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Abstract 

In the paper a general approach to modelling of anisotropic linear viscoelastic material properties is presented. Rychlewski’s 
(1983) spectral decomposition theorem is used and one dimensional relaxation functions of linear viscoelasticity model is 
adopted to eigenvalues of stiffness tensor and named Kelvin relaxation functions. Proposed model was implemented in the FEM 
system Abaqus on the example of transversely isotropic and isotropic material. On the basis of experimental data available in 
literature, models were calibrated and verified. Constitutive relations were used in the complex boundary value problem 
modelling standard rutting test used in road sector to assess the resistance of asphalt mixtures to rutting. 
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1. Introduction 

This paper considers modelling of rutting test with anisotropic viscoelastic materials on the example of 
transversely isotropic material. The constitutive model was implemented in the finite element method system 
Abaqus via user subroutine UMAT [1]. Subsequently, material parameters for the model were derived from 
experimental data presented in the paper [2] both for transversely isotropic material and for isotropic material. A 
complex initial boundary value problem of rutting test [3] was modelled with certain reasonable simplifications, i.e. 
contact of a tire with a specimen was modelled as uniform pressure load on the area of a contact zone. Obtained 
results indicate necessity for taking account of transverse isotropy in mineral asphalt mixes in laboratory tests and 
numerical simulations. 
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2. Constitutive equations of viscoelasticity in convolution form 

Constitutive equations of linear viscoelasticity could be formulated in a different equivalent form, which is a 
consequence of the theory of linear operators and the theory of distribution [4]. Due to the fact that finite element 
method system Abaqus will be used, in this paper constitutive equations are formulated as follows 

0 0

, ,
t t

t t d t t dS C  (1) 

where derivatives and integrals are meant in a sense of the theory of distributions and linear operators. In (1) S  and 
C  are respectively relaxation and creep operators, which are analogous to the Hooke’s tensors for anisotropic 
materials S , C , where S  is the fourth order stiffness tensor and C  is the fourth order compliance 
tensor. 

Two relations expressed by (1) are equivalent, but we will focus on equation (1)1 and materials with transverse 
isotropy symmetry. According to the spectral decomposition theorem [5] an operator of relaxation can be expressed 
in a following form 

1 1 2 2 3 3 4 4 ,triso triso triso triso triso triso triso triso trisot K t K t K t K tS P P P P  (2) 

where functions triso
iK t  are respectively eigenfunctions of relaxation, which were proposed to be named Kelvin 

relaxation functions in [6] and the fourth order tensors triso
iP  are orthogonal projectors (product of eigentensors of 

S and C ) in case of transversely isotropic material model. Projectors are defined as follows ([7]): 
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where M m m  and the operator is defined in Cartesian basis as 

1 .
2 ik jl il jkijkl A B A BA B   (5) 

Tensor M  is commonly called parametric tensor and is obtained as a tensor product of unit vector m which is 
normal to the plane of isotropy. Projectors 1

trisoP  and 2
trisoP  require further clarification, tensors Iw  and IIw  are 

eigentensors (equivalents to eigenvectors in a spectral decomposition of the second order tensors) defined as 

1 2 ,K K
K w ww M I M   (6) 

where components K
iw  have to comply with additional conditions, i.e. eigentensors Kw  have to be unit length and 

orthogonal to each other in a sense of the second order tensors norm and scalar product respectively [7]. Fulfilling 
these conditions results in one independent component, e.g. 1

Iw  called stiffness distributor being the fifth material 
constant together with four Kelvin moduli in case of elasticity and transversely isotropic material. 

In case of isotropy a relaxation operator has standard form 

1 1 2 2 ,iso iso iso iso isot K t K tS P P   (7) 
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where 1
isoK t  and 2

isoK t  are Kelvin relaxation functions responsible for change in volume and shape, 
respectively. Projectors are defined as 

1 2
1 1, ,
3 3

iso isoP I I P 1 I I   (8) 

where 1 I I , cf. (5). 
Double contraction of a tensor product of projectors with stress and strain tensor leads to the viscoelastic relation 

between eigenstates only 

0

t
i

i it K t d   (9) 

Tensors i  (also i ) in equation (9) are orthogonal to each other (for different indices) in a sense of scalar 
product of second order symmetric tensors. An index convention is not used in (9), and consequently proposed 
constitutive equation has a following form 

0

t
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i i
i i

t t K t d .  (10) 

Since Kelvin relaxation functions map linearly eigenstrains to eigenstresses one dimensional linear viscoelastic 
models such as Burgers, Zener and Prony Series can be adopted. In this paper the Prony’s Series model [8] is used 
to describe response of every Kelvin relaxation function 

0 1 1 exp
N

i i ij
j ij

tK t K e H t ,  (11) 

where 0iK , ije , ij , N , H t  denotes instantaneous Kelvin modulus, separation parameters, relaxation times, 
number of Maxwell model branches in the Prony Series model and Heaviside distribution respectively. 

Proposed above constitutive equations were implemented in the finite element method system Abaqus via user 
subroutine UMAT. 

3. Calibration of models 

In the paper by Zhang et al. [2] experimental results of creep tests for a number of mineral asphalt mixes in axial 
compression and indirect tension tests (Brazilian test [9]) are presented. Benefiting from the Wolfram’s 
Mathematica® system and a non-linear optimization procedure implemented there in parameters for both 
transversely isotropic and isotropic material were established. 

3.1. Transversely isotropic material 

Calibration of transversely isotropic model was split into two parts. On the basis of the axial compression creep 
test, in which axial shortening and change in circumference were measured, the first and second Kelvin relaxation 
functions parameters and the stiffness distributor was established. In the next step the third Kelvin relaxation 
function parameters were determined with fixed parameters of the first and second Kelvin relaxation functions 
comparing the analytical solution [9] of the indirect tension test with experimental data. Unfortunately there is no 
data available to establish parameters for the fourth Kelvin relaxation function. However, the fourth eigenstate is 
responsible for shearing like the third eigenstate; therefore, in simulation of rutting test the same parameters were 
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assumed for the fourth Kelvin relaxation function, as established for the third Kelvin relaxation function. Parameters 
obtained from a non-linear regression procedure for transversely isotropic material are presented in Table 1. 

Table 1. Parameters for transversely isotropic model. 

 1
Iw  0iK [MPa] 1ie  1i [s] 2ie  2i [s] 

1K t  0.5981 1550.0 0.3452 337.661 0.6405 163.294 

2K t  0.5981 5243.7 0.7884 1.4941 0.2116 64.022 

3K t  - 1666.7 0.7285 1.3245 0.2484 17.9127 

3.2. Isotropic material 

Calibration of isotropic model was based on experimental data from the axial compression test since there are 
only two Kelvin relaxation functions in case of isotropy and both interact in one dimensional compression. In 
Table 2 parameters obtained from a non-linear optimization procedure for 2 elements of the Prony Series are 
presented. 

 
 Table 2. Parameters for isotropic model. 

 0iK [MPa] 1ie  1i [s] 2ie  2i [s] 

1K t  51020.4 0.6224 25.8437 1.15e-8 46.468 

2K t  5330.5 0.7802 1.3577 0.2145 58.4764 

4. Numerical model of rutting test 

It is necessary to introduce reasonable simplifications in a numerical model of rutting test since an actual test 
requires from 10 to 30 thousands cycles of wheel moves. In our study only effect of anisotropy is in interest that is 
why only several wheel moves will be investigated. Another simplification is neglecting contact interaction between 
a tire and a specimen, instead of complicated contact procedure constant pressure moving across a specimen in a 
wheel-like manner was modelled. In rutting test a specimen is a plate of dimensions 500x180x100 mm in a steel 
mold, cf. Fig. 1. 

 

Fig. 1. Characteristic dimensions and load application in rutting test modelling. 
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Process of loading was split into two phases: phase 1 – load is in point B and ramps linearly from 0 to 0.6 MPa in 
a period of one second, phase 2 – load 0.6 MPa moves between points A and B in a function of time given as 

0cos 2
2
ABss t t t ,  (12) 

where ABs  is a distance between points A and B and 0t  is time of initial loading equal to 1 s. Load function was 
programmed as an user subroutine DLOAD in Fortran language [1]. 
 

Boundary conditions were imposed at the bottom and side surfaces, constraining all displacements. The whole 
model consists of 9000 fully integrated bilinear hexahedron elements with the edges of the length 10 mm. 

5. Results 

In Fig. 2 plot of displacement 3u along axis 3x  at node 1887 in the middle of the top surface of the specimen (cf. 
Fig. 1) is presented both for transversely isotropic and isotropic material model. It is easily observed that material 
model calibrated on the assumption of isotropy is stiffer than on the assumption of transverse isotropy. 

 
 

 

Fig. 2. Displacement 3u  at node 1887 (cf. Fig. 1) for isotropy (continuous) and transverse isotropy (dashed). 

In Fig. 3 reduced stress in element number 825 (cf. Fig. 1) according to Huber-Mises-Hencky yield criterion is 
presented. Despite the fact that element 825 is in surface layer reduced stress in case of transversely isotropic 
material is twice as higher as in case of isotropic material.  

The reason of this phenomenon may be the influence of boundary conditions simulating a steel mold constraint. 
In rutting test reduced stress is insignificantly small but increase in value when modelling with transversely isotropic 
material may play a crucial role in other situations, when viscoplasticity and damage phenomena are present. 
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Fig. 3. Huber-Mises stress in element 825 (cf. Fig. 1) for isotropy (continuous) and transverse isotropy (dashed). 

6. Conclusions 

In conclusion, anisotropy, especially transverse isotropy, in rutting test and more generally mineral asphalt mixes 
modelling has a significant effect on obtained results and should be considered both in a numerical modelling and 
laboratory tests. Normally in road laboratories asphalt mixtures are treated as isotropic materials, although their 
placing processes lead to a clear distinction of one of the directions. Many of the researchers ignore the effects of 
anisotropy of the material, assuming that it is negligible. In this work it is shown that the effect is significant, and the 
difficulty of formulating a theoretical model of viscoelasticity for transversely isotropic materials can be overcome 
by the use of the spectral decomposition theorem and introduction of Kelvin relaxation functions. 
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