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Abstract: The aim of the study was to generate rules for the prediction of the chloride resistance of
concrete modified with high calcium fly ash using machine learning methods. The rapid chloride
permeability test, according to the Nordtest Method Build 492, was used for determining the
chloride ions’ penetration in concrete containing high calcium fly ash (HCFA) for partial replacement
of Portland cement. The results of the performed tests were used as the training set to generate rules
describing the relation between material composition and the chloride resistance. Multiple methods
for rule generation were applied and compared. The rules generated by algorithm J48 from the
Weka workbench provided the means for adequate classification of plain concretes and concretes
modified with high calcium fly ash as materials of good, acceptable or unacceptable resistance to
chloride penetration.
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1. Introduction

The increased use of high calcium fly ash (HCFA) for partial replacement of Portland cement in
concrete could result in a number of environmental benefits (reduced consumption of cement clinker,
reduced CO2 emissions during cement production, saving natural resources, reduced landfill space
and storage costs). The resources of high calcium fly ash are large, it is produced as a by-product of
power generation in brown coal burning plants. However, this type of ash is usually characterized
by low silica content, a high content of free lime and an increased content of sulfur compounds. It
could be used in concrete following the requirements of ASTM (American Society for Testing and
Materials) C618 Class C, but in Europe, it does not meet the requirements defined in standard EN
450-1. At present, HCFA is not in common use in European countries in spite of positive examples
of its suitability provided by Greek and Turkish researchers. It was shown [1] that in the case of
cement replacement with HCFA, the compressive strength of concrete was increased if the content
of active silica in the fly ash was higher than that in the cement. Similar results were obtained
earlier by Naik, et al. [2]: partial replacement of cement by fine-grained HCFA resulted in the
same or better compressive strength of concrete; the results for drying shrinkage were also positive.
The optimization of fineness coupled with the adjustment of water content were found as the key
parameters of the effective utilization of high calcium fly ashes for strength maximization of cement
mortars [3]. The application of HCFA as a partial cement replacement in mortar beams stimulated
self-healing of cracks and particularly of microcracks [4]. It was also found that concrete specimens
incorporating HCFA exposed to long-term chloride ponding experiments exhibited significantly
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lower total chloride content for all depths from the surface [5]. The key factors for the adequate
performance of HCFA in concrete seem to be both the composition and the gradation of fly ash.

The assessment of concrete resistance to chloride ingress is fundamental for the durability of
reinforced concrete structures exposed to deicing salt and the marine environment [6]. Numerous
papers on chloride penetration resistance of concrete modified with standard siliceous fly ash were
recently reviewed in [7]. The addition of fly ash is generally found (and confirmed in [8]) to reduce
chloride permeability and also to increase the chloride binding capacity of concrete. Despite lower
chloride threshold values, the addition of fly ash was found to provide better corrosion protection
to steel reinforcements. There is a need to extend such a study to include high calcium fly ash. For
rational use of HCFA in structural concrete, there is also a need to propose tools for the prediction of
the chloride penetration resistance of concrete.

The prediction of the engineering properties of composite materials is usually based on
experimental test results with a reference to the observed material microstructure. The relevant
material characteristics can be extracted from an experimental dataset using various artificial
intelligence methods, developed for the last two decades for various engineering applications [9,10].
Artificial neural networks were successfully applied for the prediction of the compressive strength of
concrete containing silica fume [11] or coal ash [12]. Moreover, the application of neural networks and
optimization technologies created the possibility to search for the optimum mixture of concrete: the
mixture with the lowest cost and required performance, such as strength and slump [13]. Machine
learning methods were also tested on the classification of concrete modified by fluidized bed fly ash as
materials of adequate resistance to chloride penetration [14] and resistance to surface scaling [15]. The
application of machine learning for the prediction of the scaling resistance of concrete modified with
high calcium fly ash is described in [16]. The authors of [17,18] proposed to combine artificial neural
networks and machine learning methods in one system to estimate and predict various properties of
concrete materials.

The aim of this study is to generate rules using a machine learning algorithm to evaluate
the chloride resistance of concrete modified with high calcium fly ash. The rules are generated
using selected attributes from a database created by storing the experimental results of the chloride
migration coefficient determined for three concrete series.

2. Composition of Concrete Mixes and Test Results of the Chloride Migration Coefficient

The chloride migration coefficient in concrete specimens with different contents of high calcium
fly ash was experimentally measured. Concrete mixes were prepared with high calcium fly ash
used for replacement of 15% or 30% of the cement mass. Experimental tests were performed on
several mixes. For concrete manufacturing, two types of Portland cement, CEM I 42.5R (with 10%
C3A content) or CEM I 42.5 HSR NA (with 2% C3A content), siliceous sand fraction 0÷ 2 mm and
amphibolite as a coarse aggregate (two fractions 2÷ 8 mm and 8÷ 16 mm) were used. The following
admixtures were used: a high range water reducer (based on polycarboxylate ethers) and a plasticizer
(lignosufonate). Because of the expected variability of ash properties, three lots of high calcium
fly ash were tested from different deliveries from the power plant, namely S1, 16 March 2010, S2,
19 May 2010, and S3, 28 June 2010. The chemical composition of HCFA is given in Table 1. For
HCFA beneficiation, a grinding process was applied during 10–28 minutes in a ball mill. The physical
properties of ash before and after grinding are given in Table 2 [19]. HCFA was used as an additive
to concrete mix in unprocessed form (as collected) and after grinding.

The Nordtest Method Build 492—Non-Steady State Migration Test [20] was used to determine
the chloride migration coefficient. The principle of the test is to subject the concrete specimen to
external electrical potential applied across it and to force chloride ions to migrate into the concrete.
The specimens are then split open and sprayed with silver nitrate solution, which reacts to give white
insoluble silver chloride on contact with chloride ions. This provides a possibility to measure the
depth to which a sample has been penetrated. The non-steady-state migration coefficient, Dnssm,
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is determined on the basis of Fick’s second law. This coefficient is dependent on the voltage
magnitude, the temperature of the anolyte measured at the beginning and the end of test and the
depth of chloride ions’ penetration. The criteria for evaluating the resistance of concrete against
chloride penetration proposed by L. Tang [21] are shown in Table 3.

Table 1. The chemical composition of high calcium fly ashes from Bełchatów power plant in
Poland, determined using the XRF (X-ray fluorescence) method. Fly ash sampling date and bath
designation [19].

Component
Fly Ash Sampling Date and Batch Designation
16.03.2010 19.05.2010 28.06.2010

S1 S2 S3

LOI 2.56% 3.43% 1.85%
SiO2 33.62% 35.41% 40.17%

Al2O3 19.27% 21.86% 24.02%
Fe2O3 5.39% 6.11% 5.93%
CaO 31.32% 25.58% 22.37%
MgO 1.85% 1.49% 1.27%
SO3 4.50% 4.22% 3.07%
K2O 0.11% 0.13% 0.20%

Na2O 0.31% 0.16% 0.15%
P2O5 0.17% 0.16% 0.33%
TiO2 1.21% 1.22% 1.01%

Mn2O3 0.07% 0.06% 0.06%
SrO 0.20% 0.17% 0.16%
ZnO 0.02% 0.02% 0.02%

CaO f ree 2.87% 1.24% 1.46%

Table 2. Physical properties of high calcium fly ashes before and after processing [19].

Batch Fly Ash Designation Density (g/cm3)
Fineness: The Residue Specific Surface

on Sieve 45 µm (%) by Blaine (cm2/g)

S1
S1: unprocessed 2.62 38.0 2860

S110: ground 10 min 2.77 23.0 3500
S128: ground 28 min 2.75 10.5 3870

S2 S2: unprocessed 2.58 35.4 4400
S215: ground 15 min 2.70 13.3 6510

S3 S3: unprocessed 2.64 55.6 1900
S320: ground 20 min 2.71 20.0 4060

Table 3. Criteria for the classification of the concrete resistance to chloride ions’ penetration [21].

Chloride Migration Coefficient Dnssm Resistance to Chloride Penetration

<2 × 10−12 m2/s Very good
2–8 × 10−12 m2/s Good
8–16 × 10−12 m2/s Acceptable
>16 × 10−12 m2/s Unacceptable
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Experimental tests revealed a decrease of the chloride migration coefficient with the increase
in the HCFA amount added to the mix. The most significant reduction of Dnssm by 36%–75% and
54%–89% after 28 and 90 days of curing, respectively, was obtained when using ground HCFA to
substitute 30% of binder mass. With a such reduction of Dnssm, the level of chloride resistance changed
from acceptable to good or from unacceptable to acceptable, [22]. For a few mixes prepared with a
water-to-binder ratio of 0.60, a change of Dnssm did not increase the level of chloride penetration
resistance. Sieving through a 0.125-mm mesh size sieve was found to improve HCFA performance:
it significantly reduced the value of Dnssm, which was most evident after 90 days of curing. No clear
relationship could be found between Dnssm and the water-to-binder ratio or the compressive strength
of concrete.

The resistance against chloride ingress of concrete containing low calcium fly ash was previously
tested by Baert, et al. [23], and at 28 days, the chloride migration coefficient was increased with
increasing fly ash content. However at later ages (3, 6 or 12 months), due to the pozzolanic reaction,
the Dnssm coefficient was lower for all concrete mixes with siliceous fly ash. The effects of blast
furnace slag on the chloride migration coefficient summarized by Gjorv [6] were clearly favorable,
even at the age of 14 days. After 28 days of water curing, the increasing amounts of slag up to 80%
replacement resulted in the reduced apparent chloride diffusion coefficient from 11 × 10−12 down
to 2 × 10−12 m/s2. The comparison with the obtained results on HCFA in concrete reveals almost
comparable efficiency as blast furnace slag. This could be attributed to both pozzolanic and hydraulic
activity of HCFA. The hydraulic properties of these fly ashes should be related to reactive aluminate
phases and their hydration and also to the formation of ettringite in the initial phase of hydration [24].
A high hydraulic and pozzolanic activity index after a prolonged hydration and hardening process
is connected with hydraulic phases, mainly belite and gehlenite, as well as with the reactivity of the
glassy phase. The complexity of the phenomena involved in chloride ion penetration in concrete
containing such a mineral addition of pozzolanic and hydraulic activity justifies an application of
machine learning techniques to reveal the possible governing rules.

In Table 4, the database containing data on the composition of the concrete mixes, the specific
surface of fly ash obtained by the Blaine method and the chloride migration coefficient determined
after 28 days of curing is presented. The estimation of the concrete resistance to chloride penetration,
based on the values of the diffusion coefficients according to the criterion presented in Table 3, is
placed in the last column of Table 4.

The permeability of concrete is known to be dependent largely on the water-to-cement ratio,
(w/c). However the definition of w/c is not unambiguous when using supplementary cementitious
materials. Following the EN 206 standard, the effect of active mineral additions on w/c is quantified
using the k-efficiency factor: the content of the additive (a) is multiplied with a k-value, and the
water to cement ratio (w/c) is replaced by (w/c)eq = w/(c + k · a). The efficiency k factor approach
is adequate to address the mix design for compressive strength when using the additives of the
established efficiency. Even in such a case, like siliceous fly ash, the efficiency factors are not the same
for durability performance and for the compressive strength [25]. The compiled fly ash efficiency
data [6,26] revealed a much higher efficiency coefficient k in relation to the compressive strength than
the value given in EN 206, even reaching the value of two in relation to the resistance to chloride
attack. For nonstandard fly ashes and coal combustion products from so-called clean coal technology,
the efficiency factors are not established [27]. Therefore, it is not possible to describe all of the effects
of the nonstandard fly ashes, including HCFA, on concrete performance when exposed to various
environmental factors with only one efficiency coefficient. In order to avoid an unambiguous (w/c)
definition, the content of water in the mix is used as a descriptor in the machine learning database.
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Table 4. The database of the composition of concrete mixes and the properties of hardened concretes.

Concrete Mix
Content (kg/m3) Specific Surface Chloride Migration Category of

Cement CEM I 42.5 High Calcium Fly Ash Aggregate Water of Fly Ash Coefficient Resistance to
10% C3A 2% C3A (cm2/g) ( × 10−12 m2/s) Chloride Penetration

mix C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf Dnssm resistance

R_38 359 0 0 0 0 0 0 0 0 1945 156 0 10.13 acceptable
R_39 305 0 137 0 0 0 0 0 0 1848 153 2860 7.88 good
R_41 250 0 268 0 0 0 0 0 0 1741 152 2860 3.76 good
R_42 323 0 0 0 0 0 0 0 0 1938 174 0 23.73 unacceptable
R_43 272 0 120 0 0 0 0 0 0 1837 169 2860 12.36 acceptable
R_44 226 0 241 0 0 0 0 0 0 1768 169 2860 8.10 acceptable
R_47 310 0 0 139 0 0 0 0 0 1892 140 3500 5.44 good
R_48 257 0 0 275 0 0 0 0 0 1802 142 3500 3.42 good
R_49 275 0 0 121 0 0 0 0 0 1872 160 3500 17.79 unacceptable
R_50 228 0 0 244 0 0 0 0 0 1800 159 3500 10.37 acceptable
R_51 306 0 0 0 137 0 0 0 0 1852 153 3870 6.37 good
R_52 255 0 0 0 273 0 0 0 0 1780 153 3870 3.85 good
R_53 277 0 0 0 122 0 0 0 0 1871 175 3870 12.22 acceptable
R_54 228 0 0 0 244 0 0 0 0 1784 173 3870 5.52 good
R_75 0 366 0 0 0 0 0 0 0 1997 143 0 11.96 acceptable
R_76 0 312 140 0 0 0 0 0 0 1901 142 2860 6.34 good
R_77 0 251 270 0 0 0 0 0 0 1765 140 2860 4.04 good
R_78 0 328 0 0 0 0 0 0 0 1982 165 0 21.91 unacceptable
R_79 0 278 123 0 0 0 0 0 0 1894 159 2860 10.30 acceptable
R_80 0 226 242 0 0 0 0 0 0 1790 157 2860 7.88 good
R_81 0 304 0 0 0 136 0 0 0 1861 133 4400 5.04 good
R_82 0 277 0 0 0 122 0 0 0 1889 158 4400 7.76 good

R_116 340 0 0 0 0 0 0 0 0 1841 170 0 20.79 unacceptable
R_125 296 0 0 0 0 0 0 75 0 1836 174 1900 8.17 acceptable
R_118 237 0 0 0 0 0 0 145 0 1767 172 1900 10.95 acceptable
R_117 295 0 0 0 0 0 0 0 74 1826 174 4060 12.00 acceptable
R_119 239 0 0 0 0 0 0 0 147 1781 171 4060 5.17 good
R_107 308 0 0 0 0 0 0 0 0 1846 186 0 26.00 unacceptable
R_102 265 0 0 0 0 0 0 67 0 1834 189 1900 22.80 unacceptable
R_103 218 0 0 0 0 0 0 134 0 1814 189 1900 20.86 unacceptable
R_105 265 0 0 0 0 0 0 0 67 1839 189 4060 12.10 acceptable
R_104 219 0 0 0 0 0 0 0 135 1820 190 4060 7.59 good
R_120 0 343 0 0 0 0 0 0 0 1862 172 0 23.09 unacceptable
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Table 4. Cont.

Concrete Mix
Content (kg/m3) Specific Surface Chloride Migration Category of

Cement CEM I 42.5 High Calcium Fly Ash Aggregate Water of Fly Ash Coefficient Resistance to
10% C3A 2% C3A (cm2/g) ( × 10−12 m2/s) Chloride Penetration

mix C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf Dnssm resistance

R_126 0 290 0 0 0 0 0 73 0 1793 170 1900 22.87 unacceptable
R_122 0 239 0 0 0 0 0 146 0 1779 171 1900 21.85 unacceptable
R_121 0 295 0 0 0 0 0 0 74 1824 173 4060 19.61 unacceptable
R_123 0 240 0 0 0 0 0 0 147 1786 171 4060 17.65 unacceptable
R_106 0 312 0 0 0 0 0 0 0 1869 189 0 28.50 unacceptable
R_111 0 265 0 0 0 0 0 67 0 1836 187 1900 31.63 unacceptable
R_112 0 222 0 0 0 0 0 136 0 1840 191 1900 27.44 unacceptable
R_110 0 265 0 0 0 0 0 0 67 1840 187 4060 25.42 unacceptable
R_108 0 223 0 0 0 0 0 0 137 1852 192 4060 23.04 unacceptable
A_0 350 0 0 0 0 0 0 0 0 1890 158 0 14.38 acceptable

A_15 298 0 133 0 0 0 0 0 0 1800 158 2860 7.91 good
B_15 298 0 0 133 0 0 0 0 0 1800 158 3500 6.39 good
C_15 298 0 0 0 133 0 0 0 0 1800 158 3870 5.52 good
A_30 245 0 263 0 0 0 0 0 0 1710 158 2860 5.43 good
B_30 245 0 0 263 0 0 0 0 0 1710 158 3500 1.63 very good
C_30 245 0 0 0 263 0 0 0 0 1710 158 3870 1.52 very good
D_15 298 0 0 0 0 133 0 0 0 1800 158 4400 3.06 good
E_15 298 0 0 0 0 0 133 0 0 1800 158 6510 2.06 good
H_0 0 350 0 0 0 0 0 0 0 1880 175 0 37.04 unacceptable

H_15M 0 298 0 0 0 0 0 0 75 1847 175 4060 34.48 unacceptable
H_15S 0 298 0 0 0 0 0 75 0 1847 175 1900 33.03 unacceptable
H_30M 0 245 0 0 0 0 0 0 150 1813 175 4060 27.41 unacceptable
H_30S 0 245 0 0 0 0 0 150 0 1813 175 1900 27.59 unacceptable

The database presented in Table 4 is a general database, which can be transformed into a “working database” by column selection.
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3. Machine Learning Methods Used in the Prediction of the Engineering Properties of
Composite Materials

3.1. Introduction to Machine Learning

Determining the relationship between material composition and the chloride resistance of
concrete is a difficult and time-consuming process, even in the case of a small dataset, as presented
in Table 4. For the considered dataset, it requires simultaneous analysis of 12 attributes (columns)
for over 50 examples (rows). This task can be done manually; however, using a computer
system to support data exploration is much more efficient. The branch of artificial intelligence
concerned with applying algorithms that let computers evolve patterns using empirical data is called
machine learning.

The aim of machine learning is to automatically learn to recognize complex patterns and make
intelligent decisions based on the dataset. By a dataset, we mean a collection of logically-related
records: a database. Each record can be called an instance or example, and each one is characterized
by the values of predetermined attributes. The difficulty lies in the fact that the set of all possible
behaviors given all possible inputs is too large to be covered by the set of observed examples (training
data). Hence, the learner must generalize from the given examples, so as to be able to produce a useful
output in new cases.

Patterns recognition associated usually with classification is the most popular example of
utilizing machine learning. However machine learning or, more general, statistical algorithms can
support the knowledge discovery at different stages from outlier detection and attribute (features)
selection to knowledge modeling and model validation.

3.2. Feature Selection

Feature selection, also known as attribute selection or feature reduction, is the technique of
selecting a subset of relevant features for building robust learning models. By removing most
irrelevant and redundant attributes from the data, feature selection helps improve the performance
of learning models by: speeding up the learning process and alleviating the effect of the curse
of dimensionality. Moreover, the irrelevant attributes degrade the performance of state-of-the-art
decision tree and rule learners [28].

3.3. Classification

As was written earlier in Section 3.1, classification is the most common type of machine
learning application. The goal of the classification process is to find a way of classifying unseen
examples based on the knowledge extracted from the provided set of classified instances. Extracting
the knowledge from the provided dataset requires the attribute set characterizing the example
to be divided into two groups: the class attribute and the non-class attributes. For unseen
instances, only non-class attributes are known; hence, the aim of data mining algorithms is to
create such a knowledge model that allows predicting the example class membership based only
on non-class attributes.

The knowledge model depends on the way the classifier is constructed, and it can be represented
by classification rules (the algorithm AQ21 [29]), decision trees (e.g., algorithm C4.5, [30]) or many
other representations. Regardless of the representation, both classification rules and decision trees
algorithms create hypotheses.

In the considered problem, the chloride resistance of concrete (class attribute) depending on
the material composition and some predictions of the concrete (non-class attributes) is searched.
We concentrated on the most popular representative of decision tree classifiers„ the J48 algorithm,
the open-source implementation of the last publicly-available version of a C4.5 method developed by
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J. Ross Quinlan [30]. This algorithm was compared to selected algorithms available in Weka [28] in
Section 4.2.

3.4. Classifier Evaluation

So as to evaluate the classifier, i.e., to judge the hypotheses generated from the provided training
set, we have to verify the classifier performance on the independent dataset, which is called the
testing set. The classifier predicts the class of each instance from the test set; if it is correct, it is
counted as a success; if not it, is an error. The measure of the overall performance of the classifier
is the classification accuracy. This is the number of correct classifications of the instances from the
test set divided by the total number of these instances, expressed as a percentage. The greater the
classification accuracy, the better is the classifier.

In order to get a deeper understanding of which types of errors are the most frequent, the result
obtained from a test set is often displayed as a two-dimensional confusion matrix with a row and a
column for each class. Each matrix element shows the number of test examples, for which the actual
class is the row and the predicted class is the column. Good results correspond to large numbers
down the main diagonal and small, ideally zero, for the elements off the diagonal. The sum of
the numbers down the main diagonal divided by the total number of test examples determine the
classification accuracy.

Let’s consider what can be done when the number of data for training and testing is limited.
The simplest way to handle this situation is to reserve a certain number of examples for testing and
to use the remainder for training. Of course, the selection should be done randomly. The main
disadvantage of this simple method is that this random selection may not be representative.
A more general way to mitigate any bias caused by the particular sample chosen for hold out is
to repeat the whole process, training and testing, several times with different random samples.
The random selection repeated many times can be treated as the basis of a statistical technique
called cross-validation. In the k-fold cross-validation, the dataset U is split into k approximately
equal portions (U = E1

⋃
...

⋃
Ek) [31]. In each iteration i, the set Ei is used for testing, and the

remainder U \ Ei is used for training. Overall classification accuracy is calculated as an average from
the classification accuracy for each iteration.

When we have only one database consisting of a very small number of records, the estimation
of classification accuracy (the measure of the overall performance of the classifier) can be done using
the n-fold cross-validation, where n is the number of examples in the database. In this method, called
leave-one-out cross-validation, each example in turn is left out, and the learning method is trained
on all of the remaining examples. It is judged by its correctness on the remaining example, one or
zero for success or failure, respectively. The results from n judgments, one for each member of the
database, are averaged, and that average represents the classification accuracy [28].

4. Searching for the Rules Describing the Chloride Resistance of Concrete Modified with HCFA

4.1. Feature Selection

In Table 4, the dataset with 12 attributes is presented. It is clear that for database with a few
dozens of instances, this number of attributes is too large. Some attributes can be eliminated, but it is
important to eliminate the most irrelevant attributes.

Therefore, we decided to evaluate a subset of attributes using the best first and exhaustive
approaches to feature selection. The best first method searches the space of attributes by greedy
hill climbing augmented with backtracking facility. In both cases, the CfsSubsetEvaluator, provided
by Weka, was used to assess the predictive ability of each attribute individually and the degree of
redundancy among them, preferring sets of attributes that are highly correlated with the class, but
have low inter-correlation. Both methods of searching (best first and exhaustive) resulted in selection
of C1, S128, w and surf attributes as a percent of tests, as presented in Table 5.
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Table 5. Attribute selection cross-validation results.

Attribute C1 C2 S1 S110 S128 S2 S215 S3 S320 K016 w surf

Best First 100% 0% 0% 0% 32% 0% 0% 0% 0% 0% 100% 100%
Exhaustive Search 98% 0% 0% 0% 32% 0% 0% 0% 0% 0% 100% 100%

Therefore, in order to generate rules describing the chloride resistance of concrete modified with
high calcium fly ash, the subset of attributes (C1, cement content with 10 percent of C3A content
(kg/m3), S128, high calcium fly ash ground 28 minutes content (kg/m3), w, water content (kg/m3),
surf, specific surface of fly ash obtained by the Blaine method (cm2/g), and resistance, concrete
resistance to chloride penetration (acceptable, good, unacceptable)) from the database (Table 4) is
used. The shrunken database containing 56 records, each one described by four numerical and one
nominal attributes, is presented in Table 6. The last attribute, resistance, denotes a class and can take
one of three values (good, acceptable or unacceptable). Since the class “very good” representation is
not sufficient (only two examples), we decided to assign them to the “good” class, which now covers
22 examples.

Table 6. The database.

Number C1 S128 w surf resistance

1 359 0 156 0 acceptable
2 305 0 153 2860 good
3 250 0 152 2860 good
4 323 0 174 0 unacceptable
5 272 0 169 2860 acceptable
6 226 0 169 2860 acceptable
7 310 0 140 3500 good
8 257 0 142 3500 good
9 275 0 160 3500 unacceptable

10 228 0 159 3500 acceptable
11 306 137 153 3870 good
12 255 273 153 3870 good
13 277 122 175 3870 acceptable
14 228 244 173 3870 good
15 0 0 143 0 acceptable
16 0 0 142 2860 good
17 0 0 140 2860 good
18 0 0 165 0 unacceptable
19 0 0 159 2860 acceptable
20 0 0 157 2860 good
21 0 0 133 4400 good
22 0 0 158 4400 good
23 340 0 170 0 unacceptable
24 296 0 174 1900 acceptable
25 237 0 172 1900 acceptable
26 295 0 174 4060 acceptable
27 239 0 171 4060 good
28 308 0 186 0 unacceptable
29 265 0 189 1900 unacceptable
30 218 0 189 1900 unacceptable
31 265 0 189 4060 acceptable
32 219 0 190 4060 good
33 0 0 172 0 unacceptable
34 0 0 170 1900 unacceptable
35 0 0 171 1900 unacceptable
36 0 0 173 4060 unacceptable
37 0 0 171 4060 unacceptable
38 0 0 189 0 unacceptable
39 0 0 187 1900 unacceptable
40 0 0 191 1900 unacceptable
41 0 0 187 4060 unacceptable
42 0 0 192 4060 unacceptable
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Table 6. Cont.

Number C1 S128 w surf resistance

43 350 0 158 0 acceptable
44 298 0 158 2860 good
45 298 0 158 3500 good
46 298 133 158 3870 good
47 245 0 158 2860 good
48 245 0 158 3500 good
49 245 263 158 3870 good
50 298 0 158 4400 good
51 298 0 158 6510 good
52 0 0 175 0 unacceptable
53 0 0 175 4060 unacceptable
54 0 0 175 1900 unacceptable
55 0 0 175 4060 unacceptable
56 0 0 175 1900 unacceptable

4.2. Classification

As was mentioned in Section 3.3, the chloride resistance of concrete depending on material
composition can be searched using one of many software suites available on the market, and we
decided to utilize the Weka workbench. The Weka workbench provides over one hundred algorithms
supporting classification. They belong to different types, like: Bayesian classifiers, rule classifiers,
tree classifiers or meta classifiers. In our research, we decided to determine the chloride resistance
of concrete using the selected 20 algorithms belonging to three different types of algorithms. As
a training set, all of the instances from the database (Table 6) were considered. The classification
accuracy was evaluated using leave-one-out cross-validation. The obtained results are collected in
Table 7.

Table 7. Results obtained for different classifiers from the Weka workbench.

Number Classifier Accuracy

Bayesian Classifiers
1 BayesNet 66.07
2 ComplementNaiveBayes 62.50
3 NaiveBayes 73.21

Tree Classifiers
4 BFTree 73.21
5 DecisionStump 73.21
6 FT 78.57
7 LADTree 82.14
8 J48 89.29
9 LMT 82.14

10 NBTree 78.57
11 REPTree 64.29
12 SimpleCart 71.43

Rule Classifiers
13 ConjunctiveRule 71.43
14 DecisionTable 71.43
15 DTNB 80.36
16 JRip 62.50
17 NNge 76.79
18 OneR 71.43
19 PART 76.79
20 Ridor 66.07

The best accuracy equaling almost 90% was obtained using the J48 algorithm. The decision tree
generated by the J48 algorithm is presented in Figure 1, where the first number in brackets denotes
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the number of examples from the training set covered by a selected leaf, and the second number, just
after the sign “/”, indicates the number of incorrectly-classified instances (negative examples).

Figure 1. The decision tree for resistance to chloride penetration generated by the J48 algorithm.

The obtained decision tree can be easily transformed into the following rules:

[resistance = good]
Rule 1 [w ≤158] and [surf >0]: p = 19, n = 0,
Rule 2 [w >158] and [surf >3500] and [218 < C1 ≤ 250]: p = 3, n = 0.

[resistance = acceptable]
Rule 1 [w ≤158] and [surf = 0]: p = 3, n = 0,
Rule 2 [w >158] and [C1 >218] and [0 < surf ≤ 3500]: p = 7, n = 2,
Rule 3 [w >158] and [C1 >250] and [surf >3500]: p = 3, n = 0.

[resistance = unacceptable]

Rule 1 [w >158] and [C1 ≤218]: p = 18, n = 1,
Rule 2 [w >158] and [C1 >218] and [surf = 0]: p = 3, n = 0,

where p denotes the number of positive examples covered by the rule (i.e., the number of records
from this class satisfying the rule) and n denotes the number of negative examples covered by the
rule (i.e., the number of records from the other classes satisfying the rule).

The obtained decision rules determine the conditions concretes have to fulfill to provide
appropriate resistance against chloride penetration.

The good class characterizes:

• concretes with water content below 158 kg/m3 (w ≤ 158) where 15% or 30% of cement mass
(C1 or C2) was replaced with high calcium fly ash (surf > 0),

• concretes with water content above 158 kg/m3 (w > 158) where 30% of cement C1 mass
(218 < C1 ≤ 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash
S3 ground for 20 minutes (surf > 3500).

The acceptable class characterizes:

• concretes without high calcium fly ash (surf = 0) with water content below 158 kg/m3,
• concretes with water content above 158 kg/m3 (w > 158) where 15% or 30% of cement C1

mass (C1 > 218) was replaced by unprocessed high calcium fly ash S1, S3 or S1 ground for 10
minutes (surf ≤ 3500),
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• concretes with water content above 158 kg/m3 (w > 158) where 15% of cement C1 mass
(C1 > 250) was replaced by high calcium fly ash S1 ground for 28 minutes or fly ash S3 ground
for 20 minutes (surf > 3500),

The unacceptable class characterizes:

• concretes with water content above 158 kg/m3 (w > 158) and with a content of cement C1 below
218 kg/m3 (C1 ≤ 218), that is concretes containing cement C2 with or without high calcium fly
ash, as well as concretes where 30% of cement C1 mass was replaced by unprocessed high
calcium fly ash S3,

• concretes without high calcium fly ash (surf = 0) with water content above 158 kg/m3

(w > 158).

Using the leave-one-out method (n = 56), we obtained a classification accuracy equal 89.3%. The
result obtained from a test set is often displayed as a two-dimensional confusion matrix with a row
and a column for each class. Each matrix element shows the number of test examples for which the
actual class is the row and the predicted class is the column. The sum of the numbers down the
main diagonal divided by the total number of test examples determine the classification accuracy.
The confusion matrix of the solved problem is determined in the form presented in Table 8.

Table 8. The confusion matrix for leave-one-out validation.

good acceptable unacceptable

good 22 0 0
acceptable 0 9 3

unacceptable 0 3 19

Such a result can be considered satisfactory with respect to the limited number of records in
the database.

5. Conclusions

The rules generated by algorithm J48 from the Weka workbench provided a means for the
adequate classification of plain concretes and concretes modified with high calcium fly ash as
materials of good, acceptable and unacceptable resistance to chloride penetration.

According to the generated rules, it is found that if the content of water in mixes is small
enough (in investigated concretes, w ≤ 158 L/m3), then concretes modified with high calcium fly
ash are qualified as materials of good resistance to chloride penetration, whereas concretes without
high calcium fly ash are qualified as materials of acceptable resistance. For greater content of
water (w > 158 L/m3), concretes using cement of low C3A with or without high calcium fly ash are
characterized by unacceptable resistance to chloride penetration. However, when using cement of
high C3A, the replacement 15% or 30% of cement mass by high calcium fly ash, particularly by ground
fly ash, improves the resistance of concretes to chloride penetration.

It is found that both the specific surface of fly ash and the content of water and cement play a
significant role in providing the required concrete resistance. The classifier was evaluated using the
leave-one-out method. The obtained classification accuracy was equal to 89.3%. This value seems
to be sufficient to acknowledge the correctness of the classifier. Due to a small number of tested
specimens, the rules are applicable only to concrete mix compositions of similar binder content.
Further tests are needed in order to enlarge the experimental database and to cover a broader range
of concrete compositions.
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