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Abstract

The paper is devoted to the application of particle swarm optimizer of elastic bodies under thermomechanical loading. The Particle 
Swarm Optimiser presented by Kennedy and Eberhart [5] is proposed as an optimization tool. The optimization problem is 
formulated as minimization of the volume, the maximal value of the equivalent stress, the maximal value of the temperature or
maximization of the total dissipated heat flux with respect to specific dimensions of a structure. The direct problem is computed by 
means of the finite element method (FEM). Numerical examples for some shape optimization are also included.
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1. Introduction

The paper deals with an application of particle swarm 
optimiser (PSO) and the finite element method to the 
optimization problems of a heat radiators used to dissipate heat 
from electrical devices. Recently, swarm methods have found 
various applications in mechanics, and also in structural 
optimization. The swarm algorithms are based on the models of 
the animals social behaviours: moving and living in the groups. 
PSO algorithm realizes directed motion of the particles in n-
dimensional space to search for solution for n-variable 
optimisation problem. PSO works in an iterative way. The 
location of one individual (particle) is determined on the basis 
of its earlier experience and experience of whole group
(swarm). Moreover, the ability to memorize and, in 
consequence, returning to the areas with convenient properties, 
known earlier, enables adaptation of the particles to the life 
environment. The optimisation process using PSO is based on 
finding the better and better locations in the search-space (in the 
natural environment that are for example hatching or feeding 
grounds). The main advantage of the bio-inspired method is the 
fact that these approach do not need any information about the 
gradient of the fitness function and give a strong probability of 
finding the global optimum. The main drawback of these 
approaches is the long time of calculations. The fitness function 
is calculated for each swarm particle in each iteration by solving 
the boundary-value problem by means of the finite element 
method (FEM).

2. The Particle Swarm Optimiser

The particle swarm algorithms [5], similarly to the 
evolutionary and immune algorithms,  are developed on the 
basis of the mechanisms discovered in the nature. The swarm 
algorithms are based on the models of the animals social 
behaviours: moving and living in the groups. The animals 
relocate in the three-dimensional space in order to change their 
stay place, the feeding ground, to find the good place for 
reproduction or to evading predators. 

We can distinguish many species of the insects living in 
swarms, fishes swimming in the shoals, birds flying in flocks or 
animals living in herds (Fig. 1). 

a) b) 

Figure 1: Particles swarms: 
a) fish shoal (http://www.sxc.hu/photo/1187373), 
b) bird flock (http://www.sxc.hu/photo/1095384).

A simulation of the bird flocking was published in [7]. They 
assumed that this kind of the coordinated motion is possible 
only when three basic rules are fulfilled: collision avoidance, 
velocity matching of the neighbours and flock centring. The 
computer implementation of these three rules showed very 
realistic flocking behaviour flaying in the three dimensional 
space, splitting before obstacle and rejoining again after missing 
it. The similar observations concerned the fish shoals. Further 
observations and simulations of the birds and fishes behaviour 
gave in effect more accurate and more precise formulated 
conclusions [3]. The results of this biological examination 
where used by Kennedy and Eberhart [4], who proposed 
Particle Swarm Optimiser – PSO. This algorithm realizes 
directed motion of the particles in n-dimensional space to search 
for solution for n-variable optimisation problem. PSO works in 
an iterative way. The location of one individual (particle) is 
determined on the basis of its earlier experience and experience 
of whole group (swarm). Moreover, the ability to memorize 
and, in consequence, returning to the areas with convenient 
properties, known earlier, enables adaptation of the particles to 
the life environment. The optimisation process using PSO is 
based on finding the better and better locations in the search-
space (in the natural environment that are for example hatching 
or feeding grounds).
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The algorithm with continuous representation of design 
variables and constant constriction coefficient  (constricted 
continuous PSO) has been used in presented research. In this 
approach each particle oscillates in the search space between its 
previous best position and the best position of its neighbours, 
with expectation to find new best locations on its trajectory. 
When the swarm is rather small (swarm consists of  several or 
tens particles) it can be assumed that all the particles stay in 
neighbourhood with currently considered one. In this case we 
can assume the global neighbourhood version and the best 
location found by swarm so far is taken into account – current 
position of the swarm leader (Fig. 2).

Figure 2: The idea of the particle swarm

The position of the i-th particle is changed by stochastic 
velocity vi, which is dependent on the particle distance from its 
earlier best position and position of the swarm leader. This 
approach is given by the following equations:

1 2 ˆ( 1) ( ) ( ) ( ) ( ) ( ) ( ) ( )ij ij j ij ij j ij ijv k wv k k q k d k k q k d kφ φ   + = + − + −    (1)

( 1) ( ) ( 1),     1,2,...,  ;  1,2,...,ij ij ijd k d k v k i m j n+ = + + = = (2)
where:
1 1 1 2 2 2( ) ( );  ( ) ( )j j j jk c r k k c r kφ φ= = ,
m – number of the particles,
n – number of design variables (problem dimension),
w – inertia weight, 
c1, c2 – acceleration coefficients,
r1, r2 – random numbers with uniform distribution [0,1],
di(k) – position of the i-th particle in k-th iteration step,
vi(k) – velocity of the i-th particle in k-th iteration step,
qi(k) – the best found position of the i-th particle found so far,
ˆ ( )iq k – the best position found so far by swarm – the position of 
the swarm leader,
k – iteration step.

The velocity of  i-th particle is determine by three 
components of the sum in Equation (1). The first component 
wvi(k) plays the role of the constraint to avoid excessive 
oscillation in the search space. The inertia weight w controls the 
influence of particle velocity from the previous step on the 
current one. In this way this factor controls the exploration and 
exploitation. Higher value of inertia weight facilitates the global 
searching, and lower – the local searching. The inertia weight 
plays the role of the constraint applied for the velocities to avoid 
particles dispersion and guaranteeing convergence of the 
optimisation process. The second component 

[ ]1( ) ( ) ( )i ik q k d kφ − realizes the cognitive aspect. This 

component represents the particle distance from its best position 
found earlier. It is related to the natural inclination of the 
individuals (particles) to the environments where they had the 
best experiences (the best value of the fitness function). The 
third component [ ]2 ˆ( ) ( ) ( )i ik q k d kφ − represents the particle 
distance from the position of the swarm leader. It refers to the 
natural inclination of the individuals to follow the other which 
achieved a success.

The flowchart of the particle swarm optimiser is presented 
in Fig. 11. At the beginning of the algorithm the particle swarm 
of assumed size is created randomly. Starting positions and 
velocities of the particles are created randomly. The objective 
function values are evaluated for each particle. In the next step 
the best positions of the particles are updated and the swarm 
leader is chosen. Then the particles velocities are modified by 
means of the Equation (1) and particles positions are modified 
according to the Equation (2). The process is iteratively 
repeated until the stop condition is fulfilled. The stop condition 
is typically expressed as the maximum number of iterations.

Figure 3: Particle swarm optimiser – block diagram.

The general effect is that each particle oscillates in the 
search space between its previous best position (position with 
the best fitness function value) and the best position of its best 
neighbour (relatively swarm leader), hopefully finding new best 
positions (solutions) on its trajectory, what in whole swarm 
sense leads to the optimal solution.

3. Evaluation of the fitness function

The fitness function is computed with the use of the steady-state 
thermoelsticity. Elastic body occupied the domain Ω bounded 
by the boundary Γ is considered (Figure 3)
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Figure 4: Elastic structure subjected to thermomechanical boun-
dary conditions.

The governing equations of the linear elasticity and steady-state 
heat conduction problem is expressed by the following 
equations:

, , ,
2 (1 ) 0

1 2 1 2i jj j ji i
G G vG u u T

v v
α−

+ + =
− −

(3)

, 0iiT Qλ + = (4)

where G is a shear modulus and ν is a Poisson ratio, iu is a 
field of displacements, α is heat conduction coefficient, λ is a 
thermal conductivity, T is a temperature and Q is an internal 
heat source.

The mechanical and thermal boundary conditions for the 
equations (3) and (4) take the form:

_ _

_ _

:  ; :

:  ; :  ; : ( )

it i i u i

T i i q i i c i i

t t u u

T T q q q T Tα ∞

Γ = Γ =

Γ = Γ = Γ = −
(5)

where 
_ _ _ _

, , , , ,i i i iu t T q Tα ∞ is known displacements, tractions, 
temperatures, heat fluxes heat conduction coefficient and 
ambient temperature respectively.

Separate parts of the boundaries must fulfill the following 
relations:

t u T q c

t u

T q c

Γ = Γ ∪Γ = Γ ∪Γ ∪Γ

Γ ∩Γ = ∅
Γ ∩Γ ∩Γ = ∅

(6)

In order to solve numerically thermoelasticity problem finite 
element method is proposed. After discretization taking into 
account boundary conditions following system of linear 
equations can be obtained:

KU = F
ST = R

(7)

where K denotes stiffness matrix, S denotes conductivity 
matrix, U, F, T, R contain discretized values of the boundary 
displacements, forces, temperatures and heat fluxes.

This problem is solved by the FEM software –
MENTAT/MARC [13]. The preprocessor MENTAT enables 
the production of the geometry, mesh, material properties and 
settings of the analysis. In order to evaluate the fitness function 
for each particle following four steps must be performed:

Step 1 (generated using MENTAT)

Create geometry and mesh on the base of the particles

Step 2 (generated using MENTAT)

Create the boundary conditions, material properties, 
settings of the analysis

Step 3 (solved using MARC)

Solves thermoelasticity problem

Step4

Calculate the fitness functions values on the base of the 
output MARC file

4. Formulation of the optimization problem

The problem of the optimal shape of a heat radiator used to 
dissipate heat from electrical devices is considered [2]. 
The exemplary heat exchangers are presented in Fig. 5.

Figure 5: Proposed geometry of considered heat radiators

The shape optimization problem is solved by the minimization 
of appropriate functionals. In the present paper following 
functionals are proposed:

• The volume of the structure defined as:

X
min (X)V (8)
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with imposed constrains on the maximal value of temperature 
( 0adT T− ≤ ) and the maximal value of equivalent stress 
( 0ad

eq eqσ σ− ≤ ).

• The minimization of the maximal value of the equivalent 
stress defined as:

max

X
min (X)σ

eq
(9)

• The minimization of the maximal value of the temperature in 
the structure defined as:

max

X
min (X)T (10)

with imposed constrains on the maximal value of volume of the 
structure ( 0− ≤adV V ).

X is the vector of design parameters which is represented by a 
particle with the floating point representation. The heat radiator 
is modelled as a two dimensional (2D) plain stress problem. The 
fitness function is computed with the use of the steady-state 
thermoelsticity. The governing equations of the linear elasticity 
and steady-state heat conduction problem are expressed by the 
following equations:

, , ,
2 (1 ) 0

1 2 1 2i jj j ji i
G G vG u u T

v v
α−

+ + =
− −

(11)

, 0λ + =iiT Q (12)

where G is a shear modulus and ν is a Poisson ratio, iu is a 
field of displacements, α is heat conduction coefficient, λ is a 
thermal conductivity, T is a temperature and Q is an internal 
heat source.
The mechanical and thermal boundary conditions for the 
equations (11) and (12) take the form:

_ _

_ _

:  ; :

:  ; :  ; : ( )α ∞

Γ = Γ =

Γ = Γ = Γ = −

it i i u i

T i i q i i c i i

t t u u

T T q q q T T
(13)

where 
_ _ _ _

, , , , ,α ∞
i i i iu t T q T is known displacements, tractions, 

temperatures, heat fluxes heat conduction coefficient and 
ambient temperature respectively.
In order to solve numerically thermoelasticity problem finite 
element method (FEM) is used [1,8]. After discretization taking 
into account boundary conditions the following system of linear 
equations can be obtained:
KU = F ST = R (14)
where K denotes stiffness matrix, S denotes conductivity 
matrix, U, F, T, R contain discretized values of the boundary 
displacements, forces, temperatures and heat fluxes. The 
commercial FEM software – Mentat/Marc [13] is used.

5. Geometry modeling

The choice of the geometry modeling method and the de-
sign variables has a great influence on the final solution of the 
optimization process. There is a lot of methods for geometry 
modeling. In the proposed approach Bezier curves are used to 
model the geometry of the structures. This type of the curve is a 
superset of the more commonly known NURBS (Non-Uniform 
Rational B-Spline). Using these curves in optimization makes 
the reduction of the number of design parameters possible. By 
manipulating the control points it provides the flexibility to de-
sign a large variety of shapes.

An nth-degree Bezier curve is defined by:

( ) ( ),
0

n

i n i
i

C u B u P
=

= ∑ (15)

where u is a coordinate with changes range <0,1>, Pi are 
control points.

The basis functions Bi,n are given by:

( ) ( ) ( ) 1
,
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(16)

The 4-th degree Bezier curve is described by the following 
equation:

( ) ( ) ( )
( ) ( )
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0 1

22 3 4
2 3 4

1 4 1

6 1 4 1

C u u P u u P

u u P u u P u P

= − + − +

− + − +
(17)

An example of the 4-th Bezier curves is shown in Figure 7. 
By manipulating the control points, it provides the flexibility to 
design a large variety of shapes.

Figure 6:   The example modeling of the shape of the structure 
by 4th-degree Bezier curve

By changing the value of u between 0 and 1 successive points 
of the curve are obtained. For u=0 C(u)=P0 and for u=1
C(u)=P4. The shapes of Bezier curve depend on the position of 
control points. In order to obtain more complicated shapes, it is 
necessary to raise up the degree of the Bezier curve and 
introduce more control points.

6. Numerical examples

a) Example 1

The shape optimization problem is solved by the minimization 
of the volume of the structure with constrains imposed on the 
temperature and equivalent stress ( 40σ =ad

eq MPa ). Three cases 
of constraints of the temperature were considered 
( 90, 100, 110= °adT C ). Geometry, scheme of loading and the 
distribution of design parameters are presented in Fig. 7. 
Parameters of particle swarm optimiser and boundary 
conditions values are presented in Tab. 1.

Table 1: Parameters of PSO and boundary conditions values

Pa
ra
m
et
er
s 

of
  P

SO

Numbers of 
particles 15

B
ou
nd

ar
y 

co
nd

iti
on

 v
al
ue
s

Dissipated 
heat 80W

Inertia weight w 0.73 P 10N
Acceleration 

coefficient c1, c2
1.47 Ambient 

temperature 25 °C

The number of 
design variables 5

Heat 
convection 
coefficient

2W/m2K
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a)

b)

Figure 7: a) Geometry and scheme of loading b) Design 
parameters
Tab. 2 includes the admissible values of the design parameters 
and results of optimization. Geometry after optimization 
process in the figure 8 is presented.

Table 2: The admissible values of the design parameters and 
results of optimization

The admissible values of the design parameters

Design variable Z1 
[mm]

Z2 
[mm]

Z3 
[mm]

Z4 
[mm]

Z5 
[mm]

Range 20÷100 2÷10 4÷10 4÷10 4÷10
Results of optimization

Z1 
[mm]

Z2 
[mm]

Z3 
[mm]

Z4 
[mm]

Z5 
[mm]

Volume 
[mm3]

Tad=90°C 43.62 2.86 4 4.29 4 22884
Tad=100°C 39.42 4.99 4 4 4.81 19935
Tad=110°C 32.09 2 4 4 4 17199

a)

b)

c)
Figure 8: Geometry after optimization process 

a) Constraint: 90adT C= °

b) Constraint: 100adT C= °

c) Constraint: 110adT C= °

b) Example 2

The shape optimization problem modelled using Bezier curve is 
solved by the minimization of the three fitness functions: 
volume of the structure with constrains imposed on the 
temperature and equivalent stress ( 15ad

eq MPaσ = ), temperature 
and equivalent stresses with constraints imposed on the volume 
of the structures. Geometry, scheme of loading and the 
distribution of design parameters are presented in Fig. 9. 
Parameters of particle swarm optimiser and boundary 
conditions values are presented in Tab. 3.

Table 3: Parameters of PSO and boundary conditions values

Pa
ra
m
et
er
s 

of
  P

SO

Numbers of 
particles 15

B
ou
nd

ar
y 

co
nd

iti
on

 v
al
ue
s Pressure 5000Pa

Inertia weight w 0.73 Heat flux 1000W/m2

Acceleration 
coefficient c1, c2

1.47 Ambient 
temperature 25 °C

The number of 
design variables 7

Heat 
convection 
coefficient

2W/m2K

a)

b) 

Figure 9: a) Geometry and scheme of loading b) Design para-
meters

Tab. 4 includes the admissible values of the design parameters 
and results of optimization.
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Table 4: The admissible values of the design parameters and 
results of optimization

The admissible values of the design parameters
Design 
variable

P0

[mm]
P1 

[mm]
P2

[mm]
P3

[mm]
P4

[mm]
P5

[mm]

Range
30
÷
200

30
÷
200

30
÷
200

30
÷
200

30
÷
200

30
÷
200

Design 
variable

N0

[mm]
N1 

[mm]
N2

[mm]
N3

[mm]
N4

[mm]
N5

[mm]
Range 4÷12 4÷12 4÷12 4÷12 4÷12 4÷12
Design 
variable H [mm]

Range 7÷15
Results of optimization (minimization of temperature)

P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
174.1 200 104.5 4 4 4 7
Fitness function evaluation 58.22°C

Results of optimization (minimization of volume)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
83.9 45.8 73.7 4 4 4 7
Fitness function evaluation 0.0007719 m3

Results of optimization (minimization of equivalent stresses)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
30 30 30 12 11.98 11.94 8.19

Fitness function evaluation 0.13 MPa

Geometry after optimization process in the figure 10 is 
presented.

a)

b)

c)

Figure 10: Geometry after optimization process 
a) minimization of temperature
b) minimization of volume
c) minimization of equivalent stresses 

c) Comparison between PSO and AIS

Additional comparison between two optimization tools (particle 
swarm optimiser and artificial immune system – AIS [9]) is pre-
sented in the Table 5 and 6. Fitness function values, iteration 
numbers and numbers of fitness function evaluations are com-
pared. The parameters of artificial immune system are included 
in the Table 5.

Table 5: Parameters of artificial immune system AIS
The number of memory cells 6
The number of the clones 6
Probability of Gaussian mutation 50%
Crowding factor 0.5

Table 6: Comparison between PSO and AIS for example 1
PSO

Results of optimization
Tad

[°C]
Z1 

[mm]
Z2 

[mm]
Z3 

[mm]
Z4 

[mm]
Z5 

[mm]
Vol. [mm3]

90 43.62 2.86 4 4.29 4 22884
100 39.42 4.99 4 4 4.81 19935
110 32.09 2 4 4 4 17199

AIS
Results of optimization

Tad

[°C]
Z1 

[mm]
Z2 

[mm]
Z3 

[mm]
Z4 

[mm]
Z5 

[mm]
Vol. [mm3]

90 47.87 7.83 4 4.17 4 23102
100 44.80 10 4 4 4 20631
110 34.69 5.03 4 4 4 17361

Comparison of the iteration number and fitness function evaluations
PSO

Tad

[°C]
F.f. value
Vol. [mm3] Iter. no. F.f. eval.

90 22884 124 1860
100 19935 9 135
110 17199 32 480

AIS
Tad

[°C]
F.f. value
Vol. [mm3] Iter. no. F.f. eval.

90 23102 89 1869
100 20631 46 966
110 17361 76 1596
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Table 7: Comparison between PSO and AIS for example 2 
PSO

Results of optimization (minimization of temperature)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
174.1 200 104.5 4 4 4 7
Fitness function evaluation 58.22°C

Results of optimization (minimization of volume)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
83.9 45.8 73.7 4 4 4 7
Fitness function evaluation 0.0007719 m3

Results of optimization (minimization of equivalent stresses)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
30 30 30 12 11.98 11.94 8.19

Fitness function evaluation 0.13 MPa

AIS
Results of optimization (minimization of temperature)

P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
186.3 144 141 4 4 4.01 7
Fitness function evaluation 58.29°C

Results of optimization (minimization of volume)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
95.5 75 30 4 4 4 7
Fitness function evaluation 0.0007731 m3

Results of optimization (minimization of equivalent stresses)
P0= P5 P1= P4 P2= P3 N0= N5 N1= N4 N2= N3 H
30 30 35.1 9.01 10.03 11.1 9.42

Fitness function evaluation 0.15 MPa

Comparison of the iteration number and fitness function evaluations
PSO

Min. F.f. value Iter. 
no. 

F.f. 
eval. F.f. value Iter. 

no. 
F.f. 
eval.

temp. 58.25 °C 54 1080 58.22°C 147 2940

vol. 0.0007726
m3 12 240 0.0007719

m3 144 2880

eq.
stress 0.14 MPa 5 100 0.13 MPa 147 2940

AIS

Min. F.f. value Iter. no. F.f. eval.

temp. 58.29 °C 36 756

vol. 0.0007731 m3 100 2100
eq.

stress 0.15 MPa 54 1134

7. Conclusions

An effective tool of swarm optimization of elastic bodies under 
thermomechanical loading is presented. Using this approach the 
optimal shape of a heat radiators used to dissipate heat from 
electrical devices is obtained. Implementing of the swarm algo-
rithms to this approach gives a strong probability of finding the 
global optimal solutions. Described approach is free from limi-
tations connected with classic gradient optimization methods re-
ferring to the continuity of the objective function, the gradient 
or hessian of the objective function and the substantial probabil-
ity of getting a local optimum. Besides in the case of using gra-
dient methods finding the global solution depends on the start-
ing point. The swarm algorithm performs multidirectional opti-
mum searching by exchanging information between particles 
and finding better and better particles positions. Comparison be-
tween PSO and AIS proves good effectiveness of particle 
swarm optimization method. The results of the numerical ex-
amples confirm the efficiency of the proposed optimization me-
thod and demonstrate that the method based on particle swarm 

computation is an effective technique for solving computer 
aided optimal design problems.
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