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ABSTRACT: Mixed/enhanced four-node shell elements with six dofs/node based on the Hu-Washizu (HW) 
functional are developed for Green strain. The shell HW functional is derived from the shell potential energy 
functional instead of from the three-dimensional HW functional. Partial HW functionals, differing in the bend
ing/twisting part and the transverse shear part, are obtained. For the membrane part of HW shell elements, a 
?-parameter stress, a 9-parameter strain and a 2-parameter EADG enhancement are selected as performing best. 
The assumed representations of stress and strain are defined in skew coordinates in the natural basis at the 
element's center. The drilling rotation is included through the drilling Rotation Constraint (RC) equation and the 
Perturbed Lagrange method. The spurious mode is stabilized using the gamma method. Several versions of shell 
HW elements are tested using several benchmark examples and the optimally performing element is selected 
(HW29) in (Wisniewski & Turska 2012): Additional examples are presented here. 

1 INTRODUCTION 

Currently, the most promising are the shell elements 
based on the Hu-Washizu (HW) functional. The four
node HW shell element without the drilling rotation 
clearly has better convergence properties than the EAS 
shell element, see (Wagner & Gruttmann 2005) and 
(Gruttmann & Wagner 2006). Besides, HW elements 
show better accuracy and robustness than the enhanced 
EADG elements, as shown for 2D HW elements 
in (Wisniewski & Turska 2009) and (Wisniewski, 
Wagner, Turska, & Gruttmann 2010). The methodol
ogy developed in these papers provided solid ground 
for the HW shell elements with the drilling rotation 
described in (Wisniewski & Turska 2012). 

Note that in the class of mixed elements with the 
drilling rotation, several additional questions must be 
addressed: 

• The implementation of the drilling RC involves 
difficulties comparable to these encountered for 
the in-plan~shear strain. The equal-order bi-linear 
interpolatio s of displacements and the drilling 
rotation ren er that the drilling RC is incorrectly 
approximat d, which must be corrected. Then we 
obtain a spurious zero eigenvalue and a stabilization 
is needed. 

• The next question is to select suitable represen
tations of the assumed stress and strain for the 
membrane part. Note that an enhancement of the 
deformation gradient F (not of the strain) is needed 
to obtain good performance because it affects also 
the drilling RC. ln consequence, the best performing 

assumed representations for the elements with the 
drilling rotation are different from the ones for the 
elements without the drilling rotation. 

• The form of the shell functional strongly affects the 
properties of a shell element. The most versatile is 
the approach which enables the derivation of the so
called partial (or incomplete) HW functionals. Only 
these parts of the shell strain energy are converted 
to the HW form which yield improved convergence 
properties. We do not have doubts about the mem
brane part and scrutinize the bending/twisting and 
the transverse shear part. 

2 FORMULATIONS INCLUDING DRILLING 
ROTATION 

Extended configuration space. 
The classical configuration space of the non-polar 
Cauchy continuum is defined as: C = {X : B ---+ R3

}, 

where x is the deformation function defined on the 
reference configuration of the body B. In the present 
work, we consider an extended configuration space, 
defined as follows: 

Cext ='= { (x, Q) : B ---+ R3 x S0(3) X EC},(1) 

where the rotations Q E S0(3) are constrained by the 
Rotation Constraint (RC) equation 

skew(QTF ) = 0, (2) 

where F = V x. Generally, in the Cauchy continuum, 
the rotations can be obtained by polar decomposition 
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of F but this requires the calculation of u- 1, where 
U = (FTF) 112, see (Pietraszkiewicz 1979). Alterna
tively, we can find Q from eq. (2), which is equivalent 
to QTF = U. This approach was used in (Badur & 
Pietraszkiewicz 1986), (Simo, Fox, & Hughes 1992) 
and is applied in the present work as well. For 
the Cosserat-type kinematics of shells, in which the 
rotations are not constrained, see (Chroscielewski, 
Makowski, & Stumpf 1992). 

Reissner shell kinematics. 
The initial configuration of a shell is parameter
ized by the normal coordinates {~ ' sl (a= 1, 2), 
where ~a E [ - 1, + l] are the natural coordinates 
parameterizing the reference (middle) surface, and 
s E [-h/2, +h/2] is the coordinate in the direction 
normal to this surface. h denotes the initial shell 
thickness. 

The position vector of an arbitrary point of a 
she ll in the initial configuration is expressed as 
y(~, s) = y0(~a) + p3(~), where Yo is a position of 
the reference surface, and t 3 is the shell director, 
normal to the reference surface. ln the deformed con
figuration, the position vector is expressed by the 
Reissner hypothesis, 

(3) 

where x0 is a position of the reference surface, and 
Q 0 E S0(3) is a rotation tensor, which is parameterized 
by the canonical rotation vector t as follows: 

(4) 

where w= ll t ll =~~O and t =t x I. As a 
result of linearization in s, the Green strain E(s) ~ 
e + sK. Besides, the transverse components KaJ are 
neglected. 

Drilling Rotation Constraint. 
For shells, we can neglect in eq. (2) the terms which 
depend on the tangent components of a rotation vector 
(l/r · ta), and then it is reduced to the scalar dri lling 
Rotation Constraint, 

[skew(Q TF)] 12 = 0. (5) 

The drilling rotation is defined as a normal component 
of rotation vector, w = t · tJ, and its physical interpre
tation implied by eq. (5) is given in (Wisniewski 2010), 
p. 26. Assuming small stretches, we obtain 

1 \ 
w ~ 2(!31 + !32) + br, k = 0, ... , K , (6) 

i.e. the drilling angle w is an average of rotations f3a 
of the initial tangent (unit) vectors ta. 

Note that in eq. (1) the deformation x is required 
to belong to the classical C despite the presence of the 
rotation Q . L ikewise, we expect the solution displace
ments u be unaffected by the presence of w for the 
cases which can be solved for u solely. 

3 SHELL HU-WASHlZU FUNCTIONALS WITH 
ROTATIONS 

3D HW functional with rotations. 
Our formulation is based on the 2nd Piola-Kirchhoff 
stress Sand the Green strain E = ~(FrF - I). indepen
dent fields of stress and strain of the HW functional 
are designated as S* and E*. 

To incorporate the rotations into a 3D formulation, 
we constrain the governing HW functional by the weak 
form of the RC of eq. (2). Consider the classical form 
of the three-field HW functional, 

FHw(u,S*,E*) = 
l {W(E *) + S*. [E ('Vu) - E*]} dV - Fexti (7) 

where W(E*) is the strain energy expressed by the 
independent strain E*, and the independent stress S* 
plays the role of the Lagrange multiplier of the relation 
between the independent strain E* and the Green strain 
E(V'u). Besides, F exr is the potential of the external 
loads, the body force, and the displacement boundary 
conditions, and Vis the volume of the 3D body. 

To obtain the HW functional with rotations, the 
Lagrange multiplier method is applied to append the 
RC of eq. (2) to the functional of eq. (7). Then we 
obtain the five-field functional, 

F5 (u , Q , S*, E* , T* ) ='= l {W(E *) + 

S* · [E ('Vu) - E*] + T* · skew(QTF ) } dV - Fext, (8) 

where T* is the skew-symmetric Lagrange multiplier 
for the RC equation. 

Pure HW functional for shells. 
To derive the HW functional for shells, we can use as a 
starting point eq. (8) and the strain E(s) ~ e + S"· Let 
us define the shell strain energy as 

!
+h/ 2 

W 811(g,K) ='= W (E ) µd(, 
-h/2 

(9) 

where µ, = det Z and Z is the shifter tensor. For 
the linear material , we obtain the well-known 
w sh(h, e , IC) = hW(e) + (h3I 12)W(K). 

Let us assume that the independent strain 
E*(s) = e* + sK*. By integration of the HW functional 
of eq. (7) over the shell thickness, we obtain its shell 
counterpart, 

+ M * · [K(u ,Q)- K*]}dA-F;! , (10) 

h N• . f +h/2 S* d d M* . f +h/2 S* d w ere = - h/ 2 µ, s an = -h/2 s µ, s, 
and A is the area of the shell reference surface. Note 
that 6 fields (u, Q , N*, M *, e*, K*) are involved. 
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To obtain the functional with the drilling rotation, 
the Lagrange multiplier method is used to append the 
drilling RC of eq. (5) to the functional of eq. (10). 
Then we obtain the seven-field functional (with the 
additional field T*) 

Fsh ...:... psh + pdrill 
7 - HW RC ' (11) 

where the drilling rotation term F%~11 has the Perturbed 
Lagrange (PL) form, 

F~?Jll "= l { T* [skew(QTF )]i2 - 2~ (T*)2
} dA,(12) 

where T* is the Lagrange multiplier. This functional 
was additionally regularized in T* by a small per
turbation term, where the regularization parameter 
y E (0, oo). The above PL form is better than the 
penalty form of the drilling RC; the resulting element 
is less sensitive to distortions and has a larger radius 
of convergence in non-linear problems. 

Note that the pure HW functional for shells is con
structed for all strain components, which implies a 
large number of parameters and is not efficient. More 
efficient is the method described below, within which 
the HW functional can be constructed for selected 
strain components; such functionals are termed ' par
tial' (or ' incomplete'). 

Partial HW functionals for shells. 
We start the derivation from the potential energy func
tional, F PE(u) = f v W(E(Vu))dV - Fex1, which, by 
integration over the thickness, yields the shell potential 
energy functional 

where w s1r is defined in eq. (9). Using this shell func
tional, we can construct the shell HW functional for 
a selected strain type while still using the potential 
energy functional for the other type. The so-derived 
functionals can be used to select the formulation with 
a minimum number of additional parameters. To obtain 
a partial functional with the drilling rotation, we pro
ceed in 1same way as in deriving eq. (11) from 
eq. (I 0). 

Using t e above methodology, we derived in 
(Wisniewski & Turska 2012) several HW function
als for shells. These functionals and the identifiers 
(with the number of additional parameters) of the 
corresponding elements are as follows: 

• The pure HW functional is used in the HW47 and 
the HW39 elements, 

• The partial HW functional is used for all shell strain 
components·except Ea3 in the HW3 l element, 

• The partial HW functional used m the HW29 
element is 

F'fihw = l {w•h(c~p,c~3 , K:ap) 

_ p sh + pdrill 
ext RC ' a ,{3 =1,2, (14) 

where the strain energy functional is used for Kap, 

while the HW functional is used for other shell strain 
components. 

4 NUMERICAL EXAMPLE 

All the above specified four-node HW shell elements 
with 6 dofs/node have a correct rank and pass the mem
brane and bending patch tests; their performance is 
presented and compared with the enhanced EADG ele
ments in (Wisniewski & Turska 2012) . Here we present 
two additional examples and only the mixed/enhanced 
HW29 shell e lement with drilling rotations is tested. 

4.1 Example 1. Non-zero drilling rotation 

The two tests presented below check correctness of 
nonzero drilling rotations. (Note that in the membrane 
patch test, the zero drilling rotation is tested.) 

We model the rectangular membrane of Fig. I by 
a single four-node shell element. The in-plane dis
placements and the drilling rotation are considered 
only (the normal displacement and tangent rotations 
are constrained to zero). Linear strains are applied. 
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(1) To obtain in-plane rigid rotation, the displace-
ments can be prescribed as follows: 

u(x,y) = -y, v(x,y) = x. (15) 

The drilling rotation is not constrained, and, as a 
solution, we should obtain w = 4 ( v ,x - u JI) = I at 
all nodes. Besides, EafJ = 0 should be obtained. 

(2) To obtain pure in-plane bending, the displace
ments can be prescribed as follows: 

u(x,y) = -xy, 
1 2 

v(x, y) = - 2(1 - x ) . (16) 

The drilling rotation is not constrained, and, as a 
solution, we should obtain w= 4<v.x - u"') = x. 
Besides, £11 = -y, £22 = 0 and 6 12 = O; the last 
value indicates the lack of in-plane shear locking, 
see (MacNeal 1994), p. 213. 

y, v 

X, U 

Figure I. Rigid rotation test and pure bending test. 



Figure 2. Twisted ring. E = 2 x 105, v= 0.3, h =0.6, width 
w = 6, R = 120. Mesh 2 x 248 elements. 
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Figure 3. Twisted ring. Non-linear solutions by two 
methods. 

All our shell elements pass these two tests for 
nonzero drilling rotations. 

4.2 Ring twisted by drilling rotations 

This test of (Goto, Watanabe, Kasugai, & Oba ta 1992) 
is difficult because finite rotations are involved. The 
ring is twisted at point A and is clamped at the oppo
site point B, see Fig. 2. The problem is solved using 
two methods: ( 1) the arc-length method for the initial 
twisting moment Mx = 50, and (2) the rotation-control 
method for the increment of rotation rx = 0.2. 

Two shell e lements are tested: the enhanced element 
(EADG5A) and the mixed/enhanced element (HW29); 
the latter was ~lected as optimal in (Wisniewski & 
Turska 2012). T obtained drilling rotation rx and the 
radial displacem t Ux at point A are shown in Fig. 3b. 

Using the arc-length method, we obtained solu
tions for both tested elements and they are identical. 
But using the rotation-control method, a solution 
was obtained only by the HW29 element while the 
EADG5A element failed (in the region marked by the 
circle) even for the four times smaller increments ofr • . 

We conclude that in this test the HW shell element 
is much more robust than the EADG shell element. 
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