
 

 

  

Abstract—Planar systems of electrodes arranged on both sides of 

dielectric piezoelectric layer are applied in numerous transducers. 

They are capable of electronic beam-steering of generated wave both 

in azimuth and elevation. The wave-beam control is achieved by 

addressable driving of two-dimensional transducer through proper 

voltage supply of electrodes on opposite surfaces of the layer. In this 

paper a semi-analytical method of analysis of the considered 

transducer is proposed, which is a generalization of the well-known 

BIS-expansion method. It was earlier exploited with great success in 

the theory of interdigital transducers of surface acoustic waves, 

theory of elastic wave scattering by cracks and certain advanced 

electrostatic problems. The corresponding nontrivial electrostatic 

problem is formulated and solved numerically. 

 

Keywords—Beamforming, transducer array, BIS-expansion.  

I. INTRODUCTION 

ECENTLY there has been a high demand for two-

dimensional (2-D) transducer arrays for medical 

ultrasonography. In the case of ultrasound imaging (e.g. B-

mode) using a linear transducer array the 2-D cross-section 

slices are obtained. Mechanical steering in the elevation 

direction can be used to combine these cross-sectional slices to 

achieve volumetric imaging. To accomplish completely 

electronic focusing and high-speed volumetric scanning the 2-

D matrix of piezoelectric transducers were developed and 

implemented recently. Introducing the second dimension in 

the array of transducers allows to perform electronic steering 

in elevation (in contrast to the mechanical steering mentioned 

above in the case of 1-D arrays) and reduce the slice thickness, 

resulting in better volumetric imaging quality and resolution 

[1]. This offers potentialities for developing of the 3-D 

ultrasound imaging. This new modality overcomes limitations 

of 2D viewing of 3-D anatomy, using conventional ultrasound 

techniques. In contrast to 2-D case, where the sequence of 2D 

images is transformed by the operator in his mind to obtain the 

impression of 3-D viewing, in 3-D ultrasound imaging this 

activity is performed by the computer. This leads to more 

efficient and faster examination, diagnostic and monitoring of 

therapeutic procedures free of potential inaccuracies related to 

subjective operator dependent treatment. 

To achieve high imaging quality and faultless work of 

medical 3-D scanners, the corresponding 2-D matrix of 

transducers must be carefully designed including the array 
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fabrication, the electronic integration and the device 

packaging. And a matter of great importance is developing 

corresponding analytical and numerical models of 2-D array 

transducers in order to perform its accurate analysis and 

performance verification prior to fabrication. Several 2-D 

planar phase-array transducer configurations have been 

proposed for medical diagnostics [2], [3]. Among them the 

classical design is the square or matrix architecture [4] (see 

Fig. 1). The typical geometry of a 2-D transducer array is 

illustrated in Fig. 1. 

 

 

Fig. 1 Typical 2D array of piezoelectric transducers with signal wires 

 

As seen from Fig. 1 fabrication of a typical square 2-D 

array transducer requires a large number of signal wires to be 

connected to individual piezoelectric elements which 

introduces considerable technological difficulties, such as 

increased costs and complexity of electronic drive circuits 

wiring, especially at higher operating frequencies [5]. For 

instance given 256×256 matrix there are above 65e3 signal 

channels with typical dimensions ∼λ/2 in water so that each 5 

MHz array element is 0.15×0.15. To alleviate these problems 

recently in the literature conceptually different 2-D transducer 

array architecture has been considered. Specifically, a 2-D 

structure of an edge-connected, crossed-electrode array was 

considered in [6], [7]. A sketch showing the electrode patterns 

arranged on both sides of piezoelectric layer is illustrated in 

Fig. 2. The proposed transducer is capable of control N×M 

elements with N+M signal channels. However no profound 

theoretical analysis of the considered crossed-electrode array 

has been carried out so far. In [6] the problem was 

superficially approached in the signal processing framework 

without thorough research. The system, shown in Fig. 2 is 

capable of electronic beam steering of generated wave both in 

elevation and azimuth. Perspective application of such a 

device may be in 3-D ultrasound imaging systems. The wave 
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beam control is achieved by addressable driving of the 2-D 

matrix transducer through proper voltage supply of electrodes 

on the opposite faces of the piezoelectric layer. In this paper a 

semi-analytical method of analysis of the considered 

transducer is proposed, which is a generalization of the well-

known BIS-expansion method [8]. It was earlier exploited 

with great success in the theory of interdigital transducers of 

surface acoustic waves [9], theory of elastic wave scattering 

by cracks and certain advanced electrostatic problems [10]. 

 

 

Fig. 2 System of crossed planar arrays of conducting strips arranged 

on the opposite faces of piezoelectric layer 

 

Let's denote the driving signal applied to the upper and 

bottom strips as �� and ��, respectively, wherei,j are the row 
and column numbers of the (i,j) matrix cell, located at the 

intersection of i
th
 upper and j

th
 bottom side strips. For the case 

of time-harmonic signals: 
 

�� � cos 	�
, �� � cos�	�  Ω�
, Ω � 	� , � � �, �,       (1) 

 

the electric field and the resulting inducted normal stress will 

be localized near the (i,j)
th
cell (especially for such 

piezoelectric materials like the PVDF [11]). In most 

applications the high frequency vibrations of the cells can be 

neglected. This yields the tool for selective (addressable) 

excitation of given cells: only this cell will vibrate with low 

frequency Ωwhich resides between strips driven by the signals 

�� and �� with frequencies differing by Ω. Thus, applying 

different amplitudes and phase-shifts to ��, ��or frequencies 
difference Ω, one obtains quite flexible tool for controlling 

vibrations of cells and the induced stress distribution over 

entire electrostrictive transducer matrix. The shape of 

vibrations requires detailed analysis of electric field 

distribution in the layer. 

II. SPATIAL SPECTRUM OF PLANAR ELECTRIC FIELD 

To carry out the theoretical analysis the BIS-expansion 

method known from the theory of surface acoustic waves 

interdigital transducers [8] or electrostatics of planar periodic 

system of conducting strips [12] can be adopted with great 

success. Specifically, the electric field defined asE=−∇ϕ, 

where ϕis electrostatic potential, on the plane of strips can be 
expanded into the Bloch series as follows: 

 

� � ���, ���  � ∑ ����,� � � 
! "

, #"
! "

$ %&�'� �(#"�),
*� � *  +,,    �� � �  -,,   .�� � /*�0  ��0 ,

        (2) 

 

where , � 22/Λis a wavenumber of the strip array; Λ - is the 
strip period; * 5 '0, ,) and � 5 '0, ,) are arbitrary spatial 
spectrum variables reduced to one Brillouin zone for the 

uniqueness of representation. In (2) ��� can be viewed as the 
amplitude of the plane harmonic field varying along the axis u 

rotated by the angle  θ with respect to the x axis in the xy-

plane: 
 

�'7) � �� cos 8  �� sin 8 � ���%&�! ";,
tan 8 � #"

� 
.             (3) 

 

In the above equation �� and ��denote the components of 
the electric field corresponding to the (n,m)

th
 spatial harmonic. 

The electrostatic potential appropriate to the (2) can be 

represented by the following expansion on the plane of strips: 

 

? � ∑ @ "
! "

%&�'� �(#"�)�,� .                      (4) 
 

It should be noted that generally, the tangential component 

of the electric field on the plane of strips depends on both the x 

and y spatial coordinates. This is achieved by using a strip 

model assuming that each strip is a stack of lateral sub-strips, 

so that the strip potential can vary between sub-strips (but it is 

constant on the sub-strips). The more detailed discussion can 

be found for instance in [13]. The normal component of 

electric induction A B AC (whose jump discontinuity on the 
strips plane defines a surface electric charge) can be expanded 

into a similar series of spatial harmonics as in (2) but with 

corresponding amplitudes A��. The boundary conditions on 
the upper (superscript u) and bottom (superscript b) surfaces 

of the dielectric layer imposed on the field components are: 

 

��; � 0,   ��D � 0,   on strips,
A; � 0,   AD � 0,   between strips.                 (5) 

 

Applying the BIS-expansion the surface fields components 

satisfying the boundary conditions given by (5) can be 

expressed in the following manner [14]: 

 

��; � ∑ J�K��K,�,� L�&�KM�&�K'cos ∆)%&�'� �(#"�),
A; � ∑ JO�K��K,�,� M�&�K'cos ∆)%&�'� �(#"�),

��D � ∑ P�K��K,�,� L�&�KM�&�K'cos ∆)%&�'� �(#"�),
AD � ∑ PQ�K��K,�,� M�&�K'cos ∆)%&�'� �(#"�),

       (6) 

 

where ∆� ,R/2; M!'·) is the Legendre polynomials; LT �
0 for U V 0 and LT � 1 otherwise; w is the strip's  width. The 
unknown coefficients J�X�, JO�X� and P�X� , PQ�X�  can be evaluated 

using the relation between spatial spectra of the tangential 

electric field �;,D and normal electric induction A;,D on the 
upper and bottom surfaces of the dielectric layer, which 

governs the field inside the layer [14]: 
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Y�;
�DZ � [\

�]'!) ^ coth|.|a b1/ sinh|.|a
1/ sinh|.|a bcoth|.|a c YA;

ADZ.         (7) 

 

It should be noted that the dielectric permittivity of the layer 

in (7) depends on k, but the fundamental feature is that for 

large wave-number value it reaches its constant limit de [8]. 
The above relation directly results from the solution of the 

Laplace equation Δg � 0 inside the dielectric layer, where the 
electric potential ? can be expressed in the following form: 
 

?'7, h) � ij%&|!|C  k%|!|Cl%&�!C,   |h| V a 2⁄ .         (8) 

 

In the above equation u is defined for the (n,m) component 

in (3). Evaluating the field components on the upper and 

bottom surfaces �; , AC: 
 

�;,D � �;'n a 2⁄ ),   A;,D � AC'n a 2⁄ ), 
 

in the following way: 

 

�;,D � �.ij%o|!|p 0⁄  k%n|!|p 0⁄ l%&�!;,

A;,D � d'.)|.|ij%o|!|p 0⁄ b k%n|!|p 0⁄ l%&�!;,
        (9) 

 

and eliminating the constants A, B from the above one readily 

obtains (7). It is also worth noting, that the higher Bloch 

orders vanish fast inside the layer and are negligible on its 

opposite surface due to the term 1 'sinh .��a)⁄ . Thus, for 

large .��the corresponding spatial harmonics are well-
localized at a given dielectric surface. This significantly 

simplifies the analysis due to the equations separation for large 

.�� . The Bloch components from (6) must obey (9) for any 
numbers (n,m). Particularly, for (n,m) sufficiently large, such 

that: 

 

coth|.qr|a � 1,   1 sinh|.qr|a � 0,⁄  
 

and *q .qr⁄ � 1for the upper and �r .qr⁄ � 1 for the bottom 
surface field representations, where N, M are some large but 

finite integers, the following approximation can be applied: 

 

JO�X� � �deJ�X�,    PQ�X� � �deP�X�  .                 (10) 
 

Substituting the above equation into (6) yields: 

 

��; � ∑ J�K��K,�,� L�&�KM�&�K'cos ∆)%&�'� �(#"�),

A; � �de ∑ J�K��K,�,� M�&�K'cos ∆)%&�'� �(#"�),

��D � ∑ P�K��K,�,� L�&�KM�&�K'cos ∆)%&�'� �(#"�),

AD � �de ∑ P�K��K,�,� M�&�K'cos ∆)%&�'� �(#"�).

       (11) 

 

Substitution of the Bloch components having the same 

wave-number .�� from (11) into (7) for + 5 sbt, tu, 
- 5 sbv, vu yields the system of linear equations for the 
unknown coefficients J�X� and P�X� , +w 5 sbt, tu and -w 5

sbv, vu: 
 

J�K� YL�&�K tanh .��a b � 
! "

Z M�&�K b

P�K� � 
! "

x"y"K
z{|} ! "p � 0,

J�K� #"
! "

x y K
z{|} ! "p 

P�K� YL�&�K tanh .��a b #"
! "

Z M�&�K � 0.

    (12) 

 

In (12) M� � M�'cos ∆)is applied to shorten notation.Due to 
the conditions leading to the approximation in (10) the 

equations for J�X� and P�X�  given by (12) outside the limits 

+ 5 sbt, tu, - 5 sbv, vuare satisfied directly, what can be 
checked by inspection. The number of equations in (12) can be 

further reduced for the considered case of � � 0exploiting the 
symmetry properties of the unknown coefficients P�X� . 

Namely, substituting the identities involving the Legendre 

polynomials: 

 

M&~&T'cos Δ) � MT'cos Δ)

M�'b cos Δ) � 'b1)�L�M�'cos Δ)
                (13) 

 

into (12) yields: 

P�K� '*) � P~&�K� '*),                     (14) 
 

where the dependence of the coefficients on r is shown 

explicitly. Taking into account (14) the equations in (12) can 

be transformed for 0 � -, -w � v, with bt � +, +w � t as 

follows: 

 

J�K� YL�&�K tanh .��a b � 
! "

Z M�&�K b

P�K� � 
! "

x"y"K&xy"y"K
z{|} ! "p � 0,

J�K� #"
! "

x y K
z{|} ! "p 

P�K� ∑ YL�&�K tanh .��a b #"
! "

Z M�&�K��&�,� � 0.

       (15) 

 

In (15) the last equation for - � 0should be replaced with 
the following: 

 
x y K

0 z{|} !p J�K� b

Y'b1)�K !
� tanh .a p

p�
�M&�K(����� b M&�KZ P�K� � 0,

     (16) 

 

where. � .��. The truncation numbers M, N involved in the 

system of linear equations, (15) and (16), generally should be 
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infinite, but practically it is sufficient to apply N, Mnot very 

large finite integers. More specifically, let N', M' be such that: 

 

tanh tw,a � tanh vX,a � 1,                 (17) 
 

Then t � tw and v � vw should be chosen such that 
*q .qrX⁄ � 1 and �r .qXr⁄ � 1, respectively (see (10) and the 
foregoing discussion). Integrating corresponding tangential 

components of the electric field one obtains the potential 

distribution on the plane of strips on the upper and bottom 

sides (which assumed to be given in the considered boundary-

value problem as additional constrains to determine unknown 

expansion coefficients uniquely). For example, when a unitary 

voltage is applied to the l
th
 upper strip and all the bottom strips 

assumed to be grounded (� � 0, �� � -, in this case) this 
condition results in: 

 

'b1)�KJ�K�M&�K&� �⁄ 'b cos ∆) � ���
�
� %���� sin 2* ,⁄ ,   (18) 

 

where���  - is the Kronecker delta. Solving (15), (16) and (18) 
for J�X� and P�X�  the planar electric field can be determined on 

both surfaces of the layer from (11). 

III. SPATIAL DISTRIBUTION OF ELECTROSTATIC FIELD: 

NUMERICAL EXAMPLES 

Few numerical examples of electrostatic field distribution in 

the layer  or, more exactly, its z-component, which results in 

the induced normal stress being the function of primary 

importance in applications, are presented below in this section.  

It is known [15] that the electric field is singular at the strip 

edges. Therefore, in order to avoid the corresponding 

difficulty, the z component of electric field at the layer middle 

plane h � 0 is evaluated. Specifically, for convenience, 

without loss of generality, the numerical examples of the 

normal induction ACare shown below. It can be reconstructed 
from the surface normal induction AC on both surfaces of the 
layer given by (11). In general case the electric field 

representation on both surfaces of the layer, (11), are defined 

for any � � *  +, and � � �  -,, being the spectral 
variables corresponding to the x and y spatial coordinates. 

Therefore, (11) can be considered as the 2-D Fourier 

transforms of the corresponding spatial distributions of the 

electric field components on the planes of strips. Thus, using 

the spatial spectra of the normal induction on the upper A; 
and bottom AD faces of the layer,  
Equation (11), the normal induction on the plane h � 0, 

resulting directly from (9) (the constants A, B being expressed 

in terms of  A;,  AD), is: 
 

AC � ��(��
0 z{|}|!|p 0⁄ , . � .�� � /�0  �0.       (19) 

 

In the particular case considered here '� � 0) the function 
in (19) is defined in the spectral domain of continuous variable 

� � *  +, and discrete � � -, and the corresponding 
spatial counterpart can be found by the inverse 2-D Fourier 

transform as follows: 

AC'�, �) � 0�
� � %&����

&� �
∑ � K" x y K'z{| ∆)&�"K x"y"K'z{| ∆)

z{|} ! "p 0⁄ %&�������&� .
     (20) 

 

Fast growing term 1 'cosh .�� a 2)⁄⁄  makes the above 

equation suitable for numerical evaluation. In Figs. 3 and 4 the 

numerical example of the AC component of the electrostatic 
field in the layer middle plane h � 0 is shown in relative scale 
for fixed thickness of dielectric layer a Λ � 0.5⁄  and different 

width of strips w. 
 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 3 The magnitude of the normal electric induction in the Λ �
Λdomainof the dielectric layer at the plane z=0 for R Λ⁄ � 0.15 and 

plate thicknessa Λ⁄ � 0.5 
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The example corresponds to the case when a single cell of 

the transducer is excited by uniform voltage applied to one 

upper strip and all bottom strips grounded. As is seen from 

Figs. 3, 4, the electric field distribution at the middle plane of 

the dielectric layer significantly departs from uniform and 

spans somewhat outside the cell covered by the supplied 

strips. 

 

 

(a) 

 

 

(b) 

 

 

(c) 

Fig. 4 The magnitude of the normal electric induction in the Λ �
Λdomainof the dielectric layer at the plane z=0 for R Λ⁄ � 0.5 and 

plate thicknessa Λ⁄ � 0.5 

IV. CONCLUSION 

Summarizing, the extension of the BIS-expansion method, 

originally developed for electrostatic analysis of 1-D periodic 

planar systems of strips, was presented for modeling of 2-D 

periodic structure comprised of crossed arrays of strips placed 

on the opposite surfaces of the dielectric piezoelectric layer.  It 

is an example of novel 2-D array transducer architecture with 

potential application in 3-D ultrasound imaging. Without loss 

of generality the same strip width an period on the opposite 

surfaces was assumed. The method can be generalized for 

different strip period and width straightforwardly. Numerical 

examples show the resulting nonuniform electrostatic field 

induced in the area of a single matrix cell excited by a uniform 

voltage applied to one upper strip and all bottom strips 

grounded. 
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