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The paper presents a method of damping of mechanical vibrations by ap-
plication of electromagnetic actuators. The physical phenomena that take
place in such elements are related to magnetic induction and hysteresis.
Induction, which consists in generation of electric current in a conductor
placed within a variable magnetic field, has a precise quantitative descrip-
tion in form of the Faraday law. At the same time, magnetic hysteresis
in ferromagnetic materials reflects the relation between magnetization of
a given sample and magnitude of the external magnetic field that had be-
en active during its whole history. Unfortunately, there is no at present a
single commonly accepted model of this phenomenon. In this paper, so-
me considerations by Bertotti (1998) are incorporated to this subject. The
authors use a bilinear magnetization curve, which depicts the phenome-
non of magnetic saturation. Analysis of the derived equations of motion of
the coupled electromagneto-mechanical model revealed that the effect of
hysteresis on reduction of vibration amplitude is rather of minor impact,
however noticeable. At the same time, the electromagnetic damping itself
is powerful. To support the conclusions, appropriate time histories, graphs
of the logarithmic damping decrement as well as resonant characteristics
are given here as in the previous authors’ paper.

Key words: damping of vibration, electromagnetic actuator, magnetic
hysteresis, saturation

1. Introduction

One of the methods of damping of mechanical vibrations is making use of elec-
tromagnetic actuators incorporating magnetic induction and hysteretic phe-
nomena. The induction was discovered in the first half of the 19-th century
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independently by Faraday and Henry, and was precisely quantitatively descri-
bed in form of the Faraday law. Magnetic hysteresis in ferromagnetic materials
means a relationship between magnetization density in a given sample and
history of the surrounding magnetic field the sample has been continuously
exposed to. The hysteresis is also vulnerable to mechanical and thermal tre-
atment of the sample as well as to its geometry, stress state and temperature.
Still, physicists permanently look for a general theory explaining the pheno-
menon of magnetic hysteresis. Considerations on that subject can be found
in, above all, a monograph by Bertotti (1998) as well as in Knoepfel (2000),
Nicolaide (2001) and papers by Ossart and Meunier (1990) and Fallah and
Moghani (2006).

Recently, Przybyłowicz and Szmidt (2008) examined vibrations of a me-
chanical harmonic oscillator suspended between two electromagnets, however
without the effect of magnetic hysteresis taken into consideration. In this pa-
per, the authors analyse the influence of hysteresis on damping of vibrations in
an analogous system. A simple model describing the phenomenon of hysteresis
is introduced. It depicts the hysteresis as a result of induced eddy currents in
a ferromagnetic material subject to a variable magnetic field. The model was
formulated by Bertotti (1998) and further employed by Dziedzic and Kurnik
(2002) and Dziedzic (2005) who analysed vibrations of rotating shafts suppor-
ted on journal bearings stabilised by electromagnetic actuators. Some research
on journal bearing systems was also attempted by Przybyłowicz (2001) who
employed piezoceramic actuators to reach the stabilisation goal.

2. Analysed system

Between two identical electromagnets, a mechanical harmonic oscillator of
mass m = 1.5 kg is suspended on springs whose resultant stiffness equals
k = 15000N/m, see Fig. 1. Inside the oscillator there are steel cores embed-
ded, which together with the electromagnets create a magnetic circuit with
length l = 200mm and diameter 2a = 3mm. Around each of the electroma-
gnetic cores, N = 320 wire coils having electric resistance R = 1.22Ω are
wound (copper with wire diameter 0.25mm) to which a constant voltage U is
supplied. The gaps between the armature and electromagnets are: z1 = δ+x,
z2 = δ − x, where δ = 1mm, and x ∈ [0, δ] is a mechanically constrained di-
splacement of the armature in the direction of the right-hand electromagnet.
The parameter being changed in the investigations is the supply voltage U .
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Fig. 1. Analysed system – harmonic oscillator suspended between two
electromagnets

Electric conductivity of the steel the cores are made of (Si-Fe alloy, see
Bertotti, 1998) amounts to σ = 2 · 106 (Ωm)−1. Although, to describe its
magnetic properties a bilinear characteristic of magnetization is assumed

B = φ(H) =





Bs
Hs
H 0 ¬ H ¬ Hs

Bs + µ0(H −Hs) H > Hs

(2.1)

where Hs = 500A/m denotes the electromagnetic field intensity at which the
cores become magnetically saturated, Bs = 1.5T is the magnetic induction
corresponding to saturation and µ0 = 4π · 10−7 Tm/A is the magnetic perme-
ability of vacuum. The B − H curve and issuing curve of relative magnetic
permeability µ = µ(H) = φ(H)/(µ0H) are shown in Fig. 2.

Actually, the true magnetization curve has a more complex shape, see
Bertotti (1998). However, if the vibrations are not excessive and the supplied
voltage not very high, then the assumption of a linear character of the core
material does not considerably affect the behaviour of the system (Przybyło-
wicz and Szmidt, 2008). The bilinear magnetization characteristic additionally
allows one to take into account the effect of magnetic saturation, which leads
to the appearance of new mechanical equilibrium points. It was thoroughly
explored by Dziedzic (2005).
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Fig. 2. Primary magnetization curve and relative magnetic permeability of steel

3. Model of magnetic hysteresis

In this paper, a model proposed by Bertotti (1998) that explains the magnetic
hysteresis phenomenon via losses brought about by eddy currents is applied
to the examinations. Its complete formulation enables description of the static
and dynamic hysteresis loop. For a given sample, the static loop depends only
on the amplitude of variable magnetic field, though the dynamic loop is also
affected by frequency and form of such variations (sine, triangle, etc.).

An accurate description of both types of hysteresis loops requires iden-
tification of several physical parameters pertaining exclusively to the given
sample. Because of that, the study will be confined to the model of a dy-
namic loop with other effects related to the structure of magnetic domains
neglected.

In the first subsection, the decomposition of energy losses depending on the
scale in which eddy currents are induced will be described. This will enable us
to consider the type of hysteresis we are exactly interested in. Its description
requires reaching back to Maxwell’s equations, so let then refer to them with
the simplifying assumption. Next, we derive the constitutive equation for the
steel core placed in a variable magnetic field. This will relate the external
magnetic field with the average intensity of the field inside the core. Let us
repeat Bertotti’s calculations for the sample analysed in our case, and then
formulate the assumption for which the obtained equation well approximates
the reality. At the end of this section, a set of non-linear ordinary differential
equations will be derived, which links motion of the mechanical oscillator with
electromagnetic phenomena occurring in the cores and winding.
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3.1. Energy losses

Having known the eddy current density j(r, t) in any point of the sample
and any time instant t, it would be possible to calculate the thermal energy
lost during one cycle per unit volume (J/m3, being quantitatively equal to the
hysteresis loop area) from the equation

P

f
=
1

V

∫

V

dV

1/f∫

0

|j(r, t)|2
σ

dt (3.1)

where σ is the electric conductivity of the material of the sample, V – its
volume, f – frequency of the field variability.

Unfortunately, description of the eddy current distribution is very difficult
as it depends not only on geometry of the sample and some material constants,
but on the structure of magnetic domains as well. The proposed by Bertotti
(1998) model depicts the induced eddy current as a sum of currents brought
about by randomly appearing Barkhausen’s jumps, i.e. local changes in the
magnetic domains. The averaging of the effect of individual jumps leads to de-
composition of energy losses (3.1) into three elements: hysteresis loss, classical
loss, and the so-called excess loss

P

f
= C0 + C1f + C2

√
f (3.2)

The first element is responsible for the static – independent of the frequency
of field variability – hysteresis loop. The other two describe the dynamical
loop. The constants C0 and C2 require identification, while C1 can be found
from geometry of the given sample, its electric conductivity and the function
describing time variability of the magnetic field.

According to Bertotti (1998), for a metal sheet made of Si-Fe alloy of
thickness 0.21mm subject to sinusidally changing magnetic field with the
maximum induction 1.5T, these constants are: C0 = 33, C1 = 0.058,
C2 = 1.4.

To the oscillating system considered in this paper, a model describing the
second, linear with respect to frequency, element of the hysteresis will be ap-
plied. It results from the eddy current flowing in the macro-scale, when the
sample material is treated as homogeneous. Since then, this current will be
denoted by j, having in mind that the total current induced in the sample is
greater.
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3.2. Maxwell’s equations

In the preceding analysis, Maxwell’s equations will be incorporated. They
include respectively: Faraday’s, Ampère’s and Gauss’s laws for electric and
magnetic fields in differential or integral forms. In Eq. (3.1) there appears one
component only since in mechanical systems we usually face with relatively
low frequencies, for which Maxwell’s correction to Ampère’s law is negligible

rotE = −∂B
∂t

∫

γ

E dl = −dΦ
dt

rotH = j

∫

γ

H dl = I

divD = ρ

∫

Γ

D dS =

∫

V

ρ dV

divB = 0

∫

Γ

B dS = 0

(3.3)

In the above equations the following denote: D [C/m2] – electric induction,
B [T] – magnetic induction, E [V/m] – electric field intensity, H [A/m] –
magnetic field density, Φ [Wb] – magnetic flux, j [A/m2] – current density,
I [A] – resultant current, ρ [C/m3] – charge density. In the integrals in Eq.
(3.3), the symbol γ denotes any arbitrary spatial curve, while Γ a surface
enclosing the space V (the curve and the surface are closed and regular).
Additionally, the following relationships hold

D = ǫE j = σE (3.4)

where ǫ is electric permeability of the medium (with linear electrisation of the
core material assumed).

3.3. Constitutive equation of the core

In Fig. 3, an infinitely long steel core is shown, along which an external,
time-variable magnetic field Ha = [0, 0,Ha], Ha = Ha(t) is applied. Let
H = [0, 0,H], H = H(x, y, t) be the magnetic filed in the core, B = [0, 0, B],
B = B(x, y, t) – the induction corresponding to that field, and j = [jx, jy, 0],
jx = jx(x, y, t), jy = jy(x, y, t) – the induced eddy current density. If the cores
of magnetic circuits are sufficiently long, then the above model can be applied
to the considered system. Then Ha will be the magnetic field generated by
the electromagnet winding.
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Fig. 3. The steel core placed in an axially directed variable magnetic field

Maxwell’s equations in their differential form (3.3) and formulas (3.4) lead
to the following problem of the magnetic field occurring within the core

∂2H

∂x2
+
∂2H

∂y2
= σ
∂B

∂t
(3.5)

H
∣∣∣
∂A
(t) = Ha(t)

∂H

∂x
(0, 0, t) = 0

∂H

∂y
(0, 0, t) = 0

Expressing the Laplacian in polar coordinates, one obtains:

∂2H

∂r2
+
1

r

∂H

∂r
= σ
∂B

∂t
(3.6)

H(a, t) = Ha(t)
∂H

∂r
(0, t) = 0

Assume now that B and ∂B/∂t only slightly vary with distance r from the
center of the core. Hence, these quantities can be replaced by average values
in the core cross-section, denoted by B and dB/dt, respectively. The solution
to (3.6)1 is then given by the formula

H = Ha −
1

4
σ(a2 − r2)dB

dt
(3.7)

The obtained parabolic distribution of the magnetic field in the core cross-
section is approximate. The real distribution was presented by Knoepfel
(2000).
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Ampère’s law in the differential form implies that density of the eddy
current induced in the core is

j = −∂H
∂r
= −1
2
σr
dB

dt
(3.8)

where the negative sign results from the Lenz law – the induced by a chan-
ge in the magnetic field current generates a field counteracting that change.
Calculating the average values of both sides of equation (3.7) for the core
cross-section, we obtain

H = Ha −
1

8
σa2
dB

dt
(3.9)

The average value of magnetic field H in the core must be consistent with the
magnetization law for the material H = φ−1(B), which leads to the following
constitutive equation of the core

1

8
σa2
dB

dt
+ φ−1(B) = Ha (3.10)

An analogous equation for geometry of a plate was presented by Bertotti
(1998). It only differs by the constant standing at dB/dt – if the plate has
thickness 2a, then 1/3 appears in (3.9) instead of 1/8.

To answer the question in which conditions the assumption of negligible
variations of B and ∂B/∂t with respect to r holds, one should introduce the
notion of a skin layer of the core (Knoepfel, 2000). In the skin layer, most of
the heat coming from the induced eddy currents is generated. Deeper, down
the skin, the amplitude of magnetic field is much lesser than within it. This
effect of shielding of the skin layer is harnessed e.g. in induction furnaces for
surfacial heat treatment of metals.

The thickness of the skin layer (skin depth) of the core subject to a har-
monically variable with frequency magnetic field amounts to

d =
1√
πσµµ0f

(3.11)

It is seen in Fig. 4 that the increasing frequency of the magnetic field ma-
kes the skin layer thinner. One can also make a simplifying assumption when
its thickness is less than the core radius. For the given geometry and elec-
tric and magnetic properties of the core material, this assumption states that
f ¬ 24Hz.
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Fig. 4. Skin depth in the core undergoing harmonically variable magnetic field

3.4. Dynamical equations

To fix the attention, let us consider the left electromagnet (see Fig. 1).
Derive now an equation describing electromagnetic phenomena taking place
in the core. Consider a curve γ passing normally through the center of any
cross-section of the core. Applying to it Ampère’s law in the integral form, we
obtain

lH(0) + 2(δ + x)Hz(0) = I (3.12)

where H and Hz are magnetic field intensities in the core and gap, respec-
tively, and I is the resultant current flowing through the surface enclosed by
the curve γ.

Form Gauss’s law for magnetic fields in the integral form it ensues that in
each cross-section of a magnetic circuit there is the same magnetic flux. Since
the cross-section A of the core is constant, then the magnetic induction in the
core remains the same as in the gap. Thus

H = φ−1(B) Hz =
B

µ0
(3.13)

The resultant current I is a sum of the current flowing through the electro-
magnet winding and the eddy current in the core

I = Ni+ l

a∫

0

j(r) dr = Ni− l(Ha −H(0)) (3.14)
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where the second equality originates from (3.8). Substituting H, Hz and I
into (3.12) and replacing H(0) and B(0) by the average values in the core,
we arrive at

lφ−1(B) + 2(δ + x)
B

µ0
= Ni− l(Ha − φ−1(B)) (3.15)

Taking advantage of (3.10), we obtain the following equation

1

8
σla2
dB

dt
+
2(δ + x)

µ0
B + lφ−1(B) = Ni (3.16)

Proceed now to the equation describing the induction in the electric circuit.
According to Faraday’s law, the induced electromotive force is proportional to
the rate of change of the magnetic flux. Applying the second Kirchhoff law,
we may write down

i =
U

R
− NA
R

dB

dt
(3.17)

Derive now a formula for the magnetic force. Let us assume, for a while,
the average induction in the core as a function of the gap size B = B(z)
exclusively. Shifting the oscillator away from the attracting electromagnet by
a distance z, one accumulates in the magnetic field filling up the gap some
potential energy of density

u(z) =
B(z)2

2µ0
(3.18)

This expression is derived for an ideal solenoid, but it remains true for an ar-
bitrary homogeneous magnetic field. Thus, the amount of energy accumulated
in the gap of size z is

U(z) =

z∫

0

u(y)A dy =
A

2µ0

z∫

0

B(z)2 dz (3.19)

And, consequently, the magnetic force the electromagnet attracts the oscillator
equals

F = 2
dU

dz
=
A

µ0
B
2

(3.20)
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Substituting (3.17) into (3.16) to eliminate the current, and then putting
down an analogous equation for the right electromagnetic circuit, we obtain
the following mathematical description of dynamics of the analysed system

ẋ = v

mv̇ =
A

µ0
(B
2

2 −B
2

1)− kx+ F0 sin(2πft)
(3.21)

(AN2

R
+
1

8
lσa2
)dB1,2
dt
+ 2
(δ ± x)
µ0
B1,2 + lφ

−1(B1,2) =
NU

R

x(0) = x0 v(0) = v0 B1,2(0) = φ(H01,2)

where, by virtue of (3.12) and by assuming the zero initial eddy current, H01,2
is a solution to the equation

H01,2 =
NU
R

2µ(H01,2)(δ ± x0) + l
(3.22)

By index 1 all quantities in the left circuit are denoted, by 2 – all in the right
one.

4. Damping of vibrations

Investigate at the beginning, by means of the logarithmic decrement, the effect
of magnetic hysteresis on damping of free vibration started with an initial
displacement of the oscillator. Then, analyse the case of forced vibration by
plotting resonant characteristics of the system. At the end, the balance of
power will be calculated together with comparison of energy dissipation due
to induction of a current with losses in the core.

4.1. Free vibration

In Fig. 5, a vibration history of the oscillator initially displaced by
x0 = 0.5mm at the supply voltage U = 1.7V is shown. The hysteresis causes
a slight but noticeable growth of damping of the vibration.

The logarithmic decrement is defined as ln[x(nT )/x((n + 1)T )],
n = 0, . . . , 29, where T is the vibration period (Fig. 6). Its value with hy-
steresis taken into account is by 15% up to 19% greater than in the case with
no hysteresis effect considered.
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Fig. 5. Free vibration (x0 = 0.5mm, v0 = 0, U = 1.7V)

Fig. 6. Logarithmic decrement of damping (x0 = 0.5mm, v0 = 0, U = 1, 1.7, 2.5V)

4.2. Forced vibration

The resonant characteristic shows the relation between the maximum re-
gistered vibration amplitude and frequency of the excitation. As in linear sys-
tems, it is plotted for steady-state vibrations. It is yet to be remembered that
in this paper a special numerical approach has been employed as near the
resonance there appears the beating phenomenon, which because of small ef-
ficiency of the magnetic damping for the assumed parameters decays too long
in typical numerical simulation procedures.
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Taking into consideration the effect of magnetic hysteresis, one observes
a slight smoothing of the resonant characteristics for all the applied levels of
voltage supplied to the electromagnets (Fig. 7).

Fig. 7. Resonant characteristics (x0 = 0, v0 = 0, F0 = 0.1N, U = 1, 1.7, 2.5V)

4.3. Effect of hysteresis

The instantaneous power lost in a single core due to hysteresis is determi-
ned from the formula:

Ph(t) =

∫

V

|j(r, t)|2
σ

dV =
1

8
πa4lσ

(dB
dt

)2
(4.1)

While the instantaneous power of induced current in a single winding is, see
(3.17)

Pi(t) = R
(
−NA
R

dB

dt

)2
=
1

336
π2a5Nσ̃

(dB
dt

)2
(4.2)

where σ̃ is the electric conductivity of the material of winding (here copper).
While deriving formula (4.2), it was assumed that the electromagnet winding
consists of a wire having 12-fold less diameter than the core wound in two
layers. After substituting the accepted numerical values of the parameters,
we obtained that the instantaneous power losses due to hysteresis constitute
roughly 19% of the losses brought about by the current induced in the winding.
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5. Concluding remarks

The obtained results enable one to conclude that the effect of magnetic hystere-
sis itself on vibration damping is small but noticeable. The model incorporated
does not reflect hysteretic losses coming from eddy currents induced in the core
within the scale corresponding to magnetic domains, hence in real conditions
this effect is stronger. On the other hand, for higher frequencies the shielding
effect becomes visible, which lowers oscillations of the magnetic field within
the core, thus confines hysteretic losses and limits the efficiency of vibration
damping at the same time.

The taking into account of the other two types of hysteretic losses requ-
ires identification of the model for physically existing cores. Additionally, the
modelling of the shielding effect entails necessity of considering variable field
distributions within cross-sections of the core, which, obviously, makes the
mathematical description very complicated.
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Tłumienie drgań mechanicznego oscylatora za pomocą

elektromagnetycznego układu z pętlą histerezy

Streszczenie

W pracy przedstawiono metodę tłumienia drgań mechanicznych za pomocą ak-
tuatorów elektromagnetycznych. Zjawiskami fizycznymi zachodzącymi w takich ele-
mentach wykonawczych są indukcja magnetyczna i histereza. Indukcja, polegająca na
wytwarzaniu prądu elektrycznego w przewodniku znajdującym się w zmiennym polu
magnetycznym posiada precyzyjny opis ilościowy w postaci prawa Faradaya. Nato-
miast histereza magnetyczna w ferromagnetykach oznacza zależność namagnesowania
próbki od wartości zewnętrznego pola magnetycznego, jakie występowało przez całą
jej historię. Niestety, w chwili obecnej nie ma jednego powszechnie akceptowanego mo-
delu opisującego to zjawisko. Autorzy tej pracy wykorzystali pewne refleksje zaczerp-
nięte z publikacji Bertottiego (1998) na ten temat. W rozważaniach użyto dwuliniową
charakterystykę magnesowania, co pozwoliło odzwierciedlić zjawisko magnetycznego
nasycenia rdzenia. Przeprowadzona analiza rozwiązań wyprowadzonych równań ruchu
elektromagneto-mechanicznego modelu układu wykazała, że uwzględnienie zjawiska
histerezy ma niewielkie znaczenie, jakkolwiek zauważalne. Jednocześnie skuteczność
samej metody tłumienia elektromagnetycznego jest znaczna. Na potwierdzenie tych
tez autorzy tej jak i poprzedniej pracy zaprezentowali odpowiedzi czasowe, wykresy
logarytmicznego dekrementu tłumienia oraz charakterystyki rezonansowe badanego
układu.

Manuscript received December 29, 2008; accepted for print February 12, 2009


