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MIGRATION OF VESICLES AND FLEXIBLE FIBERS IN POISEUILLE FLOW
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Maria L. Ekiel-Jeżewska ‡3

1Univ. Grenoble Alpes, LIPHY, F-38000 Grenoble, France
2CNRS, LIPHY, F-38000 Grenoble, France

3Institute of Fundamental Technological Research, Polish Academy of Sciences, Pawińskiego 5B, 02-106 Warsaw,

Poland

Summary Dynamics of flexible fibers and vesicles in unbounded planar Poiseuille flow at the low-Reynolds-number are shown to exhibit
similar basic features, when their equilibrium (moderate) aspect ratio is the same and vesicle viscosity contrast is relatively high. The lateral
migration and accumulation of these two types of flexible objects are analyzed numerically.

In this paper, we investigate whether different flexible objects – vesicles and flexible fibers made of beads – may share
similar features, or even some universal behaviors, regarding their migration properties. Revealing similarities between ap-
parently different systems would advance our understanding of the migration mechanism and allow for using simpler models,
which are numerically more efficient.

A single flexible object is entrained by an unbounded Poiseuille flow with velocity v∞ =
(
αy2−vm

)
ex, where α is the

flow curvature. The value −vm of the flow velocity at the central plane y=0 is irrelevant for the migration or shape evolution.
The dynamics of the flexible object is derived from the Stokes equations, using the boundary integral method for vesicles
[1, 2, 3] and the multipole expansion (implemented in the HYDROMULTIPOLE numerical codes) for the fiber beads [4, 5].

A vesicle has a constant area S and a constant volume V , and its geometry is described by the radius of the sphere having
the same volume, R0 = (3V/4π)1/3, and the reduced volume ν = 6

√
πV S−3/2. The other parameters which determine the

vesicle deformation and motion under flow are the ratio λ of the fluid viscosities inside and outside, and the dimensionless
capillary number Ca = αR4

0η/κ, defined as the dimensionless ratio of the hydrodynamic to bending forces (the first one
proportional to the flow curvature α and fluid viscosity η, and the second one – to the vesicle bending modulus κ).

Flexible fiber is modeled as a chain of N identical spherical solid beads of diameter d. Following Refs. [4, 5, 6, 7, 8], we
impose the constraint elastic and bending forces which act on each bead, in such a way that the total external force and torque
on the fiber vanish. The bead centers are connected by springs with the equilibrium length l0d only slightly larger than the
bead diameter d, with l0 = 1.01, and the Hooke’s spring constant k̃. As in Ref. [5], the ratio of the elastic to viscous forces is
given in terms of the dimensionless parameter k = k̃/(πηvm). We set k = 80 >> 1. With this choice, the fiber practically
does not change its length during the motion, and the specific value of k is irrelevant. The relevant quantity is the ratio of
bending and viscous forces, A = Ã(625πηd5α)−1, where Ã denotes the fiber bending stiffness. [5]

To match flexible fibers with vesicles, we focus on vesicles with relatively large viscosity contrast, λ = 12. Moreover, we
choose relatively low aspect ratio – our fiber is made of N =5 beads. We circumscribe the fiber at the equilibrium position
by the spherocylinder, and match its volume and surface with the corresponding volume and surface of the vesicle at the
equilibrium, what results in the choice of ν = 0.6. The goal is to analyze how the dynamics of flexible objects depends on
their dimensionless bending stiffness, i.e. A for fibers and C−1

a for vesicles.
Each of our flexible objects is initially aligned with the flow. While translating with the flow, it tumbles and changes shape.

The basic task, however, is to determine the motion of the center of the flexible object across the flow. For vesicles, the center
is determined as the center of mass of the membrane. For fibers, we take their center of mass, with the position calculated
as the arithmetic mean of the positions of all the bead centers. The center keeps the same z-coordinate, but its y-coordinate
(denoted here as y0) changes slowly with time. Examples of the time evolution of the dimensionless position y0/R0 of the
center are shown in Fig. 1, with the use of (αR0)−1 as the time unit. It is clear that both vesicles and flexible fibers migrate
across the flow and their centers tend to a certain accumulation plane, y0 → yc. The position yc depends on the bending
stiffness. In Fig. 1, we have matched the values of Ca = 0.08 and A = 0.024 in such a way that both vesicles and fibers
accumulate at the same distance y0/R0 ≈ 8.2 from the central plane.

The dynamics of a flexible object, which is relatively far from the central plane of the flow, satisfy a universal scaling [5, 9]
– the fiber essential dynamics, including its deformation and migration, is determined only by the local shear rate 2αy0. As the
result, the accumulation position yc is a linear function of the bending stiffness, as shown in Fig. 2. The same accumulation
positions correspond to the bending stiffness of vesicles and fibers related to each other by the expression 1/Ca ≈ 520A.

∗A. Farutin, T. Piasecki and A. M. Słowicka contributed equally to this work.
†Present address: Institute of Mathematics of the Polish Academy of Sciences, Śniadeckich 8, 00-656 Warsaw, Poland
‡Corresponding author. Email: mekiel@ippt.pan.pl
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