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Abstract
Samples of porous ceramics Al2O3, manufactured by a promising technology of gelcasting of cellural foams
by using biopolymers as gel-formers, are examined in the impedance tube using the transfer function method.
It is shown that the ceramics of total porosity around 90% forms an excellent sound absorbing material in
the frequency range from 500 Hz to 6.4 kHz. Experimentally-determined curves of acoustic impedance and
absorption are then used for inverse identification of relevant geometric parameters like: tortuosity, viscous
and thermal permeability parameters and characteristic lengths. These parameters are required by some
advanced models of sound propagation in rigid porous media, developed by Johnson, Koplik and Dashen,
Champoux and Allard, with some variations introduced by Pride et al., and Lafarge et al. These models are
utilized to produce curves of acoustic impedance and absorption that are used by the identification procedure
which minimizes the objective function defined as a squared difference to the appropriate curves obtained
experimentally. As a matter of fact, some experimental data are used for the determination of parameters
while the other data – obtained for another sample of the same porous ceramics, yet having different thickness
– serve for the validation purposes. Moreover, it is observed that the identified characteristic length for
thermal effects corresponds very well to the average radius of pores, whereas the characteristic length for
viscous forces is similar with the average size of “windows” linking the pores. The identification procedure
minimises the objective function with respect to a set of some independent dimensionless parameters from
which the actual model parameters can be calculated. In the definitions of the dimensionless parameters two
reference frequencies are introduced – one relevant for viscous effects, the other for thermal effects. Such
approach renders the optimization procedure very robust. In general, it is observed that, if the total porosity is
known, simultaneous identification of the remaining model parameters is feasible by using only the objective
function. In particular, the inverse identification allows to estimate the so-called static thermal permeability
which in practice is not easy to determine by direct measurements, and thus, very often because of lack
of this parameter, the simplified Lafarge model must be used which approximate this parameter with an
analytical result obtained for a porous medium with circular cylindrical pores. Finally, a periodic microscopic
cell consisting of a few pores representing an average morphology of porous ceramics is proposed and a
finite-element analysis with periodic boundary conditions in order to estimate the static viscous permeability
parameter is presented.

1 Introduction

There are several widely-used acoustic models of porous media, starting from the simple, purely phenomeno-
logical, model proposed by Delany and Bazely, and finishing with semi-phenomenological propositions by
Johnson et al., which were later combined with the ones by Champoux and Allard, with some important
variations proposed by Pride, Lafarge, and others [1]. All these models use some average macroscopic pa-
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rameters, namely: the total porosity and flow resistivity (or permeability) – for the Delany-Bazely model
– which are supplemented by the average tortuosity of pores and their characteristic dimensions – in the
case of more advanced semi-phenomenological models. These models allow to describe the acoustic wave
propagation in porous media in a wide frequency range, provided that the skeleton is rigid. However, using
some formulas derived for these models with the Biot’s theory of poroelasticity permits to describe correctly
sound propagation in soft porous materials. Thus, the determination of the above-mentioned parameters is
very important. For direct experimental measurements a specialistic equipment is required, different for var-
ious parameters. Therefore, an inverse identification based on the results of measurements of some global
acoustical characteristics of a porous material is very tempting and should be tried in order to estimate the
intrinsic parameters. Such attempts have been already performed: first, by using a simpler models, like
Zwikker-Kosten description of porous material [2], and latter for the advanced Johnson-Champoux-Allard
model [3, 4].

In the present work an inverse identification of the intrinsic parameters of the Johnson-Champoux-Allard
model utilizes the curves of acoustic impedance measured in the impedance tube for samples of known
thickness. This approach is similar with the one used in [4]. However, in the present paper a set of dimen-
sionless parameters will be first defined with respect to the actual model parameters which should facilitate
the identification procedure; and once the dimensionless parameters are identified, the model parameters can
be easily calculated. Of some importance is the fact that two reference frequencies will be introduced in the
definitions of the dimensionless parameters – one relevant for viscous effects, the other for thermal effects.
Eventually, it will be also shown that some knowledge of micro-structural geometry of porous medium is
very helpful to validate the estimation. Finally, a periodic microscopic cell consisting of a few pores rep-
resenting an average morphology of porous ceramics will be proposed to serve for numerical analyses to
estimate permeability parameters. The concurrence of such micro-scale derivation and inverse identification
will be discussed.

2 Modelling sound absorption of porous materials

2.1 Models for sound propagation in porous media with rigid frame

When the skeleton of a porous medium can be assumed as rigid (which is common in materials like ceramic
or metal foams and even in the case of softer foams in some frequency range), the time-harmonic acoustic
wave propagation can be effectively modelled using the classical Helmholtz equation of linear acoustics:

ω2p̃+ c2∆p̃ = 0, (1)

where ω = 2πf is the angular frequency of the propagating wave (f is the frequency), p̃ is the (unknown)
complex amplitude of acoustic pressure, and c is the speed of sound in the medium. This wave equation is
valid for regions of space not containing any sources of acoustic energy. Thus, in case of such simplifying
fluid-equivalent approach (that is, when a fluid layer is substituted for a layer of porous material) the material
properties of porous medium must be somehow represented in equation (2) by one parameter only (the speed
of sound c). It is obvious, however, that in case of porous medium, this will be an effective quantity which
should differ from the speed of sound of the fluid (typically, the air) filling the pores of porous material, even
for materials of very high porosity (which is usually the case of sound proofing materials). Assuming that –
as for inviscid isotropic elastic fluids:

c2 =
K

ρ
, (2)

whereK and ρ are the bulk modulus and the density, respectively – it means that some effective bulk modulus
and density must be specified for a virtual (homogenized) representation of porous material. Moreover, it
is observed that porous materials are dispersive, therefore, the effective bulk modulus and density should be
frequency-dependent functions: K = K(ω) and ρ = ρ(ω).
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The effective density of porous material must be somehow related to the density ρf of the actual fluid filling
the pores; this is realized simply as follows:

ρ(ω) = ρfα(ω), (3)

where α is a dimensionless function of frequency – the so-called dynamic (visco-inertial) tortuosity. It is
greater than 1, which means that the effective density is bigger that the density of the fluid in pores, and thus,
it accounts for the resistance forces between the fluid and the rigid skeleton of porous medium. It seems
reasonable that the dynamic tortuosity, being a function of frequency, should depend on the visco-inertial
properties of the pore-fluid and on some purely geometric characteristics of the skeleton. Johnson et al. [5]
proposed a model, which – apart from the kinematic viscosity, ν, of the fluid in pores – depends on four
geometric parameters that macroscopically characterize a porous medium, namely: the total porosity, φ, the
(static) permeability, k0, the tourtuosity of pores, α∞, and finally, the characteristic size of pores for viscous
forces, Λ. The static permeability is an intrinsic property of the porous medium used, for example, in the
Darcy’s law, where it relates the pressure gradient and the flux, which – when divided by the total porosity
– is equal to the (average, macroscopic) velocity of stationary-flow (therefore, at ω = 0). The tortuosity α∞
is defined as the ratio of the hypothetic effective density of a porous medium saturated by an ideal, inviscid
fluid, to the density of this fluid. Therefore, it accounts only for inertial resistance, and in reality, when the
saturating fluid is viscous, the effective density must only tend to the value α∞ρf when the viscous skin
depth tends to zero and the viscosity effects become negligible, that is when ω →∞. The Johnson’s model
was modified by Pride et al. [6] and the improved version can be presented as follows:

α(ω) = α∞ +
ν

iω
φ

k0

[√
iω
ν

(
2α∞k0

Λφ

)2

+ b2 − b+ 1

]
, (4)

where b is a parameter introduced by Pride to adjust the low-frequency limit of the real part of the effective
density (for circular pores this limit is obtained for b = 3/4). Lafarge showed that the right low-frequency
limit α0 for the real part of α (i.e., limω→0 Reα = α0) is achieved when

b =
2α2∞k0

Λ2φ(α0 − α∞)
. (5)

An analysis of thermal effects leads to the following expression for the effective bulk modulus

K(ω) =
P0

1− γ − 1
γα′(ω)

, (6)

where P0 is the ambient mean pressure, γ is the heat capacity ratio for the pore-fluid (air), and α′ is the
frequency-dependent thermal tortuosity. This function was introduced by Lafarge [7] as an an analogue of
the dynamic tortusity. Similarly, the following model was proposed for this quantity:

α′(ω) = 1 +
ν ′

iω
φ

k′0

[√
iω
ν ′

(
2k′0
Λ′φ

)2

+ b′2 − b′ + 1

]
. (7)

where ν ′ = ν/Pr with Pr being the Prandtl number of the pore-fluid, while k′0 is the static thermal per-
meability, Λ′ is the characteristic size of pores for thermal effects, and finally b′ is a parameter which can
provide minor modifications of the effective bulk modulus in the low- and medium-frequency range; the
low-frequency limit α′0 for the real part of α′ (i.e., limω→0 Reα′ = α′0) is achieved when

b′ =
2k′0

Λ′2φ(α′0 − 1)
. (8)
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Equations (3) and (6), together with the expressions (4) and (7), constitute a very effective model for sound
propagation in porous media with rigid frame. This model involves eight parameters that in different ways
depend on the micro-geometry of a porous material, yet are its average macroscopic properties; they are:
φ, α∞, k0, k′0, Λ, Λ′, b (or α0), and b′ (or α′0). However, by choosing that b = 1, or in consequence,
α0 = α∞ + 2α2∞k0

Λ2φ
, the simplified Johnson’s model for dynamic tortuosity is achieved. A similar simplifi-

cation can be done for the Lafarge model for thermal tortuosity by assuming that b′ = 1, or α′0 = 1 + 2k′0
Λ′2φ ,

thus, neglecting the possibility of some minor modifications in the low- and medium-frequency range. Even-
tually, the simplified version of the model, which involves only six geometrical parameters, can be written
as follows:

α(ω) = α∞ +
ν

iω
φ

k0

√
iω
ν

(
2α∞k0

Λφ

)2

+ 1, α′(ω) = 1 +
ν ′

iω
φ

k′0

√
iω
ν ′

(
2k′0
Λ′φ

)2

+ 1. (9)

2.2 Surface impedance and acoustic absorption coefficient

Figure 1 shows the configuration of a layer of porous material of thickness ` set to a rigid wall and under the
excitation of a normally-incident, plane harmonic acoustic wave which propagates in the fluid (air) which
also fills the pores of the porous layer. The wave penetrates into the layer and is fully reflected from the
rigid wall. A standing-wave interference pattern results due to the superposition of forward- and backward-
traveling waves. By measuring the sound pressure at two fixed locations it is possible to determine important
acoustical characteristics of the material, namely, the complex-valued normal acoustic impedance and re-
flection coefficient, and the real-valued sound absorption coefficient. This is a typical configuration used in
material testing.

xx = 0 x = `

`

plane harmonic
acoustic wave

(in the air)

layer of porous
materialrigid

wall

Figure 1: A layer of porous material set to a rigid wall – a typical configuration for acoustic material mea-
surements

The problem depicted in figure 1 is one-dimensional and can be easily solved. Eventually, the formula for
the surface impedance of a fluid or fluid-equivalent – for example, porous – layer of thickness ` fixed to rigid
wall can be derived [1]:

Z =
√
ρK

exp(2iω`
√
ρ/K) + 1

exp(2iω`
√
ρ/K)− 1

= −i
√
ρK cot

(
ω`
√
ρ/K

)
(10)

Now, the reflection coefficient can be calculated [1]:

R(ω) =
Z(ω)− Zf

Z(ω) + Zf
, (11)

whereZf is the characteristic impedance of fluid (air). Finally, knowing the reflection coefficient, the acoustic
absorption coefficient can be determined:

A(ω) = 1− |R(ω)|2. (12)
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The quantities (10), (11), and (12) can be determined experimentally in the impedance tube in some fre-
quency range (which depends on the size of the sample and tube), using the so-called two-microphone
transfer function method.

3 Inverse identification of rigid skeleton parameters for acoustical
modelling

3.1 Dimensionless parameters

A methodology of parameter identification for the rigid-porous model, basing on some acoustical measure-
ments carried out on rigid foams, will be now presented. For the purpose of the inverse identification proce-
dure a set of independent, dimensionless parameters will be first defined. These parameters should be in an
unequivocal relation with the model parameters and should render the optimization algorithm robust. Before
such a set will be prescribed, one should notice that in all the expressions used by the models presented in
the previous section the static viscous permeability, k0, as well as the static thermal permeability, k′0, appear
always in fractional relation with the total porosity φ, which by itself also appears only in this relation to
one of those two permeability parameters. Thus, from the modelling perspective only two of those three
parameters are independent. Therefore, one can expect that when using these models only the ratios k0/φ
and k′0/φ may be identified unequivocally, which is not a serious drawback since they are actually used in
modelling. Moreover, the total porosity is certainly the parameter which can be rather easily and correctly
measured in direct way (especially, for porous materials with open-cell porosity, which is an issue here), and
it is very often provided by the manufactures. Therefore, for the sake of simplicity, in what follows it will be
assumed that the total porosity is known (and as a matter of fact, it was actually known for the samples used
in the experimental tests). Thus, from the eight parameters which geometry of porous skeleton only seven
need to be identified, namely: k0 (or k0/φ), k′0 (or k′0/φ), α∞, Λ, Λ′, α0 (or b), and α′0 (or b′); and eventually,
there are only five parameters for the simplified version of the model (9), since the last two parameters are
no longer used.

Let us define the following dimensionless parameters:

p1 = α∞ − 1, p2 =
ν

ω∗
φ

k0
, p3 =

ν ′

ω′∗

φ

k′0
,

p4 =
ω∗
ν

(
2α∞k0

Λφ

)2

, p5 =
ω′∗
ν ′

(
2k′0
Λ′φ

)2

,

p6 = b =
2α2∞k0

Λ2φ(α0 − α∞)
, p7 = b′ =

2k′0
Λ′2φ(α′0 − 1)

.

(13)

Here, ω∗ = 2πf∗ and ω′∗ = 2πf ′∗, where f∗ and f ′∗ are some arbitrarily chosen reference frequencies for
viscous and thermal dissipation effects, respectively; therefore, it seems obvious that f ′∗ < f∗, for example:
f ′∗ = 1 kHz and f∗ = 3 kHz; the choice of these frequencies will yet be discussed below.

Now, the formulas for dynamic viscous and thermal tortuosities, α and α′, can be rewritten in the following
form:

α(ω) = 1 + p1 +
ω∗
iω
p2

[√
iω
ω∗
p4 + p2

6 − p6 + 1
]
,

α′(ω) = 1 +
ω′∗
iω
p3

[√
iω
ω′∗
p5 + p2

7 − p7 + 1
]
.

(14)
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After the dimensionless parameters are found, the model parameters can be calculated as follows:

α∞ = 1 + p1, k0 =
ν

ω∗
φ

p2
, k′0 =

ν ′

ω′∗

φ

p3
,

Λ =
2 + 2p1

p2

√
ν

ω∗p4
, Λ′ =

2
p3

√
ν ′

ω′∗p5
, α0 = 1 + p1 +

p2p4

2p6
, α′0 = 1 +

p3p5

2p7
,

(15)

In case of the simplified version of model (9) only five dimensionless parameters need to be identified (since
p6 = b = 1 and p7 = b′ = 1) and then:

α(ω) = 1 + p1 +
ω∗
iω
p2

√
iω
ω∗
p4 + 1, α′(ω) = 1 +

ω′∗
iω
p3

√
iω
ω′∗
p5 + 1. (16)

3.2 Objective function

The objective function for the parameter identification is defined as the sum – over the results obtained for
the particular frequencies from the considered frequency range – of the squared differences between the
acoustic impedance of porous sample measured in the impedance tube and this impedance calculated by
using equation (10) and the parametric model discussed above, namely:

F (p) =
∑
ω

∣∣Z(ω; p)− Zexp(ω)
∣∣2

=
∑
ω

[(
ReZ(ω; p)− ReZexp(ω)

)2 +
(

ImZ(ω; p)− ImZexp(ω)
)2] (17)

Here, p is the vector of dimensionless parameters defined by (13) (depending on the model version – simpli-
fied or adjusted – there may be from 5 to 7 parameters), Zexp(ω) is the acoustic impedance measured at fre-
quency ω and Z(ω; p) is its computed counterpart; as stated above, the summation (

∑
ω) is carried out over

the discrete set of measuring/computational frequencies ω, from the relevant frequency range. The acous-
tic impedance values are computed using equation (10) with the effective quantities ρ(ω; p) and K(ω; p)
calculated using formulas (3) and (6) with relevant viscous and thermal tortuosities determined from equa-
tions (14), or equations (16) in case of the simplified model. One should notice that the analytical formulas
for gradient of the objective function with respect to the parameters p can be easily derived to be used by the
minimization procedures.

This objective function will be minimized with respect to the dimensionless parameters p. It is required that
all the parameters are positive, however, some additional constraints may be imposed. For example, it is
known that thermal dissipation effects are associated with the so-called thermal skin depth which tends to be
bigger than the viscous skin depth corresponding to the viscous dissipation effects. Thus, the thermal effects
are rather associated with the pore size while the viscous effects with the size of the “windows” linking
the pores; therefore, in general, the viscous and thermal characteristic lengths should satisfy the following
relation Λ 6 Λ′. Similarly, one may always expect that k0 6 k′0 which means that p3 6 ω∗

ω′∗Prp2. Never-
theless, as will be demonstrated in the next section, the optimization algorithms with (simple) positive-value
constraints and even the algorithms without constraints can be successfully used for correct identifications
of model parameters.

3.3 Results of parameter identification for porous ceramics

Two samples of porous ceramics Al2O3 – see figure 2(left) – with the known total porosity φ = 90%, had
been prepared for experimental testing. The ceramics had been manufactured by a promising technology of
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Figure 2: Two samples of ceramic foam Al2O3 with porosity 90% (left), and the impedance-tube experimen-
tal set (right).

gelcasting of cellural foams by using biopolymers as gel-formers [8]. Both samples had been cut in the form
of thick discs or cylinders with the diameter of 29 mm and they differed only by thickness: one of them was
18 mm thick and the other 24 mm. The samples were examined in the impedance tube – see figure 2(right)
– using the transfer function method [9, 10]. Accordingly with the procedure, the ambient temperature and
pressure were first measured to be used by the method for the speed of sound calculation in the air, and also
to determine precisely some other properties, namely, the density and characteristic impedance of air – to be
used later in the inverse identification algorithm and other calculations.

The acoustic impedance and reflection coefficient (both, real and imaginary parts), as well as the acoustic ab-
sorption coefficient were measured in the frequency range from 500 Hz to 6.4 kHz. Then, the experimentally-
determined curves of acoustic impedance for the sample 18 mm thick were used for an inverse identification
of the five model parameters of the (simplified) model of Johnson-Lafarge, namely: tortuosity α∞, viscous
and thermal permeabilities, k0 and k′0, and two characteristic lengths – for viscous and thermal effects, Λ
and Λ′, respectively. To this end, five dimensionless parameters, p1,. . . ,p5, defined by formulas (3) were
first identified by minimising the objective function (17). An optimization procedure with positive-value
constraints applied for all five parameters was used, however, it was checked that the same results can be
achieved using similar procedure without constraints. The initial (starting) value for all dimensionless pa-
rameters was 1.0, yet again it was verified that some other initial values (various for different parameters)
gave usually the same final results which was one of the premises that it was not a local minimum that was
attained. Only for some drastically different initial values a local minimum was attained, yet it was easily
discerned using the validation reasoning described below. As a matter of fact, the dimensionless parameters
were defined in such a way so that their realistic values were more or less of the same order, and moreover,
so that the value 1.0 was a good starting point for the optimization procedure for all of them. To this end, the
reference frequencies were introduced in their definitions as discussed in section 3.1. These frequencies play
an important role in the scaling of the dimensionless parameters, however their choice may be within some
limits rather arbitrary: it was verified that the same optimization results were obtained when f∗ > f ′∗ and
f∗ was assigned some value from 2 kHz to 12 kHz, while f ′∗ from 0.5 kHz to 5 kHz; however, for some of
the choices the optimization procedure lasted much longer. After the dimensionless parameters were iden-
tified, the model parameters were calculated using formulas (15). The identified values of dimensionless
parameters are shown in figure 3 and the corresponding model parameters are listed in table 1, where the
initial values for these parameters are also given (computed for the initial values p1 = . . . = p5 = 1, and
f∗ = 3 kHz and f ′∗ = 1 kHz).

The parameters identified as described above – that is, by using the optimization procedure which matched
the impedance curves measured experimentally for the first sample (` = 18 mm) with the ones calculated
from the model – were then used to compute the impedance curves for the second sample (` = 24 mm) and
eventually compare them with the corresponding experimentally-determined curves. The acoustic absorption
coefficient was also determined and used for the verification purposes. The surface acoustic impedance
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Figure 3: Identified values of dimensionless parameters

α∞ k0 [m2] k′0 [m2] Λ [m] Λ′ [m]

(a) 2.0000e+000 4.3456e-010 3.0603e-009 8.7895e-005 1.1662e-004

(b) 1.5149e+000 7.1304e-010 8.3739e-009 6.2392e-005 2.7323e-004

Ratio (b) to (a)

(c) 0.76 1.64 2.74 0.71 2.34

Table 1: The initial (a) and identified (b) values of model parameters, and the relevant ratios (c)

(real and imaginary parts) obtained for both samples are shown in figure 4, while the acoustic absorption
coefficient is presented in figure 5. In fact, the impedance curves are presented in the form of a dimensionless
ratio in reference to the constant characteristic impedance of air Zf (i.e., the fluid occupying the pores and the
impedance tube). It can be observed that the curves modelled for the sample 18 mm thick fit very well with
their measured counterparts; it is rather obvious since the parameter identification was actually performed
for this very sample. The consistency between the curves measured and modelled for the sample 24 mm
thick is also good, however, some discrepancies are visible for the frequencies above 3 kHz, especially, for
the imaginary part of the acoustic impedance. Nevertheless, the identification results are satisfactory and it
is not by accident that the (acceptable) discrepancies are in the higher frequency range where the effect of a
bigger pore situated on the sample surface is more vital. Moreover, another cause could be that the quality of
the second sample was a bit inferior, especially with respect to the macro-homogeneity property which was
well preserved by the first sample. There is, however, yet another coincidence which seems to validate the
identification.

The ceramic foam samples were prepared using the technique described by Potoczek in [8] and their micro-
geometric parameters (like average pore and “pore-window” sizes) should be very similar if not identical to
the ones described in this paper for the foam of porosity 89.9± 0.3% – see table 1 and figures 8(a) and 8(a)
in [8]. Now, it is observed that the identified characteristic length for thermal effects corresponds very well
to the average radius of pores, whereas the characteristic length for viscous forces is similar with the average
radius of “windows” linking the pores, namely: 2Λ = 125 µm and 2Λ′ = 546 µm from table 1 of the present
paper agree very well with 113 µm and 529 µm, respectively, found in table 1 in [8]. This is a very important
observation which validates the results of identification.
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Figure 4: Curves of the impedance ratio Z(ω)/Zf – their real (Re) and imaginary (Im) parts – obtained
for porous ceramic samples of thickness: 18 mm (a,b) and 24 mm (c,d). The curves (a,c) were found
experimentally, whereas the curves (b,d) were computed from the model
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Figure 5: Acoustic absorption curves, A(ω) – measured and modelled after parameter identification – for
samples of porous ceramics of thickness: 18 mm (a,b) and 24 mm (c,d). The curves (a,c) were found
experimentally, whereas the curves (b,d) were computed from the model

4 Microstructural analysis

Using the average radii of pores and/or windows found in [8] for ceramic foams of porosity 90%, periodic
cells approximating micro-geometry of such foams can be constructed. An example of such a periodic cubic
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Figure 6: Periodic cell: the rigid skeleton boundaries (left) and a “wire-frame” view of its edges with the
marked edge of one of the main windows linking the pores (right)

cell which contains eight pores of four different sizes is depicted in Figure 6, where the foam skeleton is
visualized. The total volume of this periodic skeleton is 10% of the volume of the cube resulting in the
designed porosity of 90%. The cell is not only periodic but also “isotropic” in the way that it is identical with
respect to the three mutually-perpendicular directions. Therefore, from the macroscopic or macro-structural
perspective it will exhibit purely isotropic behavior.

It is used for three-dimensional numerical analysis of the micro-macro transition approach for sound absorb-
ing porous media [11, 12]. To this end, the multi-scale asymptotic method is applied [13], which permits
to determine the macroscopic material description from knowledge of the physics and geometry at the mi-
croscopic level. In that way, for example, the so-called dynamic viscous permeability function k(ω) can
be computed by solving the periodic oscillating flow created in a porous medium by an external unit har-
monic pressure gradient [11] and taking the average value from the velocity field over the computational
fluid domain of the periodic cell; the flow is inviscid and incompressible and the velocity field in the pore is
scaled in m2. Such approach is relevant to sound propagation as long as the wavelength is large enough for
the saturating fluid to behave as an incompressible fluid in volumes of the order of the homogenization vol-
ume [11, 12]. The permeability function is inversely proportional to the dynamic tortuosity function α(ω),
and in the limit ω → 0, it is equal to the static permeability k0. Thus, to calculate the static permeability
parameter, the corresponding steady Stokes problem need to be solved in the fluid domain of the periodic
cell: this steady, inviscid, incompressible flow is driven by the unit vector of ‘pressure gradient’ [11].

The steady flow problem was solved for the periodic cell presented in figure 6. To this end, the finite
element method was applied using the finite-element mesh of the fluid domain shown in figure 7. The flow
permeability or rather ‘scaled velocity’ field was computed in the fluid domain with the no-slip boundary
conditions applied on the skeleton boundaries and the periodic boundary conditions on the relevant pairs of
the cell faces; as the final result – i.e., the static (macroscopic) permeability k0 – the fluid-phase average of
the computed field was taken.

For the cubic cell as in figure 6, with the edge size of 0.4 mm, the window diameters are similar to some
average values given in the work by Potoczek [8]. For example, the diameter of the window marked in
figure 6(right) is 127 µm. The static viscous permeability calculated in the way described above for such
periodic cell was k0 = 7.50 × 10−10 m2, which is consistent with the value k0 = 7.13 × 10−10 m2 (see
table 1) found using the inverse identification procedure. However, it should be noticed that the considered
periodic cell ensured exactly the total porosity of 90%, and approximately, the average size windows linking
the pores. This size is very important for viscous effects considered here. The size of the pores, however,
tend to be smaller than the average size given in [8]. It seems that some other features, like tortusoity, are
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Figure 7: The finite-element mesh of the fluid domain (left) and the steady viscous incompressible flow
through the periodic cell (right). The fluid-domain average of the shown ‘scaled velocity’ field [m2] is
7.50× 10−10 m2

not well reconstructed by this periodic skeleton. Thus, another cell should be constructed with a skeleton
where the pore and window size should well represent the average values found by Potoczek [8] in actual
ceramic foams. It seems not to be an easy task provided that – apart from the pore- and window-size
requirement – the cell should be periodic and the total porosity should be exactly 90%. The tasks may be
accomplished, however, yet perhaps by allowing for bigger cells – that is, the cells containing more pores;
this should also permit to represent a more tortuous microstructure. On the other hand, bigger cells involve
more computational effort to calculate permeability parameters, and moreover, one should remember to obey
the size restriction for the representative volume element assumed during the homogenization procedure.

5 Conclusions

Two samples – of different thickness – made up of ceramic foam Al2O3 of the known total porosity of 90%
were tested in the impedance tube and the measured surface impedance curves were used by an inverse
identification procedure to determine the remaining five parameters for the fluid-equivalent model of sound
propagation in porous medium with rigid skeleton. To this end, a set of dimensionless parameters was
first defined with respect to the actual model parameters. In the definitions two reference frequencies were
introduced – one relevant for viscous effects, the other for thermal effects. Such approach rendered the
optimization procedure (that was used to minimize the relevant objective function) very robust.

The identification was performed using the experimental results obtained for the first (thinner) sample. As-
suming the known porosity all the remaining model parameters were identified. In particular, the inverse
identification allowed to estimate the so-called static thermal permeability which in practice is not easy to
determine by direct measurements, and thus, very often because of lack of this parameter, the simplified La-
farge model must be used which approximate this parameter with an analytical result obtained for a porous
medium with circular cylindrical pores.
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The identification results were verified by comparing the impedance and absorption curves computed from
the (identified) model for the second (thicker) sample, with the relevant curves found experimentally for this
sample. The verification proved to be very satisfactory, though some small discrepancies were observed,
however, in a higher frequency range, especially for the imaginary part of acoustic impedance, because of
lesser quality of the second sample. In order to achieve more certain results several samples should be tested
and the objective function for parameter identification should be taken as a sum of squared distance between
the curves measured and computed from the model for all of the samples, or eventually, the final result can
be taken as an average value from the values of a particular parameter identified for for various samples.

Finally, it was observed that the identified characteristic length for thermal effects corresponds very well to
the average radius of pores, whereas the characteristic length for viscous forces is similar with the average
size of “windows” linking the pores. This was considered as a very important coincidence confirming the
correctness of parameter identification. Certainly, the knowledge on micro-geometric parameters, like av-
erage or typical sizes of pores and windows linking the pores is of an uttermost importance since some of
the model parameters are closely related to them (therefore can be used for verification). Moreover, on the
basis on the micro-structural geometry – which is nowadays easily retrieved using, for example, computer
tomography techniques – periodic cells (representative volume elements) can be constructed to be used by
up-scaling homogenization/averaging methods which are able to calculate the parameters for macroscopic
models directly from the micro-geometry of porous medium. Such an approach was carried out to estimate
the static viscous permeability parameter.
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