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ABSTRACT- This paper presents results from a study of the mechanical behaviour of a 
two-phase ceramic polycrystalline material subjected to in-plane static and dynamic 
loading with the assumptions of the finite strains. The material is idealized based on 
observations from SEM images. 
 
INTRODUCTION: An application of polycrystalline materials is the fabrication of 
cutting tools. These tools are working in conditions of dynamic and temperature loading. 
The two-phase material under consideration consists of elastic grains and ductile 
interfaces. Interest is focused on the failure loadings in the cases of static and dynamic 
loading. The small strains behaviour of the composite with initial voids and pores has 
previously been presented by Sadowski et al [2005].  
 

                 
      (a)           (b)        (c) 

Fig 1. (a) SEM image, (b) idealization, (c) gradient decomposition 
 
FORMULATION: The static problem is presented in the form of a FE discretized non-
linear incremental equation of equilibrium fulfilling the boundary and initial conditions 
valid for elasto-plasticity with non-linear geometry, Zienkiewicz and Taylor [2000], 
Kleiber [1989]. 
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the displacements increment vector, f∆ is the body forces increment vector and is the 
tractions external load increment vector. This equation is integrated implicitly. The 
nonlinear dynamic problem takes the form: 

t∆

RFCqMq −=+                                                                                                             (2) 
where M is the diagonal mass matrix, C is the damping matrix, q is the nodal 
displacement vector and F and R are the external and internal nodal force vectors 
respectively. An explicit integration procedure is used because the loading is of short 
duration, Owen and Hinton [1980], Bathe [1996]. 
 
CONSTITUTIVE MODELS:  When considering the finite strains effect, the gradient 

 is decomposed into its elastic and plastic parts, ( ) XuXF ∂+∂= / peFFF = , see Fig 1(a). 
To integrate the constitutive relations, the deformation increment D∆  is rotated to the 
un-rotated configuration by means of a rotation matrix obtained from the polar 
decomposition , RUVRF == 11 ++ ∆=∆ n

T
n DRRd , then the radial return is performed and 

stresses are transformed to the Cauchy stresses at  n+1, T
n

u
nnn 1111 ++++ = RσRσ . 

The constitutive models assume elasto-plastic behaviour with hardening and the Gurson 
[1977]- Tvergaard [1990] model with the yield condition as follows 
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where is the von Mises stress, Mσ mσ  is the mean stress, σ is the von Mises stress in the 
matrix, f is the void ratio and  are the Tvergaard coefficients. 321 ,, qqq
 
NUMERICAL EXAMPLE: A SEM image of the material sample is given in Fig. 1(a) 
and its idealization is shown in Fig 1(b). The elastic grains are made of  (Young 
modulus 410000 MPa) and the interfaces are made of Co with Young modulus 210000 
MPa, yield stress 297 MPa and q-coefficients 1.25, 1.0 and 1.56. Two characteristic 
loading cases are chosen, namely, shear loading along the free edge and uniaxial pressure 
applied dynamically. The reference pressure 

32OAl

oσ  is 400 MPa. The dimensions of the 
sample are 100x100x10 µm. In the case of shear loading, the sample is loaded up to 
0.09 oσ . The shape of the sample during failure is shown in Fig. 2(a). The plastic strains 
are localized at the interfaces close to the fixed edge, see Fig 2 (b) and Fig 2(c).  
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Fig 2. Shear pressure, (a) displacements, (b) plastic strains, (c) interface plastic strains 

     
         (a)     (b)      (c) 
Fig 3. Dynamic pressure, (a) displacements, (b) plastic strains, (c) interface plastic strains 
 
The dynamic load is applied instantenously and kept constant at the reference level 
throughout the process. The shape of the sample in Fig. 3(a) tends to exhibit the necking 
phenomenon. The grains start to slide along the interfaces. This is particularly visible 
close to the free edges of the sample. The interfaces which yield are mostly concentrated 
along a 45o lines, see Fig. 3(b) and Fig 3(c). Considering both cases, i.e. Fig 2(c) and 
3(c), the plastic strains are the highest where individual interfaces meet. The plastic 
strains start to develop here and then propagate along the interfaces between the grains. 
The plastic strains in the interfaces between the grains first appear at the boundary 
between the grains and the interfaces and then spread into the interface material itself. 
 
FINAL REMARKS: The plastic strains are localized in the thin interfaces and they are 
sensitive to imperfections. However, when observing the global behaviour of the sample, 
it is possible to notice phenomena such as necking and the formation of plastic hinges. 
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