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Abstract

A computational model of adaptive bone remodelling is formulated as an optimization problem of instantaneous changes in microstruc-
ture that minimize a functional describing the structure quality rate. Microstructure is locally described by a set of scalar geometric
parameters. Macroscopic (continuum) elastic properties are assumed anisotropic and expressed as known functions of the geometric
parameters. Strain energy is considered as the quality measure of bone at given load conditions. Rate of geometric parameters is
postulated to minimize the rate of the quality functional. An optimization problem is formulated in the continuum description and then
it is discretized both in space and time, taking finally a form of a system of nonlinear algebraic equations on unknown microstructure
parameter increments, repeatedly solved in subsequent time instants.
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1. Introduction

Bone remodelling plays an important role in formation, main-
tenance and repair processes of bone tissues. It determines
to a large extent the internal micro-structure of bone and has
an essential impact on its strength and mechanical properties.
The complete biochemical mechanism of remodelling is not yet
known. There is, however, a justified hypothesis that it is mainly
driven by mechanical factors. Its consequence is e.g. a very good
(and probably optimum) distribution of mechanical loads and in-
ternal forces within the bone microstructure. Its performance is
also crucial to the long-term success of endoprosthetics.

Several investigations related to the issue of numerical sim-
ulation of bone remodelling were reported in the literature.
They assumed either isotropic material properties of bone, or
anisotropic but with a simplified description in which bone den-
sity is the only “design” variable [7, 1]. Only isotropic bone
growth or resorption was thus possible to simulate, with no
anisotropic rearrangements in bone microstructure allowed.

This paper presents a numerical model that allows to simu-
late the process of anisotropic remodelling of cancellous bone.
The bone is treated as continuum with linear elastic anisotropic
mechanical properties. Elastic constants and relative density are
explicitly known functions of certain geometric parameters of mi-
crostructure. The parameters are nonuniformly distributed in the
bone volume and subject to changes in time according to a cer-
tain remodelling rule. This rule has a form of an optimization
problem in which the “cost” functional is a time rate of a cer-
tain global measure of bone quality at a given load state. The
instantaneous rate of the parameters’ field is postulated to ensure
the minimum value of this functional. Time integration of the
optimization problem solution results in determination of the mi-
crostructure evolution in time. In particular, it allows to track
changes in distribution of density and elastic properties.

2. Continuum problem formulation

2.1. Constitutive relations

Cancellous bone is a macroscopically continuous medium
that exhibits orthotropic elastic properties within the physiologi-

cal range of small deformations. A the micro-level, it has a mi-
crostructure formed by trabecular bars and/or plates. Macro-
scopic mechanical properties are directly related to the mi-
crostructural geometry and mechanical properties of tissue build-
ing up trabeculae. It is commonly accepted that macroscopic
anisotropy of cancellous bone is only due to geometric anisotropy
of microstructure [2].

Let us describe the microstructural geometry by a number
of parametersµ = {µp} (p = 1, . . . , Nµ) that quantify such
features like spacing and cross-section geometry of trabeculae,
directionality of their layout, etc. Components of the elastic stiff-
ness tensorDijkl appearing in the constitutive equation

σij = Dijkl εkl (1)

are assumed known functions of the parameters,Dijkl(µ). Such
relations have been determined for cellular models of cancellous
bone e.g. in [3, 4] (see Section 4 for details). Analogously, the pa-
rameters determine the relative density (volume fraction)ρ(µ).

2.2. Remodelling law

Adaptive bone remodelling is postulated as evolution of its
microstructure within the occupied domainΩ in a way ensur-
ing the fastest possible improvement of bone quality at the given
loading conditions and at certain limitations resulting from bone
physiology. Within the frame of the introduced definitions and
notation, this means evolution in time of the spatial parameter
fields,µ(x, τ), in a way ensuring the fastest decrease of a certain
scalar functionalG[u, µ] at the above mentioned conditions and
limitations (withu(x, τ) standing for the displacement field). In
other words, evolution of the parameter fields at each time instant
τ = t, µ̇(x, t), is supposed to minimize the instantaneous rate
Ψ = Ġ(t).

The functionalG is assumed in the form [6]

G[u, µ] =

∫
Ω

1

2
ui,jDijkl(µ)uk,l dΩ (2)

so that

Ψ[u, u̇, µ, µ̇] = Ġ =

=

∫
Ω

[
1

2
ui,j

(
dDijkl

dµ
µ̇

)
uk,l + ui,jDijkl(µ)u̇k,l

]
dΩ. (3)
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2.3. Constraints

Evolution of microstructure is subject to numerous con-
straints. The first of them is the static equilibrium, expressed in
the variational form as the virtual work equation∫

Ω

ui,jDijkl(µ) δuk,l dΩ =

∫
Ω

b̂i δui dΩ +

∫
Γσ

t̂i δui dΓ. (4)

given also in the rate form as∫
Ω

[
ui,j

(
dDijkl

dµ
µ̇

)
δuk,l + u̇i,jDijkl(µ) δuk,l

]
dΩ =

=

∫
Ω

˙̂
bi δui dΩ +

∫
Γσ

˙̂ti δui dΓ (5)

whereb̂i and t̂i are external volume and surface forces, and the
displacement variation fieldδui(x) is arbitrary.

Next, constraints onµ have to be enforced. They basically
result from physiology. All the parametersµp and their rateṡµp

have lower and upper bounds,

µp min ≤ µp ≤ µp max , p = 1, . . . , Nµ ,
(6)

µ̇p min ≤ µ̇p ≤ µ̇p max , p = 1, . . . , Nµ .

Further, limitations may exist for relative density and its rate,

ρmin ≤ ρ(µ) ≤ ρmax ,
(7)

ρ̇min ≤ ρ̇(µ, µ̇) ≤ ρ̇max .

Finally, physiological constraint on the total mass rate has to be
included,∫

Ω

ρ̇ dΩ = Ṁ(t) (8)

in which the arbitrarily imposed functioṅM(τ) may e.g. take the
constant value of zero (constant bone mass) or negative values
(advance of osteoporosis).

2.4. Optimization problem

Finally, the optimization problem is formulated as follows.

At an arbitrary time instantτ = t, given the fieldsu(x, t) and
µ(x, t) that fulfill the equilibrium equation (4), find the fields
u̇(x, t), µ̇(x, t) that minimize the functional (3) subject to con-
straints (5)–(8). Time integration of the solution of this problem
yields the desired evolutionµ(x, τ) along with the related evolu-
tion u(x, τ).

3. Computational model

3.1. Space and time discretization

Equations of the problem are subject to space and time dis-
cretization. Let us introduce the displacement field approxima-
tion, typical of the finite element analysis [8],

ui(x, τ) =

NN∑
α=1

Φα(x) qiα(τ), i = 1, 2, 3, (9)

whereNN – number of nodes in the f.e. mesh andq = [qiα] – ar-
ray of time-dependent nodal parameters. Let us also approximate
the integration overΩ with the Gauss formula∫

Ω

a(x) dΩ ≈
NG∑
γ=1

wγa(xγ),

with xγ being the integration points’ coordinates andwγ –
weights associated with the points. Besides, let us introduce a set
of discrete time instantsτ = t0, t1, t2, . . . at which the opti-
mization problem will be solved with respect to finite increments
rather than rates of the unknown fields.

3.2. Discretized optimization problem

Substituting the above relations to the continuum optimiza-
tion problem, we obtain after transformation the formulation in
which the fieldsu(x, τ) and µ(x, τ) have been replaced with
discrete arraysqn = {qk(tn)} (k = 1, . . . , 3NN), andmn =
{µpγ(tn)} (p = 1, . . . , Nµ, γ = 1, . . . , NG), with the index
n = 0, 1, 2, . . . referring in both cases to the discrete time in-
stants. The discrete formulation of the problem at a typical time
interval[tn, tn+1] is as follows.

Given the arraysqn, mn that fulfill the equilibrium equation

K(mn) qn = fn, (10)

find the arraysqn+1, mn+1 (and corresponding increments
∆q = qn+1 − qn, ∆m = mn+1 −mn) that minimize the func-
tional

Ψ(qn, ∆q,mn, ∆m) = ∆G =

=
1

2
qT

n+1 K(mn+1) qn+1 −
1

2
qT

n K(mn) qn . (11)

under the following equality- and inequality-type constraints,

K(mn+1) qn+1 = fn+1 , (12)

µp min ≤ µpγ n+1 ≤ µp max

∆t µ̇p min ≤ ∆µpγ ≤ µ̇p max∆t

ρmin ≤ ργ n+1 ≤ ρmax

∆t ρ̇min ≤ ∆ργ ≤ ρ̇max∆t

γ = 1, . . . NG ,
p = 1, . . . Nµ ,

(13)

NG∑
γ=1

wγ∆ργ = Ṁ∆t, (14)

with K and f denoting the FE stiffness matrix and load vector,
respectively, and

ργ n+1 = ρ(µpγ n+1), ∆ργ = ργ n+1 − ργ n .

3.3. Extended cost functional

There are several ways of solution of the above minimization
problem. One of them is the fomulation with an extended cost
functional, in which the constraints are included with appropriate
Lagrange multipliers. Let us first replace all the inequality con-
straints with equalities, which can be done by means of theslack
fieldsβ(x) (represented in the space-discrete formulation by their
values at the integration points,βγ). E.g., the inequalityA ≥ 0
is equivalent toA = β2 whereβ is an unknown quantity that
assumes the zero value when the costraint is active and non-zero
otherwise. The costraints (13) can thus be expressed as

µpγ n+1 − µp min = β2
1p γ ,

µp max − µpγ n+1 = β2
2p γ ,

∆µpγ −∆t µ̇p min = β2
3p γ ,

µ̇p max∆t−∆µpγ = β2
4p γ ,

(15)
ργ n+1 − ρmin = β2

5 γ ,

ρmax − ργ n+1 = β2
6 γ ,

∆ργ −∆t ρ̇min = β2
7 γ ,

ρ̇max∆t−∆ργ = β2
8 γ ,

where an additional array of unknownsb = {βk γ} (k =
1, . . . , 4(Nµ+1), γ = 1, . . . NG) appears.

Introducing now1 + 3NN + 4(Nµ+1)NG discrete La-
grange multipliers denoted byλ, qa, andh = {ηk γ}, we can
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replace the original optimization problem (10)–(14) with the fol-
lowing problem of minimization of anextended cost functionalL,
constructed as the functionalΨ (11) decreased by all the equality
constraints weighted by Lagrange multipliers.

Given the arraysqn, mn that fulfill the equilibrium equation

K(mn) qn = fn, (16)

find the arrays∆q, ∆m, and the slack and Lagrange multiplier
arraysb, λ, qa, h, that minimize the functional

L(qn, ∆q,mn, ∆m, λ, b, h, qa) =

=
1

2

[
qT

n+1 K(mn+1) qn+1 − qT
n K(mn) qn

]
− qaT [K(mn+1) qn+1 − fn+1

]
− λ

(
NG∑
γ=1

wγ∆ργ −∆M

)

−
NG∑
γ=1

{
η1p γ

[
µpγ n+1 − µp min − β2

1p γ

]
+ η2p γ

[
µp max − µpγ n+1 − β2

2p γ

]
+ η3p γ

[
∆µpγ −∆t µ̇p min − β2

3p γ

]
+ η4p γ

[
µ̇p max∆t−∆µpγ − β2

4p γ

]
+ η5 γ

[
ργ n+1 − ρmin − β2

5 γ

]
+ η6 γ

[
ρmax − ργ n+1 − β2

6 γ

]
+ η7 γ

[
∆ργ −∆t ρ̇min − β2

7 γ

]
+ η8 γ

[
ρ̇max∆t−∆ργ − β2

8 γ

] }
. (17)

Taking variation ofL and requiringδL = 0 we obtain a set
of nonlinear equations for the unknown arrays, corresponding to
vanishing terms at variations of particular unknown array coef-
ficients. The set consists of the constraints (12), (14), (15) (the
terms atδqa, δλ andδh, respectively), equations

ηkγ βkγ = 0,
k = 1, . . . , 4(Nµ+1),
γ = 1, . . . NG

no summation,
(18)

qa = qn+1 (19)

(the terms atδb andδ∆q, respectively) and the followingNG·Nµ

equations correspoding to the terms atδ∆m,

1

2
qT

n+1

∂K

∂µp γ

∣∣∣∣
n+1

qn+1 + λwγ
∂ρ

∂µp

∣∣∣∣
γ n+1

+ η1p γ − η2p γ + η3p γ − η4p γ

+ (η5 γ − η6 γ + η7 γ − η8 γ)
∂ρ

∂µp

∣∣∣∣
γ n+1

= 0, (20)

(in which Eq. (19) has already been utilized). After straightfor-
ward elimination of Eq. (19) and the unknownqa, the total num-
ber of equations becomes3NN + 1 + (5Nµ+4)NG and is equal
to the total number of unknown array coefficients.

Solving repeatedly the system of equations forn =
0, 1, 2, . . . and updating the bone state to subsequent time instants
τ = t1, t2, . . . allows to determine step-by-step the evolution of
the microstructure parameters in a given cancellous bone model.

Remark. Associating elements of the arraysm, b, h with Gauss
integration points of the finite element discretization may make
their sizes (and the number of unknowns in the problem) exces-
sively large. A modification to the above formulation may be
easily introduced in which the parametersµ are constant in cer-
tain sub-areas of the bone, each containing a set of different inte-
gration points (e.g. finite elements, or groups of finite elements).

In such a case,NG in all the above formulae denotes rather the
number of such sub-areas, and corresponding weightswγ should
obviously be lumped over Gauss points of sub-areasγ.

4. Geometric model of bone microstructure

To apply the above model in numerical computations, a ge-
ometric model of bone microstructure is necessary, in which the
parametersµ would be defined and their influence on material
constantsDijkl and densityρ given. In this study, the bone mi-
crostructure model proposed by the author in [4] will be adapted.
In it, the cancellous bone is modelled as repeatable microstructure
whose representative volume element (cell), presented in Fig. 1,
is parameterized by four dimensionless geometric parameters.
The first three of them,tc, th, tv , define proportions between tra-
becular plate widths and thickness in different directions, while
te (not mentioned in the figure) is a scaling factor of the entire
cell in thex′

1 direction. The microstructure is orthotropic, and
for the particular settingte = 1 — transversely isotropic.

xx

x

1
2

3

c

c

t

t

h

v

t

t

(unit)

6
(u

n
it

)
1 3

.

Figure 1: Geometric model of the representative bone cell, based
on a space-filling 14-walled polyhedron

Different values of the parameters allow to mimic at a good
approximation different types of cancellous bone microstructures
encountered in real bones. Figure 2 presents a few examples in
which a bar structure (a), a plate structure with spacer bars (b), a
honeycomb pipe (c) and a fenestrated polyhedral cell cluster (d)
are generated. Setting all parameters approximately equal to 1
may be considered as modelling of a compact bone (note, how-
ever, that the model is then isotropic).

Relations between macroscopic densityρ and orthotropic
material constantsDijkl and the microstructure parameters
tc, th, tv, te have been determined numerically with the finite el-
ement method [4] and are available in a tabularized form at the
author’s web site [5].
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(a)

tc = 0.15
th = 0.15
tv = 0.15
te = 1.00

(b)

tc = 0.15
th = 0.85
tv = 0.15
te = 1.00

(c)

tc = 0.15
th = 0.15
tv = 0.85
te = 1.00

(d)

tc = 0.15
th = 0.50
tv = 0.50
te = 1.00

Figure 2: Examples of typical microstructures generated with a representative cell for different values of geometric parameters



CMM-2007 – Computer Methods in Mechanics June 19–22, 2007, Łódź–Spała, Poland

Referring now to the the constitutive model, Section 2.1, we
can consider the geometric parameterstc, th, tv, te to be the pa-
rametersµp ∈ µ . Since orientation of the equivalent microstruc-
ture in the real bone space is arbitrary, one has to complete the
setµ with three Euler angles,αprec, αnut, αrot , defining the ro-
tation between{xi} and{x′

i},

µ = {µp} = { tc , th , tv , te , αprec , αnut , αrot }, (21)

i.e. Nµ = 7. In the case of transverse isotropy,te andαrot be-
come obsolete andNµ is reduced to 5,

µ = {µp} = { tc , th , tv , αprec , αnut }. (22)

5. Conclusion

The complete numerical model for space-time simulation of
cancellous bone remodelling process in continuum approach has
been presented. Numerical implementation of the above model
is a tedious task and has not been completed yet. The code
under development is expected to allow to numerically predict
anisotropic bone remodelling in e.g. bones with endoprostheses
including, among others, conditions of osteoporosis. These is-
sues have great practical importance in medical applications.
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