It is easy to pexdeithat angular deformation relative shift of
particles could be explained by shearing deformatio

8 CONCLUSIONS

The heterogeneous particulate solid was composeohhicles bonded via weaker solid
interface is considered and simplified discretemelet (DEM) model was studied.
Verification of the discrete model by comparing twthe results of fully 3D finite element
analysis illustrated the suitability of discretearbto capture macroscopic behaviour in terms
of displacement of particles centres. It was atamél that deformation behaviour of the solid

10
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is predefined by the dominant axial interaction wssn the particles. This type of
deformation comprises up to 95% deformation enefgyould be also stated that this
accuracy is achieved by applying the newly devalap&eraction model regarding properties
of interface. This approach applicable to confitetesof particles is not sufficiently suitable
for description of local inter-particle shear.
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