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Summary

The work concerns in finding the ultrasonic chagsistics of temperature changes within the
heated region of two types of samples: phantom sammde from PVA (Polyvinyl Alcohol
Cryogel) and soft tissues sample in vitro. We aking for changes in the statistical parameters
of the backscattered signals registered duringdifferent heating procedures for the two types of
samples. We are looking for statistical distribnadescribing the statistics of the signal envelope
received during the experiments heating/cooling.tdflimg of the histogram to the different
probability density functions of Rayleigh, GammaKdgami and K-distribution was analyzed by
calculating the mean square error. Besides, theertgmce on temperature changes of
characteristic parameters for considered distrimgihave been calculated. We conclude that the
shape parameter of K-distribution is the best stiail marker of a temperature level in the
performed experiments.

PACS no. 87.50.wp, 43.35.+d, 87.57.-s

1. Introduction temperature level and changes of the properly
chosen statistical characteristics of the signal
B-scan image, see Fig. 1, did not carry anyenvelope. The paper concerns in finding the
information of structural changes during thermalultrasonic characteristics of temperature changes
process for sub-ablation temperature level, scetherwithin the heated region of two types of samples
is a strong need to find such changes in otheand two different heat sources. At first, we
properties in backscattered signal. then magnitudgerform heating and cooling process on the soft
of signal amplitude. tissue, mimicking material, made from PVA
The aim of the paper is to prove the (Polyvinyl Alcohol Cryogel). Its acoustic
statement that there are changes in statistics qfroperties are similar to the acoustic properties o
backscattered signal which, in a quite precise waythe soft tissue, because PVA has special kind of
are predictive of temperature changes inside sofinicrostructure with multilevel organization. The
tissue samplem vitro as well as in its phantoms. thermal behaviour is also enough stable up to c/a
The ultrasound backscattered signal registrate@0° C. Next, soft tissue samplasvitro has been
during sonification has a statistical nature beeausheated by an ultrasonic beam with the transducer
it is formed from randomly distributed scatterersof two different powers. Parallel, during heating
located inside the medium. So, statisticalthe scanning of the sample has been made with the
properties of a signal are strongly connected withhelp of other transducer and the data has been
the properties of the random scatterers distrilnutio collected with STA. The statistical analysis of RF
and their reflectivity. Taking into account the fac signals envelope has been performed in two step.
that during temperature increase/decrease sonfrst, the histograms of envelope with different
microstructural changes in the sample must takgrobability distribution functions from the set of
place we are able to link the changes ofdistributions: Rayleigh , Gamma, K and Nakagami
was compared. This distributions were already
(c) European Acoustics Association used for the characterization of soft tissues and
their phantoms, cf. [1,2]. Secondly, the choice of
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the best parameter evaluating the temperaturecalculated using FEM program Abaqus 6.12
change will be based on two criteria: the histogramsoftware (DS Simulia Corp.)., see Fig. 2, cf. [3-5]

matching and the strongest sensitivity of their
parameter to temperature changes at different o
thermal processes and different materials samples.
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Figure 1la. B-mode image of PVA-c phantom in différe
temperature levels, from left to right: image 1 the
beginning of experiment - 20.6°C, image 2 afterolirh
of heating, the temperature - 48.8°C, and imagée3 t
end of the experiment (after 2 hours of coolingpb-8°C.

T=20C T=37C T=47C Figure 2. Temperature as function of time during
e [T T EvTETTOVRIT) heating/ cooling process for PVA. The upper: plbthe
=00 ] 20 7 2 calculated temperature after 1 hour of heating and
hours of cooling in different points of the samphpwn
in the figure the lower. Black line isolates arearmed
anp Hg | o 2 — by ultrasound transducer.
Backscattered ultrasound signals have been

e s B L collected by the use of transducer L14-5/38
naon B e ULTRASONIX at a frequency of 8 MHz
we wm wee (ULTRASONIX SonixTOUCH, British Columbia,
Canada). Pulse transmitted has 2 periods of thee sin
wave (pulse duration of 0.25 microseconds). To
collect the data the Synthetic Transmit Aperture —
STA- has been used, cf. [6,7]. With the method, an
ultrasonic signal is transmitted by a single
transducer and receiving echoes are registered by
all elements of the transducer array. Focusingstake
2 Experiments place in every point B-mode data.
The system for heating the soft tissue

The sample made from PVA-c, 40mm x 40mm X samplesn vitro consists of generator (Agilent 332,
8mm, has been immersed into a water bath and‘Prings Colorado, USA), amplifier (ENI 1325LA,
subjected to uniform heating. The thermostat wasRochester  NY, USA), ~ spherical  ultrasonic
set so that within one hour the water temperatureffansducer (central frequency 2.2 MHz, diameter 44
increased linearly from 20.6°C to 48.8C®, registere MM, 44.5 mm focal length, area S = 15-Zﬁmd

by the thermometer, see Fig. 1. When disabledoscilloscope (Tektronix TDS3012B), see Fig. 3.

subsequent heating the temperature of the water Irradiation with two different powers: of 4
after two hours, cooled to 25.8°C. Let underline @hd 6W have been performed. During 10 minutes of

that the whole volume of sample was uniformly heating and 10 minutes of cooling the temperature
heated. The temperature distribution during changes were recorded using thermocouples and
heating/cooling process within the sample was'egistered by the USB module -TEMP.

Figure 1b. B-mode image of soft tissue sample in
different temperature levels, from left to rightnage 1

at the beginning of experiment - 20.6°C, imaget2raf0
min of heating with power 4W, the temperature -G7°
and image 3 after 10 min of heating with power 6\W°C
temperature - 47°C.
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Figure 3. Scheme of soft tissue samples heatingFig. 5. Temperature variation in time measured by
experiment. thermocouples along the acoustic axis at various
distances from transducer, soft tissue of powetiegpo
The temperature within the sample has beenthe head 6W
measured along the beam axis at different distances
from the head. The geometrical focus was located

c/a 25 mm of the surface of the transducer, while Tissue sample
the maximum temperature observed in the pattern 50
was at a distance of 25 mm, so practically the same ]
The linear transducer (L14-5/38 ) located across th | ©
heating beam at a distance of 25 mm from the | @ 401
transmitter has been used to produce images during | & 35 1
heating by the focused transducer. In this case, th | & . |
heated volume is concentrated near the focusing | §
L 25
area inside the sample and the temperature
distribution is inhomogeneous. 20 N
0 120 240 380 480 GO0 720 840 980 10801200
Below, the temperature changes in different Time, s
distances from transducer inside the sample and | Y —aw |
different power of heating are depicted, cf. Fig. 4
5, 6. Figure 6. The experimentally determined temperature
changes in the point of focus (the highest heatindhe
Temperature change in tissue, 4 W tissue sample as a function of time / two valuep@fer
3% applied to the head, 10 min heating and 10 miningol
36
34
o 21 3. Statistical analysis
Q 304
g 21 The Rayleigh distribution is one parametric, other
g considered here probability distributions functions
Z: (PDF) are two-parametric. Below we give formulae
20 | for the probability density functions of all
18 distributions and on Fig 7-10 sensitivity on the
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parameters values on the shape of PDF’s are shown.
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Time, s

‘ —25mm ——30mm 35mm ——40 mm ——45mm ——50mm

considered here probability distributions functions

Figure 4. Temperature variation in time measured by (PDF) are two-parametric.

thermocouples along the acoustic axis at various Below we give formulae for the probability

distances from transducer for soft tissue, poweglied  density functions of all distributions and on Fig

to the head 4W. Nos. sensitivity on the parameters values on the
shape of PDF’s are shown.

All calculations in the paper are done Rayleigh distribution is defined by
within Matlab (The Mathworks Inc., Natick,

Massachusetts, USA) version R2014a. pm(_,q|g:4)= %exp[_%] (1)
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Rayleigh distribution pdf
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Figure 7. The probability density function of the
Rayleigh distribution
Gamma distribution
1 Bl e (2)
Al 8 A s
= (Ak,8) = RO
where k,8 >0 shape and scale parametEr,s the
Euler gamma function.

Gamma distribution pdf

05
k=1,8=2
0.4 k=28=2
—k=3,68=2
0.3 k=5 68=1
—k=10,8=05
0.2
0.1 4
0 L \
0 A 10 15 20

Figure 8. The probability density function of thai@ma
distribution
Nakagami distribution
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where m>0,Q>0 is the shape and the scale
parameter, respectively[ is the Euler gamma
function.

Nid |m oy = zm-le-mf m’ 3)

Makagami distribution pdf
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Figure 9. The probability density function of the

Nakagami distribution

The K-distribution is defined by

44
(2 )(a:+l)f2 |

where ¢>0, c>0 is the shape and the scale
parameter, respectively[ is the Euler gamma
function, and K, denotes the modified Bessel
function of the second kind of ordgy.

2
PK(A T el =

K distribution pdf
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Figure 10. The probability density function of tie
distribution

Fitting the histograms of envelopes to
different PDF'’s for all experiments in two points o
heating process, namely the beginning and the
maximal temperature level, are shown in Fig. 11-
Fig.13.

Also the quality of fitting is measured by
MSE calculations, see Tab. 1, 2 3.

The temperature dependencies on four
parameters, which characterized the shape of
considered distributions for all experiments are
shown in Fig. 14.

4. Result

The choice of the best parameter evaluating the
temperature change has be based on two criteria:
the histogram matching and the strongest sensitivit
to temperature changes at different thermal
processes and different materials samples. We
conclude that Gamma distribution is the best PDF
not only as fitting to histograms, but also its @ha
parameter is the most accurate measure of the
temperature increase/decrease. But the shape
parameter of Gamma distribution has no physical
interpretation, contrary to the shape parametét-of
distribution, cf. [1,8-9], which is interpreted as
measure of a “number of effective scatterers” in a
resolutio
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Figure 11. The Histogram designated for empiricghdregistered with the PVA-c phantom for initial
and maximum temperature. and fitting probabilitynsiey functions designated (K- distribution,

Rayleigh, Gamma and Nakagami distribution).
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Figure 12. The Histogram designated for empiricthdregistered with the soft tissue sample fdiahand
maximum temperature (of heating with power 4W) §ittthg probability density functions designated-(K
distribution, Rayleigh, Gamma and Nakagami disttidm).
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Figure 13. The Histogram designated for empiricatlag registered with the soft tissue sample fatiahi
and maximum temperature (of heating with power &M fitting probability density functions designate
(K- distribution, Rayleigh, Gamma and Nakagami rilisttion).
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Table I. Mean square error (MSE), determined by manimg the different distributions of the empirickdta at
different times during the experiment with heatamyl cooling the PVA-C

_ _ Rayleigh Gamma Nakagami S
Time, [x 0.5 min] o o o K distribution
distribution distribution distribution
1 0.4027 0.0233 0.1714 0.1207
40 0.4887 0.0240 0.1791 0.1028
80 0.5188 0.0331 0.2165 0.0991
120 0.5150 0.0288 0.1914 0.0670
140 0.4622 0.0268 0.1785 0.0663
180 0.4223 0.0237 0.1625 0.0597
220 0.4366 0.0223 0.1657 0.0647
240 0.4483 0.0264 0.1668 0.0647
320 0.4438 0.0287 0.1899 0.1049
360 0.4433 0.0284 0.1859 0.0956

Table II. Mean square error (MSE), determined byparing the different distributions of the empitidata at
different times during the experiment with heatargl cooling the soft tissue (4 W)

_ Rayleigh Gamma Nakagami o
Time, [X 5 ] o o o K distribution
distribution distribution distribution
1 0.4901 0.0133 0.1734 0.056
60 0.3526 0.0125 0.1462 0.0414
120 0.3030 0.0114 0.1338 0.0512
180 0.3890 0.0152 0.1631 0.0498
240 0.3929 0.0153 0.1631 0.0528

Table Ill. Mean square error (MSE), determined bgnparing the different distributions of the empalidata at
different times during the experiment with heatamgl cooling the soft tissue (6 W)

_ Rayleigh Gamma Nakagami o
Time, [x 5 8] T o o K distribution
distribution distribution distribution
1 0.4656 0.0148 0.1868 0.0893
60 0.2763 0.0093 0.1159 0.0399
120 0.2675 0.0086 0.1177 0.0279
180 0.2962 0.0881 0.1228 0.0324
240 0.3397 0.0116 0.1396 0.0346
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Figure 14. The parameter of distribution as a fiomcof time from data for PVA-c sample (for Rayle&y
Gamma, Nakagami and K distribution)
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Figure 15. The parameter of distribution as a fiomcof time from data for soft tissue sample (4W)
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Figure 16. The parameter of distribution as a fiomcof time from data for soft tissue sample (6W)
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Figure 17. The parameter of distribution as a fiomcof time from data for PVA-c phantom

Also the rate of changes of the shape calculations of ratio between measures of two
parameter is nearly equal to the rate of measuredlifferent angles - for heating and for cooling
temperature changes, cf. Fig. 17. Calculations argrocesses:
done for PVA-c phantom by linear regressions and
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homogeneously by the immersing in the water bath
<204 ma ZB_019 -4 (5) whereas the soft tissue samjtevitro was heated
igf 0.00046 gh 007 locally inside its volume and the temperature
The links of the temperature changes duringdistribution ~ was  strongly  inhomogeneous.
heating/cooling processes and the shape parametétevertheless, the chosen by us shape parameter of
changes are clearly visible in Fig. 18-19. K-distribution is a quite good temperature marker i
the both cases. The differences in between the
heating processes are responsible for the fact, tha

g 0.00094

12 . T°C in the case of PVA-c sample we can measure by
, o ’ 12 this parameter not only temperature level changes
er . "‘o.’ S 0 but also the rates of the heating/cooling process.

116 “~." :’s?. E: The results are very promising to
il G & elaborate in the near future new noninvasive
T } " & method of temperature measurement inside soft
St o & tissuesn vivo.
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