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Abstract 
 

The paper is devoted to an application of the swarm methods and the finite element method to optimization of the stiffeners location 
in the 2-D structures (plane stress, bending plates and shells). The structures are optimized for the stress and displacement criteria. 
The numerical examples demonstrate that the method based on swarm computation is an effective technique for solving computer 
aided optimal design. 
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1. Introduction 

The paper deals with an application of particle swarm 
optimiser (PSO) and the finite element method to the 
optimization problems of the 2-D structures in respect of 
stiffeners arrangement. Recently, swarm methods have found 
various applications in mechanics, and also in structural 
optimization. The swarm algorithms are based on the models of 
the animals social behaviours: moving and living in the groups. 
PSO algorithm realizes directed motion of the particles in  
n-dimensional space to search for solution for n-variable 
optimisation problem. PSO works in an iterative way. The 
location of one individual (particle) is determined on the basis 
of its earlier experience and experience of whole group 
(swarm). Moreover, the ability to memorize and, in 
consequence, returning to the areas with convenient properties, 
known earlier, enables adaptation of the particles to the life 
environment. The optimisation process using PSO is based on 
finding the better and better locations in the search-space (in the 
natural environment that are for example hatching or feeding 
grounds). The main advantage of the bio-inspired method is the 
fact that these approach do not need any information about the 
gradient of the fitness function and give a strong probability of 
finding the global optimum. The main drawback of these 
approaches is the long time of calculations. The fitness function 
is calculated for each swarm particle in each iteration by solving 
the boundary-value problem by means of the finite element 
method (FEM). 

2. Formulation of the problem 

Consider a 2-D structure (a plate in plane stress, a bending 
plate or a shell) which is stiffened by several bars. The domain 
of the 2-D structure and the domains of the bars are filled by a 
homogeneous and isotropic material of a Young’s modulus E 
and a Poisson ratio ν . The location and shape of the bars can 
change for each iteration t of the swarm process. The stiffened 
structures are considered in the framework of the theory of 
elasticity. The swarm process proceeds in an environment in 
which the structure fitness is described by the minimization of 
the stress functional 

 

( )J dψ σ
Ω

= Ω∫  (1) 

where ψ  is an arbitrary function of stress tensor σ , 
or maximization of the structure stiffness. 
 
Two different types of  optimization tasks are considered: 
• optimization of the location of the straight stiffeners, 
• optimization of the location and shape of curved stiffeners. 
Following the two optimization tasks are described. 

2.1. Optimization of the location of the straight stiffeners 
 
The location of the stiffeners in the domain of 2-D structures is 
controlled by particle parameters hi, i=1,…,N, which create a 
particle 

1 2[ , ,..., ,..., ]i Npar h h h h= ,      (2)  min max
ih h h≤ ≤

where  
minh  - the minimum value of the particle parameter, 
maxh  - the maximum value of the particle parameter. 

 
The connection of the stiffeners ends with the 2-D structures 
boundary has been assumed.  
In order to reduce the number of the particle parameters, the  
particle representation, presented in the Fig. 1, has been 
introduced. So the number of particle parameters is twice bigger 
than number of the stiffeners. 

 
Figure 1: Particle representation of the stiffeners in 2-D 
structure geometry 
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2.2. Optimization of the location and shape of curved stiffeners 

 
In order to minimize the number of parameters the curved 
stiffener is defined by means of NURBS curve (Non Uniform 
Rational B-Spline) [3].  The shape of this curve is defined by 
the control points Ck, k=1,2,…,L;  (L – number of 
control points). The connection of the stiffeners ends with the 2-
D structures boundary has been assumed therefore beginning 
and end of the stiffener are defined by means of two points P 
(Fig. 2.). 

2kC ⊂ Ω D

 

 
Figure 2: Particle representation of the curved stiffeners in 2-D 
structure geometry 
 
The location of the stiffeners in the domain of 2-D structures is 
controlled by particle parameters hi, i=1,…,N and the shape of 
them by particle parameters gi, j=1,…,M. The set of the particle 
parameters creates a particle 
 

1 2 1 2[ , ,..., ,..., , , ,..., ,..., ]i N i Mpar h h h h g g g g=  (3) 

min max
ih h h≤ ≤ ,       min max

jg g g≤ ≤   

where  
minh  - the minimum value of the particle parameter h, 
maxh  - the maximum value of the particle parameter h, 
ming  - the minimum value of the particle parameter g, 
maxg  - the maximum value of the particle parameter g. 

 
In order to solve the formulated problems the finite element 
models of the structures are considered [7]. The 2-D structure 
domain 2DΩ   is divided into triangular finite elements 

, 1,2,...,s s RΩ =  (for plane stress, bending plate or shell), 
according to the geometry mapped on the basis of the particle. 
The edges of the triangular finite elements which belong to the 
curves mapped on the basis of the particle and playing the role 
of the stiffeners, creates the bar elements 

  (Fig. 3). , 1, 2,...b b R R CΩ = + + ,

 
Figure 3: Mesh of 2-D and bar finite elements 

After the geometry discretization, the finite element analysis is 
performed and node displacements are calculated by solving a 
system of linear algebraic equations 
 
KU=F  (4) 
 
where U is a column matrix of unknown displacements, F is a 
known column matrix of acting forces and K is a known global 
stiffness matrix of the structure  which elements are given as 
follows: 
 

∫ T
s s s s

V

k = B D B dV , (5) 

for 2-D structure elements, and 

l
∫ T

b b b bk = B D B dV , (6) 

for the bar elements, 
 
where Ds, Bs and Db, Bb are the known elasticity and 
geometrical matrices for the 2-D structure and bar elements, 
respectively, l represents the length of the bar element,  
V represents the volume of the finite element. 
 
After the finite element analysis, the value of the fitness 
function given for example by: 

2

2

D

eq DJ dσ
Ω

= Ω∫  (7) 

is evaluated and the swarm algorithm is applied. 
 
The formulation of the optimization task which assumes the 
possibility of the stiffeners intersection, causes some problems 
connected with impossibility of the proper discretization of the 
structures geometry mapped on the particles basis. The  
problems appear  when the distance between the ends of two 
stiffeners or between the end of the stiffener and a corner of 2-D 
structure is too small. Then, the angles between the stiffeners 
and the boundary appear very small and the automatic mesh 
generator [5] has difficulties with creating the proper mesh and 
generates errors which cause breaks in the optimization 
program. Introduction of the additional constraints imposed on 
the particle parameters values is necessary. It was assumed that 
the distance between the ends of two stiffeners or between the 
end of the stiffener and the corner of the 2-D structure could not 
be less than the declared value. This constraint was applied in 
the case of second and third example presented in paragraph 5. 
Another possibility for solving the problem is improving of the 
geometry, mapped on the basis of the particle, by connecting 
the stiffeners ends when the distance between them is less than 
declared value. This constraint was applied in the case of the 
first example (paragraph 5). The problem can be easily solved 
by the introduction of  the proper constraints, but it will be more 
complex in the case of  the optimization task of many stiffeners 
locations. Then, many intersection points and many small 
angles between the stiffeners appear. The implementation of the 
very resistant mesh generator would be the best solution of the 
problem. 

3. Particle Swarm Optimizer 

The particle swarm algorithms, similarly to the evolutionary 
and immune algorithms,  are developed on the basis of the 
mechanisms discovered in the nature. The swarm algorithms are 
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based on the models of the animals social behaviours: moving 
and living in the groups. The animals relocate in the three-
dimensional space in order to change their stay place, the 
feeding ground, to find the good place for reproduction or to 
evading predators. We can distinguish many species of the 
insects living in swarms, fishes swimming in the shoals, birds 
flying in flocks or animals living in herds (Fig. 4).  
 

a)   b)  
Figure 4: Particles swarms:  
a) fish shoal (http://www.sxc.hu/photo/1187373), 
b) bird flock (http://www.sxc.hu/photo/1095384). 
 
A simulation of the bird flocking was published by Craig and 
Raynolds [4]. They assumed that this kind of the coordinated 
motion is possible only when three basic rules are fulfilled: 
collision avoidance, velocity matching of the neighbours and 
flock centring. The computer implementation of these three 
rules showed very realistic flocking behaviour flaying in the 
three dimensional space, splitting before obstacle and rejoining 
again after missing it. The similar observations concerned the 
fish shoals. Further observations and simulations of the birds 
and fishes behaviour gave in effect more accurate and more 
precise formulated conclusions [1]. The results of this biological 
examination where used by Kennedy and Eberhart [2], who 
proposed Particle Swarm Optimiser – PSO. This algorithm 
realizes directed motion of the particles in n-dimensional space 
to search for solution for n-variable optimisation problem. PSO 
works in an iterative way. The location of one individual 
(particle) is determined on the basis of its earlier experience and 
experience of whole group (swarm). Moreover, the ability to 
memorize and, in consequence, returning to the areas with 
convenient properties, known earlier, enables adaptation of the 
particles to the life environment. The optimisation process using 
PSO is based on finding the better and better locations in the 
search-space (in the natural environment that are for example 
hatching or feeding grounds). 
The algorithm with continuous representation of design 
variables and constant constriction coefficient  (constricted 
continuous PSO) has been used in presented research. In this 
approach each particle oscillates in the search space between its 
previous best position and the best position of its neighbours, 
with expectation to find new best locations on its trajectory. 
When the swarm is rather small (swarm consists of  several or 
tens particles) it can be assumed that all the particles stay in 
neighbourhood with currently considered one. In this case we 
can assume the global neighbourhood version and the best 
location found by swarm so far is taken into account –  current 
position of the swarm leader (Fig. 5). 
 

 
Figure 5: The idea of the particle swarm. 
 
The position of the i-th particle is changed by stochastic 
velocity vi, which is dependent on the particle distance from its 
earlier best position and position of the swarm leader. This 
approach is given by the following equations: 

1

2

( 1) ( ) ( ) ( ) ( )

ˆ( ) ( ) ( )

ij ij j ij ij

j ij ij

v k wv k k q k h k

k q k h k

φ

φ

⎡ ⎤+ = + − +⎣ ⎦
⎡ ⎤+ −⎣ ⎦

 (8) 

( 1) ( ) ( 1),     1,2,...,  ;  1,2,...,ij ij ijh k h k v k i m j n+ = + + = =  (9) 

where: 
1 1 1 2 2 2( ) ( );  ( ) ( )j j j jk c r k k c r kφ φ= = , 

 m – number of the particles, 
 n – number of design variables (problem dimension), 
 w – inertia weight,  
 c1, c2 – acceleration coefficients, 
 r1, r2 – random numbers with uniform distribution [0,1], 
 hi(k) – position of the i-th particle in k-th iteration step, 
 vi(k) – velocity of the i-th particle in k-th iteration step, 
 qi(k) – the best found position of the i-th particle found so far, 
ˆ ( )iq k – the best position found so far by swarm – the position of 

the swarm leader, 
 k – iteration step. 
 
The velocity of  i-th particle is determine by three components 
of the sum in Eqn. 8. The first component wvi(k) plays the role 
of the constraint to avoid excessive oscillation in the search 
space. The inertia weight w controls the influence of particle 
velocity from the previous step on the current one. In this way 
this factor controls the exploration and exploitation. Higher 
value of inertia weight facilitates the global searching, and 
lower – the local searching. The inertia weight plays the role of 
the constraint applied for the velocities to avoid particles 
dispersion and guaranteeing convergence of the optimisation 
process. The second component [ ]1( ) ( ) ( )i ik q k h kφ − realizes the 
cognitive aspect. This component represents the particle 
distance from its best position found earlier. It is related to the 
natural inclination of the individuals (particles) to the 
environments where they had the best experiences (the best 
value of the fitness function). The third component 

[ ]2 ˆ( ) ( ) ( )i ik q k h kφ −  represents the particle distance from the 
position of the swarm leader. It refers to the natural inclination 
of the individuals to follow the other which achieved a success. 
The flowchart of the particle swarm optimiser is presented in 
Fig. 6. At the beginning of the algorithm the particle swarm of 
assumed size is created randomly. Starting positions and 
velocities of the particles are created randomly. The objective 
function values are evaluated for each particle. In the next step 
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the best positions of the particles are updated and the swarm 
leader is chosen. Then the particles velocities are modified by 
means of the Eqn. 8 and particles positions are modified 
according to the Eqn. 9. The process is iteratively repeated until 
the stop condition is fulfilled. The stop condition is typically 
expressed as the maximum number of iterations. 
  

 
Figure 6: Particle swarm optimiser – block diagram. 
 
The general effect is that each particle oscillates in the search 
space between its previous best position (position with the best 
fitness function value) and the best position of its best 
neighbour (relatively swarm leader), hopefully finding new best 
positions (solutions) on its trajectory, what in whole swarm 
sense leads to the optimal solution.  

4. The coupling of the swarm algorithm and MSC 
NASTRAN 

In order to calculate the fitness function value for a single 
particle, the boundary value problem for 2-D structure stiffened 
by the set of the bars has to be solved. To solve the boundary 
value problem the professional program of the finite element 
method MSC NASTRAN is applied. The coupling of the swarm 
optimization program and the finite element method is based on 
data transfer between both programs (Fig. 7). First the file 
containing input data to the optimization program (the structure 
of mesh of 2-D elements, the structure of mesh of the bar 
elements, the orientation of the bar elements, the thickness of  
2-D structure, the moments of inertia for the stiffeners, 
boundary conditions, material data) is built. This file has a 
special structure, which can be read by MSC NASTRAN and is 
the basis on which the boundary value problem is solved. After 
the computations the MSC NASTRAN returns the result file 
from which the result data,  necessary for calculation of the 
fitness function value (stresses, strains, displacements) are 
taken. 

 

 
Figure 7: Coupling of the swarm algorithm and MSC 
NASTRAN 

5. Examples of swarm optimization of structures 

Four numerical examples of the optimization of the 
stiffeners location in geometry of 2-D structures are considered. 
Example 1 – the optimization of a plate in plane stress stiffened 
with 3 ribs, Example 2 – optimization of a bending plate 
stiffened with 4 ribs. Example 3 – the optimization of a shell 
structure stiffened with 5 ribs. Example 4 – the optimization of 
a plate in plane stress stiffened with 2 curved ribs. The domain 
of 2-D structures and domains of the bars in each example are 
filled by a homogeneous and isotropic material of a Young’s 
modulus E0=2∗105 MPa and a Poisson ratio ν =0.3. The value 
of the maximal stress max 100MPaσ = . The stiffened structures 
are considered in the framework of the theory of elasticity. The 
results of the examples are obtained by use of optimization 
method based on swarm algorithm with parameters included in 
Table 1. The stiffeners in each of the numerical examples have 
rectangular cross-section of dimensions w × h.  
 
Table 1: Parameters of  Particle Swarm Optimizer 
Number of particles 20 
Inertia weight w 0.73 
acceleration coefficient c1 1.47 
acceleration coefficient c2  1.47 
 
5.1.  Example 1  
 

The optimization task of three stiffeners location by the 
minimization of the stress functional in a plate in plane stress 
with boundary conditions shown in the Fig. 8 is considered. 
Input data to the optimization program and the parameters of 
the swarm algorithm are included in Tab. 2 and 1, respectively. 
The results of the optimization process are presented in the Fig. 
9. 

 
 

Figure 8: Geometry and boundary conditions for  the plate in 
plane stress (example 1)  
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Table 2: Input data to the optimization program for example 1 

a × b 
[mm] 

F 
[N] 

Number 
of 

stiffeners 

Number of 
particle 

parameters 

Rectangular 
cross-

section of 
dimensions 
w × h [mm] 

Thickness 
of the plate

[mm] 

400 
× 

600 
300 3 6 10 × 20 8 

 

a)   

b)   
 

Figure 9: Location of three stiffeners in the plate in plane stress 
and the map of stresses; a) 1st iteration , b) 54th iteration  
 
 
5.2.  Example 2 
 

The optimization task of four stiffeners location by the 
minimization of the stress functional in a bending plate loaded 
with the pressure p and fixed on the boundary (Fig. 10) is 
considered. Input data to the optimization program and the 
parameters of the swarm algorithm are included in Tab. 3 and 1, 
respectively. The results of the optimization process are 
presented in the Fig. 11.  
 

                     
Figure 10: Geometry and boundary conditions for  the bending 
plate (example 2)  

 
Table 3: Input data to the optimization program for example 2 

a × a 
[mm] 

p 
[MPa] 

Number 
of 

stiffeners 

Number of 
particle 

parameters 

Rectangular 
cross-

section of 
dimensions 
w × h [mm] 

Thickness 
of the 
plate 
[mm] 

400 
× 

400 
0.1 4 8 25 × 35 10 

a)  
 

                     

b)  

Figure 11: Location of four stiffeners in the bending plate and 
the map of stresses; a) 1st iteration, b) 527th iteration 
 
5.3.  Example 3 
 

The optimization task of five stiffeners location by the 
minimization of the stress functional in a cylindrical shell is 
considered. The structure is stretched with continuous load q 
and is fixed as presented in the Fig. 12. Input data to the 
optimization program and the parameters of the swarm 
algorithm are included in Tab. 4 and 1, respectively. The results 
of the optimization process are presented in the Fig. 13. 
 

 
Figure 12: Geometry and boundary conditions for  the 
cylindrical shell (example 3)  
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Table 4: Input data to the optimization program for example 3 Table 5: Input data to the optimization program for example 4 

a × b 
[mm] 

q 
[N/mm] 

Number 
of 

stiffeners 

Number of 
particle 

parameters 

Rectangular 
cross-

section of 
dimensions 
w × h [mm]

Thickness 
of the 
plate 
[mm] 

300 
× 

200 
450 5 10 10 × 20 10 

a × b 
[mm]

F 
[N] 

Number 
of 

stiffeners

Number of 
particle 

parameters 

Rectangular 
cross-

section of 
dimensions 
w × h [mm] 

Thickness 
of the plate

[mm] 

400 
× 

600 
1000 2 8 10 × 20 8 

  
 

 

a)  
a)     

b)        
 

b)      

Fig. 13. Location of five stiffeners in the plate in plane stress 
and the map of stresses; a) 1st iteration , b) 186th iteration 
 
5.4.  Example 4  
 

The optimization task of two stiffeners location and shape in 
a plate in plane stress with boundary conditions shown in the 
Fig. 14 is considered. The optimal positions of stiffeners are 
searched in order to maximize stiffness of the plate. The 
maximal nodal displacement in the structure is minimized. The 
stiffeners are modeled using 3-point NURBS curves. The value 
of weight of each control point is 1 (no influence on distance 
between the control point and the NURBS curve). Input data to 
the optimization program and the parameters of the swarm 
algorithm are included in Tab. 5 and 1, respectively. The results 
of the optimization process are presented in the Fig. 15. 

Figure 15: Location of two stiffeners in the plate in plane stress 
and the map of stresses; a) 1st iteration , b) 339th iteration  

5.5. Comparison of the effectiveness between PSO and DEA 
 
The main drawback of the bio-inspired  approaches is the long 
time of calculations. So the choose of the effective method 
seems to be quite important. The comparison of the particle 
swarm optimiser (PSO) and distributed evolutionary algorithm 
(DEA) with parameters included in Tab. 6 has been made. The 
results of the comparison obtained for all the presented above 
numerical examples are included in the Tab. 7. The stiffeners 
arrangements obtained for examples 1,2 and 4 are consistent for 
both applied algorithms and different for example 3 (Fig. 16). 
Fitness function value for the result obtained using PSO is 
better. 

 

 
 
Table 6. Parameters of distributed evolutionary algorithm 
Number of subpopulations 2 
Number of chromosomes in each subpopulation 10 
Probability of Gaussian mutation 100% 
Probability of simple crossover 100% 

Selection method rang 
selection 

Figure 14: Geometry and boundary conditions for  the plate in 
plane stress (example 4)  
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Table 7. The results of the comparison between PSO and DEA 
 Example 1 Example 2 Example 3 Example 4 
 DEA PSO DEA PSO DEA PSO DEA PSO 
Fitness function 
value 25543 25480 406776 405119 1675702 1589670 0.001642 0.001640 
Number of 
iterations 86 54 2746 527 463 186 1563 339 
Number of 
individuals in 
each iteration  

20 30 20 40 20 30 20 40 

Number of 
fitness function 
evaluations 

1720 1620 54920 21080 9260 5580 31260 13560 

 

a)   b)    

Fig. 16. Location of five stiffeners in the plate in plane stress 
(Example 3) obtained using: a) PSO , b) DEA 

6. Conclusions 

An effective tool of swarm optimization of 2-D structures 
stiffened with several ribs is presented. Using this approach the 
optimal arrangement of the stiffeners in geometry of 2-D 
structures can be found. Implementing of the swarm algorithms 
to this approach gives a strong probability of finding the global 
optimal solutions. Described approach is free from limitations 
connected with classic gradient optimization methods referring 
to the continuity of the objective function, the gradient or 
hessian of the objective function and the substantial probability 
of getting a local optimum. Besides in the case of using gradient 
methods finding the global solution depends on the starting 
point. The swarm algorithm performs multidirectional optimum 
searching by exchanging information between particles and 
finding better and better particles positions. Comparison 
between PSO and DEA proves good effectiveness of particle 
swarm optimization method. Creating the finite element mesh 
for some locations of the stiffeners in the geometry of 2-D 
structures may be disadvantage. The problems grow when the 
task of the optimization of many stiffeners location is 
considered. So the very resistant mesh generator is necessary 
for more complex optimization problems.    
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