
Journal of Software Engineering for Robotics 4(1), May 2013, 23-33
ISSN: 2035-3928

General Purpose Computing on Graphics Processing
Units for Robotic Applications

Janusz Bedkowski1,∗ Karol Majek1 Andreas Nüchter2
1 Institute of Mathematical Machines, Warsaw, Poland

2 Robotics and Telematics, University of Würzburg, Germany

Abstract—This paper deals with research related with the improvements of state of the art algorithms used in robotic applications
based on parallel computation. The main goal is to decrease the computational complexity of 3D cloud of points processing in
applications as: data filtering, normal vector estimation, data registration, and point feature histogram calculation. The presented results
improve the efficiency of existing implementations with minimal lost of accuracy. The main contribution is a regular grid decomposition
originally implemented for nearest neighborhood search. This data structure is the basis for all presented methods, it provides an
efficient method for decreasing the time of computation. The results are compared with well-known robotic frameworks such as PCL
and 3DTK.

Index Terms—Parallel computing, 3D data processing, mobile robotics

1 INTRODUCTION

T HE sensor data processing suffers often under the compu-
tational complexity and the limited computing resources

on a mobile robot. The availability of General Purpose Com-
putation on Graphics Processing Units (GPGPU) makes par-
allel computation feasible in robotics applications. This paper
presents further developments of parallel computation applied
to 3D point cloud processing. In the seminal work [1] the 3D
point cloud is decomposed using regular grid decomposition
for improving the efficiency nearest neighborhood search. Reg-
ular grid decomposition is used for the calculation of number
of neighboring points surrounding a query point. Therefore it
can also be used for 3D data filtering or subsampling. The
important topic of efficient data filtering is one of the main
contributions of this paper. This initial 3D data processing
step is often applied before registration and normal vector
estimation. The Iterative Closest Point (ICP) algorithm for 3D
data registration was introduced by Besl and McKay in [2],
and from that moment on, many researchers enhanced the

Regular paper – Manuscript received February 12, 2013; revised May 27,
2013.

• This work was supported by Polish National Center of Science (grant No.
UMO-2011/03/D/ST6/03175, “Methodology of semantic models building
based on mobile robot’s observations”).

• Authors retain copyright to their papers and grant JOSER unlimited
rights to publish the paper electronically and in hard copy. Use of the
article is permitted as long as the author(s) and the journal are properly
acknowledged.

augmented solution of aligning two 3D point clouds with
effects on the resulting accuracy and on the performance. A
few GPU based 3D data registration methods are available, but
the implementations and performances are not yet satisfactory.
We deal with the problem of so-called approximated GPU
ICP methods which affects different accuracy requirements
than CPU-based methods. The goal of the ICP algorithm is
to find the transformation matrix that minimizes the sum of
distances between corresponding points of two different data
sets. Therefore two important aspects have to be solved:

• the nearest neighbor search (NNS),
• choosing the proper optimization technique for the mini-

mization of the mentioned function (estimation 3D rigid
transformation).

There are several GPU based approaches for the NNS
in ICP algorithm. The approach from [1] is using the

regular grid decomposition [3]. Another approach is to use
k-d tree [4]. The coordination between CPU and GPU in the
GPU-ICP algorithm from [4] is shown on figure 1. Authors
give a pie chart (figure 2) to show the timing of different
stages of one ICP iteration with two point clouds of 68229
points. The NNS procedure is dominant compared to the rest
of ICP algorithm, therefore many of researchers are currently
trying to optimize the time of its execution. Another promising
approach – an octree based NNS is shown in [5]. The authors
claim that the octree based NNS does not suffer considerably
more from larger maximal distances than the k-d tree based
NNS, unfortunately there is observed an increased variance

www.joser.org - c© 2013 by J. Bedkowski, K. Majek, A. Nüchter



24 Journal of Software Engineering for Robotics 4(1), May 2013

Fig. 1. The coordination between CPU and GPU in the
GPU-ICP algorithm from [4].

for the computing time. The NNS problem is well-known
also in computer graphics, where point models (often referred
to as a point clouds) usually contain millions of points. For
example authors of [6] claim that their NNS approach can
be used for the surface normal computation, mollification
and noise removal. Using NNS for normal vector estimation
is also shown in [7], where authors use an Elliptic Gabriel
Graph (EGG) for finding neighbors. EGG provides balanced
neighbors by considering both distance and directional spread.
We emphasize the fact that in recent years there has been a
shift from using triangles to using points as object modeling
primitives especially in computer graphics applications [8],
[9]. This is related with improved scanning technologies [10],
[11], that have also meaningful impact into mobile robotic
applications from the perspective of mapping [12] and navi-
gation [13]. An important contribution to the NNS problem
is so-called k-d tree data decomposition. The k-d tree data
structure is commonly used in computer graphics, it is related
with the problem of high performance ray tracing [14], [15],
[16], [17] that is solved using modern GPUs. It has already
been shown that the GPU is more efficient than the CPU for
solving NNS problem. For example in [18] authors state that
GPU-based kNN is up to 400 times faster than a brute force
CPU-based implementation of NNS. The comparison of NNS
strategies and implementations for efficient shape registration
is given in [19].

The authors emphasize the fact that most spatial data
structures are hierarchical in nature, such as k-d trees [20]
and octrees [21]. They mentioned that a special type of NNS

Fig. 2. The pie chart is depicting the timing of different
stages of one ICP iteration with two point clouds of 68229
points shown in [4]. The NNS procedure is dominant
compared to the rest of ICP algorithm, therefore many of
researchers are trying to optimize the time of its execu-
tion.

employs the Morton order, i.e., a space-filling curve (SFC),
for arranging the point cloud [22]. They also discussed the
R-tree [23] based algorithm for nearest neighborhood search.
Following algorithms were compared:
• k-d tree (implementations: 3DTK [24], ANN [25],

CGAL [26], FLANN [27], libnabo [28])
• octree (implementations: 3DTK [24])
• R-tree (implementation: SpatialIndex [29])
• space-filling curve (SFC) (implementation: STANN [30])

The result of this comparison is that since most libraries im-
plement only the k-d tree, it is hard to draw final conclusions
as to what data structure is better suited for NNS. The octree
implementation was amongst the best performing algorithms.
Authors state that they have contributed their own novel
open-source implementation of NNS and have shown these
to perform well on realistic and artificial shape registration
problems. The contributions of this paper are:
• the design of a regular grid decomposition for 3D data

filtering,
• the usage of a regular grid decomposition for NNS in

data registration,
• the implementation of SVD solver (for normal vector

estimation PCA and data registration) on GPU,
• the implementation of Point Feature Histogram on GPU,

and
• a comparison with state of the art frameworks (PCL,

3DTK).

2 3D DATA DECOMPOSITION FOR NNS
2.1 Preliminaries
In this paper we are using several GPUs in the experiments,
the NVIDIA GF560M with Compute Capability 2.0, the
GF680GTX with Compute Capability 3.0, and GF TITAN
with Compute Capability 3.5. All algorithms are implemented
for GPU with compute capability ≥ 2.0, therefore they can



J. Bedkowski et al./ Preparation of Papers for Journal of Software Engineering for Robotics 25

Fig. 3. Initial steps: Selection of the closest points. The
example is related to figure 6 (amount of buckets=28).

be executed on each GPU of 5XX(M), 6XX(M), 7XX(M) and
TITAN series type. GPU GF560M is based on NVIDIA Fermi
architecture and is an efficient solution for mobile robotic
applications. GPUs GF680GTX and GF TITAN are based
on NVIDIA KEPLER architecture. The additional hardware
improvements increase the performance. Unfortunately these
GPUs are dedicated for stand-alone PCs and consume much
more energy. NVIDIA GPUs are programmable multi-core
chips built around an array of processors working in parallel.
The GPU is composed of an array of streaming multipro-
cessors (SM - CUDA Fermi, SMx - CUDA Kepler), where
each of them can launch up to 1024 co-resident concurrent
CUDA threads. Currently available graphics units are in the
range from 1 SM(x) up to 32 SM(x)s for the high end
products. Each single SM(x) contains scalar processors (SP)
each with 32-bit registers. The total register space is available
for each SM(x). Each SM(x) is also equipped with on-chip
memory that is characterized by low access latency and high
bandwidth. CUDA threads’ management (creation, scheduling,
synchronization) is performed in hardware and the overhead
is extremely low. SM(x)s work in Single Instruction, Multiple
Thread scheme (SIMT), where CUDA threads are executed in
groups called warps. The CUDA programming model defines
the host and the device. The host executes CPU sequential pro-
cedures while the device executes parallel GPU programs, i.e.,
kernels. A kernel works in a Single Program, Multiple Data
(SPMD) scheme. CUDA gives an advantage of using mas-
sively parallel computation for several applications. Detailed
GPU architecture are given in the original documentation [31].
Useful additional programming issues are published in best
practices guide [32]. The main idea of using the GPU is to
decompose the 3D space into a regular grid of 2n × 2n × 2n

buckets (n = 4,5,6,7,8,9). Therefore for each query point 27
neighboring buckets are considered during NNS procedure.

2.2 Memory allocation on device and copy from host

Figure 3 and algorithm 1 show the main data used in
presented approach. The table_of_found_buckets,

Fig. 4. Tree structure used for XYZ space decomposition
into 64 buckets. From the root to the leaf/bucket the cho-
sen left or right branch depends on the current separation
line.

table_of_sorted_buckets,
table_of_sorted_points consist of up to 64
million integer elements (64 × 1024 × 1024) stored in
a global memory on the GPU, and therefore all CUDA
kernels have access to it. This approach has an important
disadvantage of coalescing, which is a very important
point of the GPU’s performance as it was discussed in [1].
The table_of_amount_of_points_in_bucket
and table_of_bucket_indexes consist of 2n × 2n

(n = 4, 5, 6, 7, 8, 9) integer elements stored in global memory
on the GPU. The data sets M (reference data) and D (data
to be aligned) are stored in six 64 million tables consisting
of floating-point values stored also in a one dimensional
array of the global memory on the GPU. For sorting the
table of buckets, the routine described in section 2.4 are used
in algorithm 1. The used CUDA Radix Sort class (Thrust
library) available in [33] is briefly described in [34].

2.3 NNS Nearest Neighborhood Search
The Euclidian distance between two points p1 = {x1, y1, z1}
and p2 = {x2, y2, z2} is

distance(p1, p2) =
[
(x1 − x2)

2
+ (y1 − y2)

2
+ (z1 − z2)

2
] 1

2

.

(1)
To find pairs of closest points between the model set M and

the data set D, the decomposition of the three-dimensional
or XYZ space, where x, y, z ∈< −1, 1 >, into 2nx2nx2n

(n = 4, 5, 6, 7, 8, 9) buckets is proposed. The idea of the
decomposition is discussed for the 22×22×22 case. Figure 4
shows the decision tree that decomposes the XY Z space
into 64 buckets. Each node of the decision tree includes the
boundary decision, therefore points are categorized into the
left or right branch. Nodes that do not have branches assign



26 Journal of Software Engineering for Robotics 4(1), May 2013

Fig. 5. Cubic subspaces – neighboring buckets. De-
tails on the indexing is given in section 2.6(amount of
buckets=28).

Algorithm 1 Nearest Neighboring Search
copy mxyz and dxyz from host to device
start CUDA computation
for all points mxyz in parallel do

find bucketm
update table of found buckets

end for{one CUDA kernel for one query point}
in parallel sort table of found buckets {radix sort}
in parallel count points in each bucket {one CUDA kernel
for one query point}
for all points dxyz in parallel do

find bucketd
for all neighbors of bucketd do

find NN for dxyz {nearest neighbor is one from mxyz}
end for

end for{one CUDA kernel for one query point}
stop CUDA computation
copy NN from device to host

buckets. Each bucket has an unique index and is related
to the cubic subspace with length, width, height equal to
2/22, 2/22, 2/22. Each bucket that does not belong to the
border has 26 neighbors. The 27 neighboring cubic subspaces
are shown in figure 5 where also the way of indexing is
illustrated.

Figure 6 demonstrates the idea of the nearest neighbor (NN)
search technique on a two-dimensional example. Assuming
that we are looking for the nearest neighbor that satisfies the
condition R < 2/28 and circleR=2/28 ⊂ bucket3R the NN will
be found in the same bucket or in neighboring bucket (in this
example the NN of point d is m5). Algorithm 1 describes the
procedure of selecting the closest points. For better explanation

Fig. 6. A two-dimensional example of the NN search in
neighboring buckets (amount of buckets=28).

figure 3 shows the initial steps of this algorithm where the set
M consists of 10 points from figure 6 for our NN search.
The details of the algorithm will be discussed in the next
subsections.

2.4 Sorting buckets
The radix sort class [33] is used to sort unsigned integer key-
value pairs. Keys correspond to the elements of the table of
buckets and value corresponds to the elements from the table
of points. The procedure outputs a sorted table of buckets.
Figure 3 shows an example of the sorting result. Radix sort
is a well-known sorting algorithm, very efficient on sequential
machines for sorting small integer keys. It assumes that the
keys are d-digit numbers and sorts on one digit of the keys
at a time, starting from the least and finishing with the
most significant. The complexity of this sorting method is
in O(n) for n keys. The details of GPU based radix sort
implementation are given in [34]. The implementation of
GPU-based radix sort is robust, therefore it is used for on-
line computation.

2.5 Count points in bucket and find index of bucket
In the procedure of counting points that belong to the same
bucket the counting is based on table of sorted buckets (see
figure 3). It is important to notice, that also the index of the
found bucket is computed and stored in a global memory on
GPU, therefore all CUDA threads have access to it. This index,
along with the information concerning an amount of points in
the bucket accessible via global memory on GPU, will be used
for searching the nearest neighbor in algorithm 1.



J. Bedkowski et al./ Preparation of Papers for Journal of Software Engineering for Robotics 27

Fig. 7. The scheme of bucket indexing procedure.

2.6 Find bucket
Figure 4 shows the tree structure used for indexing of the 22×
22×22 buckets. The concept of finding the bucket index for the
point mxyz is illustrated in scheme 7, where x corresponds to
the border for current level in the tree and 0, 1, 2, 3, . . . 14, . . .
correspond to the actual bucket index during its computation.
The bucket indexing procedure is executed in parallel, where
each single CUDA kernel in a CUDA block computes the
bucket index for each single query point pxyz . All CUDA
kernels have access to the data stored in global memory on
the GPU.

3 3D DATA FILTERING AND SUBSAMPLING
The goal of 3D data filtering is to eliminate points that are
considered as noise (figure 8). Algorithm 2 demonstrates the
parallel implementation using the GPU. The core concept is
to use a regular grid decomposition to count neighbors around
the query points and eliminate these points for which the
amount of neighbors is less than the threshold. In the case
of the subsampling the situation is more complicated (see
algorithm 3). Instead of deleting all points that have more
neighbors than the given threshold, we are forced to eliminate
them iteratively to obtain the correct density of points (see
figure 9), therefore this process takes more time.

4 IMPROVEMENT OF 3D DATA REGISTRATION
The main contribution related to the improvement of 3D data
registration evaluated in this paper is:
• possibility of processing up to 64 million points in a

single step,
• using regular grid decomposition for robust nearest neigh-

borhood search,
• using parallel reduction for correlation matrix computa-

tion,
• implementation of a SVD solver on the GPU,
• data post processing using the GPU.

4.1 Computation of correlation matrix elements us-
ing optimized parallel reduction
For the correlation matrix (equation (4)) a parallel prefix
sum [35] available in [33] is used. The all-prefix-sums op-
erations take a binary associate operator ⊕ with identity I ,

Fig. 8. Filtering of 1.5 million of points before data
registration. This process takes at an average of 1 second
on modern GPU cards (NVIDIA GTX680).

Algorithm 2 3D data filtering
copy data points from host to device
start CUDA computation
for all points mxyz in parallel do

find bucketm
update table_of_found_buckets

end for{one CUDA kernel for one query point}
in parallel sort table_of_found_buckets {radix sort}

in parallel count points in each bucket {one CUDA kernel
for one query point}
for all query points in parallel do

find the bucket
for all neighboring buckets do

count the amount of NN for query points
end for
mark to delete if count < threshold

end for{one CUDA kernel for every query point}
stop the CUDA computation
copy the result from device to host
delete all marked points

and an array of n elements

[a0, a1, ..., an−1] (2)

and returns the array

[I, a0, (a0 ⊕ a1) , ..., (a0 ⊕ a1 ⊕ ...⊕ an−2)] . (3)

All-prefix-sums operations on an array of data is com-
monly known as scan. The parallel implementation uses
multiple CUDA thread blocks for processing an array up to
1024 × 1024 × 64 data points stored in an one dimensional
array. The strategy is to keep all multiprocessors on the GPU
busy to increase the performance. The assumption is that
each CUDA thread block reduces a portion of the array. To
avoid the problem of global synchronization the computation



28 Journal of Software Engineering for Robotics 4(1), May 2013

(a) Acquired raw data using an actu-
ated SICK LMS100 range finder.

(b) Processed data with algorithm 3.

Fig. 9. Visualization of the subsampling process. The
result is that the density of data is equalized over whole
data set. This process takes in average few seconds with
modern GPU (NVIDIA GTX680).

is decomposed into multi kernel invocations. The optimized
kernel available in [33] is used in parallel computation.

C =

N∑
i=1

mi
′Tdi

′ =

cxx cxy cxz
cyx cyy cyz
czx czy czz

 (4)

where:

cxx =

N∑
i=1

mix
′dix
′, cxy =

N∑
i=1

mix
′diy
′, ..., czz =

N∑
i=1

miz
′diz
′

(5)

4.2 Singular Value Decomposition (SVD)
The equation for singular value decomposition of the 3 × 3
matrix A is the following:

A = UΣV T (6)

where U is a 3× 3 matrix, Σ is a 3× 3 diagonal matrix, and
V T is also an 3× 3 matrix. The columns of U are called the
left singular vectors {uk}, and form an orthonormal basis. The
rows of V T contain the elements of the right singular vectors
{vk}. The elements of Σ are only nonzero on the diagonal, and
are called the singular values. Thus, Σ = diag(σ1, . . . , σn).
Furthermore, σk > 0 for 1 ≤ k ≤ r, and σi = 0 for
(r + 1) ≤ k ≤ n. The ordering of the singular vectors is
determined by high-to-low sorting of singular values, with the
highest singular value in the upper left index of the Σ matrix.
In this particular application we need to compute the SVD of
a 3×3 matrix. For such a small matrix, generalized numerical
SVD algorithms from libraries like LAPACK (Linear Algebra
PACKage) [36] are not beneficial especially when we have
to implement it on GPU. Our implementation computes the
singular values by solving a cubic polynomial and then uses
the eigenvectors of ATA for V . Then we use A and V to
compute U . The algorithm is executed in 5 steps.

1) Compute AT and ATA.

(a) Artificial data set before registra-
tion.

(b) Registered data.

Fig. 10. Artificial data set with 1 million 3D points.

Algorithm 3 3D subsampling
copy the data points from host to device
start the CUDA computation
for all points mxyz in parallel do

find the bucketm
update table_of_found_buckets

end for{one CUDA kernel for one query point}
in parallel sort table_of_found_buckets {radix sort}

while amount of points marked to erase > 1000 do
in parallel count points in each bucket {one CUDA kernel
for one query point}
for all query points in parallel do

find bucket
for all neighboring buckets do

count the amount of NN for query points {assuming
previously marked points for deleting}

end for{one CUDA kernel for one query point}
mark to delete if count > threshold

end for{one CUDA kernel for every query point}
in parallel count the amount of points marked to erase
{using radix sort and parallel reduction}
if the amount of marked points > 1000 choose random
1000 marked points and mark for a final delete

end while
stop the CUDA computation
copy the result from device to host
final delete
delete all marked points

2) Determine the eigenvalues of ATA by finding roots of a
cubic polynomial and sorting them in descending order.
Compute square roots to obtain singular values of A.

3) Construct diagonal matrix Σ by placing singular values
in descending order along its diagonal. Compute Σ−1.

4) Use the ordered eigenvalues from step 2 and compute



J. Bedkowski et al./ Preparation of Papers for Journal of Software Engineering for Robotics 29

Fig. 11. Convergence error (measured as angle) for
different ICP implementations.

the eigenvectors of ATA. Place these eigenvectors along
the columns of V and compute V T .

5) Compute U = AV Σ−1

4.3 Comparison of GPU ICP with state of the art
implementations

The following experiment will demonstrate the advantage of
proposed GPU based data registration. The 3DTK ICP is used
as the reference implementation; as a data set we build an
artificial 3D data set shown in figure 10. Initially the cubes
are rotated around the Y -axis with an angle of 10 degrees.
Registration should decrease this angle down to zero, therefore
this value is our expectation shown in figure 11 as an error.
The convergence of all algorithm is comparable, therefore we
claim that they give similar respond. An interesting fact is
observed in figure 12, where the fastest method is marked
with a green star. Implementing SVD on GPU decrease the
ICP computational time around 1 millisecond for each ICP

Fig. 12. Computation time for different ICP implemen-
tations. The hardware used in this experiment: CPU Intel
Core i7 2670QM 2.2GHz (4 core, 8 threads), GPU NVIDIA
GeForce GTX 560M.

iteration, therefore we can save up to 30 millisecond during 30
iteration. This is important for real-time robotic applications.
Another important observation is that the variance of the
computational time of the proposed approach is very small
and in average the proposed implementation performs single
ICP step up to 6 times faster than 3DTK implementation using
k-d trees with OpenMP acceleration.

The hardware used in this experiment consists of a CPU
Intel Core i7 2670QM 2.2GHz (4 core, 8 threads), GPU
NVIDIA GeForce GTX 560M. The total computing times of
30 iterations are as follows:

• ICP with regular grid decomposition (threshold for NN
search, INNER bucket - 50, OUTER bucket -20), SVD
solver on CPU (NEWMAT library): 35574ms



30 Journal of Software Engineering for Robotics 4(1), May 2013

(a) 15000473 of registered data points
(10 local scans).

(b) 24407407 of registered data points
(14 local scans).

Fig. 13. Registered point cloud obtained with Z+F 5010
geodetic laser scanner. Data registration process took an
average of 15 to 30 minutes using the modern laptop
equipped with the NVIDIA GF560M.

• ICP with regular grid decomposition (threshold for NN
search, INNER bucket - 20, OUTER bucket -5), SVD
solver on CPU (NEWMAT library): 10114ms

• ICP with regular grid decomposition (threshold for NN
search, INNER bucket - 20, OUTER bucket -5), SVD
solver on GPU: 10088ms (we save 1 ms per ICP iteration,
in this particular experiment the GPU SVD solver saves
in total 26ms compared to CPU)

• ICP with k-d tree 3DTK implementation: 120851ms
• ICP with k-d tree 3DTK implementation (OpenMP):

60325ms

To further demonstrate the applicability of the proposed
approach we show in figure 13 the registered point clouds
obtained using a Z+F 5010 geodetic laser scanner. The process
of registration took in average 15 minutes using modern laptop
equipped with NVIDIA GF560M.

5 POINT FEATURE HISTOGRAM (PFH)

5.1 Normal Vector Estimation

Estimating the surface normal is done by the Principal Com-
ponent Analysis (PCA) [37] of a covariance matrix C created
from the nearest neighbors of the query point. The main
contribution is to develop a PCA solver based on the SVD
method that performs in parallel for each query point in one
single step. In last step of the algorithm, it is checked if the
normal vectors are consistently oriented towards the viewpoint
and flipped otherwise. The result is given in figure 14, where
normal vector estimation of 105 data points from Velodyne
laser takes in average 40ms on a NVIDIA GF680GTX. It
can be considered in real-time applications. Another important
example of real task application is shown on figure 15 where
data was collected using Z+F Imager 5010 laser measurement
system in OUTDOOR environment.

Fig. 14. Normal vector estimation of 100000 data points
from Velodyne laser.

(a) Single scan of 1552676 data
points.

(b) Time of normal vector computa-
tion 242ms (NVIDIA GF680GTX).

(c) Registered three scans (4718093
of data points).

(d) Time of normal vector computa-
tion 774ms (NVIDIA GF680GTX).

Fig. 15. Normal vector computation for 3D point cloud ac-
quired via Z+F Imager 5010 laser measurement system.

5.2 Parallel Implementation

Figure 16 demonstrates the parallel implementation of the
normal vector estimation in the NVIDIA CUDA framework.
The idea is to perform the normal vector estimation in two
steps by performing the computations for each query point in
parallel. The first step is to compute the covariance matrices
and to store the result in the shared memory of the GPU.
In the second step the normal vector estimation is performed
using the SVD (Singular Value Decomposition) method for
each query point in parallel. Our main contribution is the
implementation of the CUDA kernels for the covariance
matrix computation and the SVD solver. It is important to
emphasize that the NNS method is sued in this approach.



J. Bedkowski et al./ Preparation of Papers for Journal of Software Engineering for Robotics 31

Fig. 16. Parallel implementation of the normal vector
estimation in the NVIDIA CUDA framework.

It uses the fixed organization of the RGB-D data (640x480
or 320x240 data points), therefore the NNS is performed for
neighbors assigned by neighboring indexes to the index of
query point. An additional threshold determines the radius of
search space. PFH encodes the geometrical properties of the
local neighborhood by generalizing the mean curvature at a
point p. This method provides an overall density and forms the
pose invariant multi-value feature [38], [39]. PFH provides a
possibility to distinguish several types of shapes such as plane,
cylinder, corner, sphere etc.

5.3 Parallel Implementation of PFH
To improve the performance of the PFH algorithm, the GPU-
based parallel approach is used. The current implementation
computes 64 histograms in a single step, and it is shown on
figure 17. For the quantitative comparison with the open source
state of the art the Point Cloud Library (PCL) is used. The
PFH is composed of three features, therefore the dimension is
125 (= 5× 5× 5).

5.4 Quantitative Comparison with the state of the art
We compare quantitatively the performance of the PCL and
proposed parallel implementation called cuPCL. The main
problem for CUDA computation is a bottleneck related to the
copy data from/to host to/from device. The implementation is
dedicated for the NVIDIA FERMI and KEPLER architectures
with an advantage of double floating point precision capability.
Figure 18 shows the comparison between PCL and cuPCL of
the normal vector estimation for a depth image with 640×480

Fig. 17. The idea of the parallel implementation of 64
PFH’s computation at single step. The maximum amount
of nearest neighbors to a query point is 1024. The compu-
tation has to be performed for each pair of normal vectors
in neighborhood [39], therefore kernels are organized into
1024× 1024× 64 data structure.

3D points. The performance is measured for different radius
of the NNS procedure, it is obvious that with larger radius we
expect more time for the computation. A reasonable radius
is 3cm and for this value the cuPCL speed up over PCL is
above 132 (GPU NVIDIA GF TITAN, CPU Intel Dual Core
3.0GHz).

Based on the previous observation, i.e., nearly 100ms of
computation time, it is proposed to decrease the amount of
data from 640 × 480 to 320 × 240. Figure 19 shows the
comparison between PCL and cuPCL of the normal vector
estimation of 320 × 240 depth image. The speed up is over
40 for a radius of 3cm and the computation time is less than
20ms. It is important that the variance of the computational
time decreases for cuPCL, what is an optimistic observation
to build real-time systems.

Our last experiment concerns the quantitative comparison
of PFH computation. We observed the satisfactory speed up
of computing 64 histograms (above 430 for a radius of 3cm)
for cuPCL which gives an impression about possible use in
the on-line system.

6 CONCLUSIONS

The contributions of this paper are:
• an implementation of a regular grid decomposition for

3D data filtering,
• an implementation of a regular grid decomposition for

NNS for data registration,
• an implementation of 3D data subsampling using the reg-

ular grid decomposition for an amount of NN calculation,
• the implementation of the SVD solver for both, the nor-

mal vector estimation using PCA and the data registration
on the GPU,

• the implementation of PFH on the GPU,



32 Journal of Software Engineering for Robotics 4(1), May 2013

Fig. 18. The performance of the normal vector estimation
with a depth image 640x480 3D points computed via CPU
(PCL) and GPU (cuPCL), GPU NVIDIA GF TITAN, CPU
Intel Dual Core 3.0GHz. For the radius = 3cm the cuPCL
speed up over PCL is above 132.

Fig. 19. The performance of the normal vector estimation
for a 320 × 240 depth image with PCL and cuPCL on a
NVIDIA GF TITAN GPU and an Intel Dual Core 3.0GHz
CPU. For the radius = 3cm the cuPCL speed up over PCL
is above 40.

• a comparison with state of the art frameworks, namely
PCL and 3DTK.

The proposed implementations offer improved computational
time with minimal lost of accuracy, therefore these algorithms
can be efficiently used in robotic applications. It is possible
to use the proposed solution to build real-time 3D data
registration for map building purposes. In future work we
will focus on GPU computing for improving the loop-closing
component in 6D SLAM algorithm.

REFERENCES

[1] J. Bedkowski, A. Maslowski, and G. de Cubber, “Real time 3D local-
ization and mapping for USAR robotic application,” Industrial Robot,
vol. 39, no. 5, pp. 464–474, 2012. 1, 2.2

[2] P. J. Besl and N. D. McKay, “A Method for Registration of
3-D Shapes,” IEEE Transactions on Pattern Analysis and Machine
Intelligence, vol. 14, no. 2, pp. 239–256, Feb. 1992. [Online]. Available:
http://dx.doi.org/10.1109/34.121791 1

[3] T. Rozen, K. Boryczko, and W. Alda, “GPU bucket sort algorithm with
applications to nearest-neighbour search,” WSCG, vol. 16, no. 1-3, pp.
161–167, 2008. 1

[4] D. Qiu, S. May, and A. Nüchter, “GPU-Accelerated Nearest Neighbor
Search for 3D Registration,” in Proceedings of the 7th International
Conference on Computer Vision Systems: Computer Vision Systems,
ser. ICVS09. Berlin, Heidelberg: Springer-Verlag, 2009, pp. 194–203.
[Online]. Available: http://dx.doi.org/10.1007/978-3-642-04667-4 20 1,
1, 2

[5] J. Elseberg, D. Borrmann, and A. Nchter, “Efficient processing of
large 3D point clouds,” in Information, Communication and Automation
Technologies (ICAT), 2011 XXIII International Symposium on, oct. 2011,
pp. 1 –7. 1

[6] J. Sankaranarayanan, H. Samet, and A. Varshney, “A Fast k-
Neighborhood Algorithm for Large Point-Clouds,” in Eurographics
Symposium on Point-Based Graphics 2006, 2006. [Online]. Available:
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.316 1

[7] J. Park, H. Shin, and B. Choi, “Elliptic Gabriel graph for finding
neighbors in a point set and its application to normal vector
estimation,” Computer-Aided Design, vol. 38, no. 6, pp. 619–626,
2006. [Online]. Available: http://linkinghub.elsevier.com/retrieve/pii/
S0010448506000339 1

[8] M. Pauly, R. Keiser, L. P. Kobbelt, and M. Gross, “Shape modeling
with point-sampled geometry,” ACM Trans. Graph., vol. 22, no. 3,
pp. 641–650, Jul. 2003. [Online]. Available: http://doi.acm.org/10.1145/
882262.882319 1

[9] M. Andersson, J. Giesen, M. Pauly, and B. Speckmann, “Bounds
on the k-neighborhood for locally uniformly sampled surfaces,”
in Eurographics Symposium on Point-Based Graphics 2004, 2004.
[Online]. Available: http://citeseerx.ist.psu.edu/viewdoc/summary?doi=
10.1.1.2.9832 1

[10] O. Wulf and B. Wagner, “Fast 3D Scanning Methods For Laser
Measurement Systems,” in International Conference on Control
Systems and Computer Science, Bucharest, Romania, Jul. 2003.
[Online]. Available: http://www.rts.uni-hannover.de/mitarbeiter/wulf/
Wulf03-CSCS14.pdf 1

[11] F. Zampa and D. Conforti, “Mapping with Mobile Lidar,” GIM Inter-
national, vol. 23, no. 4, pp. 35–37, 2009. 1

[12] A. Nchter, K. Lingemann, J. Hertzberg, and H. Surmann, “6D
SLAM-3D mapping outdoor environments,” Journal of Field Robotics,
vol. 24, no. 8-9, pp. 699–722, 2007. [Online]. Available: http:
//dx.doi.org/10.1002/rob.20209 1

[13] D. Dolgov and S. Thrun, “Detection of principal directions in unknown
environments for autonomous navigation,” Ann Arbor, vol. 1001, p.
48105, 2008. 1

[14] S. Popov, J. Günther, H.-P. Seidel, and P. Slusallek, “Stackless
KD-Tree Traversal for High Performance GPU Ray Tracing,”
Computer Graphics Forum, vol. 26, no. 3, pp. 415–424, Σεπτµβρι
2007. [Online]. Available: http://www.blackwell-synergy.com/doi/abs/
10.1111/j.1467-8659.2007.01064.x 1

[15] T. Foley and J. Sugerman, “Kd-tree acceleration structures for a gpu
raytracer,” in Proceedings of the ACM SIGGRAPH/EUROGRAPHICS
conference on Graphics hardware, ser. HWWS ’05. New York,
NY, USA: ACM, 2005, pp. 15–22. [Online]. Available: http:
//doi.acm.org/10.1145/1071866.1071869 1

[16] K. Zhou, Q. Hou, R. Wang, and B. Guo, “Real-time KD-
tree construction on graphics hardware,” ACM Transactions on
Graphics, vol. 27, no. 5, p. 1, 2008. [Online]. Available: http:
//portal.acm.org/citation.cfm?doid=1409060.1409079 1

[17] D. R. Horn, J. Sugerman, M. Houston, and P. Hanrahan, “Interactive
k-d tree GPU raytracing,” Proceedings of the 2007 symposium on
Interactive 3D graphics and games - I3D ’07, p. 167, 2007. [Online].
Available: http://portal.acm.org/citation.cfm?doid=1230100.1230129 1

[18] V. Garcia, E. Debreuve, and M. Barlaud, “Fast k nearest neighbor
search using GPU,” 2008 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition Workshops, no. 2, pp. 1–6,

http://dx.doi.org/10.1109/34.121791
http://dx.doi.org/10.1007/978-3-642-04667-4_20
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.64.316
http://linkinghub.elsevier.com/retrieve/pii/S0010448506000339
http://linkinghub.elsevier.com/retrieve/pii/S0010448506000339
http://doi.acm.org/10.1145/882262.882319
http://doi.acm.org/10.1145/882262.882319
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9832
http://citeseerx.ist.psu.edu/viewdoc/summary?doi=10.1.1.2.9832
http://www.rts.uni-hannover.de/mitarbeiter/wulf/Wulf03-CSCS14.pdf
http://www.rts.uni-hannover.de/mitarbeiter/wulf/Wulf03-CSCS14.pdf
http://dx.doi.org/10.1002/rob.20209
http://dx.doi.org/10.1002/rob.20209
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-8659.2007.01064.x
http://www.blackwell-synergy.com/doi/abs/10.1111/j.1467-8659.2007.01064.x
http://doi.acm.org/10.1145/1071866.1071869
http://doi.acm.org/10.1145/1071866.1071869
http://portal.acm.org/citation.cfm?doid=1409060.1409079
http://portal.acm.org/citation.cfm?doid=1409060.1409079
http://portal.acm.org/citation.cfm?doid=1230100.1230129


J. Bedkowski et al./ Preparation of Papers for Journal of Software Engineering for Robotics 33

νι 2008. [Online]. Available: http://ieeexplore.ieee.org/lpdocs/epic03/
wrapper.htm?arnumber=4563100 1

[19] J. Elseberg, S. Magnenat, R. Siegwart, and A. Nüchter, “Comparison
of nearest-neighbor-search strategies and implementations for efficient
shape registration,” Journal of Software Engineering for Robotics
(JOSER), vol. 3, no. 1, pp. 2–12, 2012. 1

[20] J. L. Bentley, “Multidimensional Binary Search Trees Used for
Associative Searching,” Commun. ACM, vol. 18, no. 9, pp. 509–
517, Sep. 1975. [Online]. Available: http://doi.acm.org/10.1145/361002.
361007 1

[21] D. Meagher, “Geometric modeling using octree encoding,” Computer
Graphics and Image Processing, vol. 19, no. 2, pp. 129–147, Jun. 1982.
[Online]. Available: http://dx.doi.org/10.1016/0146-664X(82)90104-6 1

[22] M. Connor and K. Piyush, “Fast construction of k-nearest neighbor
graphs for point clouds,” IEEE Transactions on Visualization and
Computer Graphics, pp. 1–11, 2009. 1

[23] A. Guttman, “R-trees: A Dynamic Index Structure for Spatial Search-
ing,” in International Conference on Management of Data. ACM, 1984,
pp. 47–57. 1

[24] Automation Group (Jacobs University Bremen) and Knowledge-
Based Systems Group (University of Osnabrück), “3DTK - The
3D Toolkit (available 2012),” 2011. [Online]. Available: http:
//slam6d.sourceforge.net/ 1

[25] D. M. Mount and S. Arya, “ANN: A Library for Approximate Nearest
Neighbor Searching (available 2012),” 2011. [Online]. Available:
http://www.cs.umd.edu/∼mount/ANN/ 1

[26] “CGAL Computational Geometry Algorithms Library (available 2012),”
2012. [Online]. Available: http://www.cgal.org 1

[27] M. Muja, “FLANN - fast Library for Approximate Nearest
Neighbors (available 2012).” [Online]. Available: http://people.cs.
ubc.ca/∼mariusm/index.php/FLANN/FLANN 1

[28] S. Magnenat, “libnabo (available 2012).” [Online]. Available: https:
//github.com/ethz-asl/libnabo 1

[29] M. Hadjieleftheriou, “SpatialIndex (available 2012).” [Online].
Available: http://libspatialindex.github.com/ 1

[30] M. Connor, “STANN - The simple, Thread-safe Approximate
Nearest Neighbor Library (available 2012).” [Online]. Available:
http://sites.google.com/a/compgeom.com/stann/ 1

[31] “NVIDIA CUDA C Programming Guide 3.2,”
http://www.nvidia.com/cuda, 10 2010. 2.1

[32] “CUDA C Best Practices Guide 3.2,” http://www.nvidia.com/cuda, 8
2010. 2.1

[33] http://www.nvidia.com/cuda, 2010. 2.2, 2.4, 4.1, 4.1
[34] N. Satish, M. Harris, and M. Garland, “Designing efficient sorting

algorithms for manycore gpus,” in Proceedings of the 2009 IEEE Inter-
national Symposium on Parallel&Distributed Processing. Washington,
DC, USA: IEEE Computer Society, 2009, pp. 1–10. 2.2, 2.4

[35] M. Harris, S. Sengupta, and J. D. Owens, GPU Gems 3, Parallel Prefix
Sum (Scan) with CUDA. Addison-Wesley, 2007, ch. 39, pp. 851–876.
4.1

[36] http://www.netlib.org/lapack, 2011. 4.2
[37] R. B. Rusu, “Semantic 3D Object Maps for Everyday Manipulation in

Human Living Environments,” Articial Intelligence (KI - Kuenstliche
Intelligenz), 2010, invited paper, 2010. 5.1

[38] R. B. Rusu, N. Blodow, Z. C. Marton, and M. Beetz, “Aligning point
cloud views using persistent feature histograms,” in Proceedings of
the 21st IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), Nice, France, 2008 2008. 5.2

[39] R. B. Rusu, Z. C. Marton, N. Blodow, and M. Beetz, “Learning
Informative Point Classes for the Acquisition of Object Model
Maps,” in Proceedings of the 10th International Conference on
Control, Automation, Robotics and Vision (ICARCV), Hanoi, Vietnam,
December 17-20 2008. [Online]. Available: http://files.rbrusu.com/
publications/Rusu08ICARCV.pdf 5.2, 17

Fig. 20. The performance of a 64 Point Feature His-
tograms computed using PCL and cuPCL on an NVIDIA
GF TITAN GPU and Intel Dual Core 3.0GHz CPU. For the
radius 3cm the cuPCL speed up over PCL is above 430.

Janusz Bedkowski PhD in Automation and
Robotics, Assistant Professor in Institute of Au-
tomatic Control and Robotics Warsaw University
of Technology; adjunct in Institute of Mathemati-
cal Machines. The scope of research: inspection
and intervention robot systems, semantic map-
ping, virtual training with AR techniques.

Karol Majek received his B. Sc. degree in
Robotics from the Warsaw University of Tech-
nology in 2013. He is young researcher in In-
stitute of Mathematical Machines. The scope of
research: parallel computing, computer graph-
ics, semantic mapping, virtual training with AR
techniques.

Andreas Nüchter Nüchter holds an associate
professorship at University of Würzburg. Prior to
that, he was an assistant professor at Jacobs
University Bremen. Before he joined Jacobs he
was a research associate at University of Os-
nabrück. Further past affiliations were with the
Fraunhofer Institute for Autonomous Intelligent
Systems (AIS, Sankt Augustin), the University
of Bonn, from which he received the diploma
degree and a doctorate degree (Dr. rer. nat). His
PhD thesis was shortlisted for the EURON PhD

award. His main research interests include reliable robot control, 3D
environment mapping, 3D vision, and laser scanning technologies.

http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563100
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=4563100
http://doi.acm.org/10.1145/361002.361007
http://doi.acm.org/10.1145/361002.361007
http://dx.doi.org/10.1016/0146-664X(82)90104-6
http://slam6d.sourceforge.net/
http://slam6d.sourceforge.net/
http://www.cs.umd.edu/~mount/ANN/
http://www.cgal.org
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
http://people.cs.ubc.ca/~mariusm/index.php/FLANN/FLANN
https://github.com/ethz-asl/libnabo
https://github.com/ethz-asl/libnabo
http://libspatialindex.github.com/
http://sites.google.com/a/compgeom.com/stann/
http://files.rbrusu.com/publications/Rusu08ICARCV.pdf
http://files.rbrusu.com/publications/Rusu08ICARCV.pdf

	Introduction
	3D data decomposition for NNS
	Preliminaries
	Memory allocation on device and copy from host
	NNS Nearest Neighborhood Search
	Sorting buckets
	Count points in bucket and find index of bucket
	Find bucket

	3D data filtering and subsampling
	Improvement of 3D data registration
	Computation of correlation matrix elements using optimized parallel reduction
	Singular Value Decomposition (SVD)
	Comparison of GPU ICP with state of the art implementations

	Point Feature Histogram (PFH)
	Normal Vector Estimation
	Parallel Implementation
	Parallel Implementation of PFH
	Quantitative Comparison with the state of the art

	Conclusions
	References
	Biographies
	Janusz Bedkowski
	Karol Majek
	Andreas Nüchter


