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In our previous paper, a simple gradient-enhancement of the classical continuum
theory of plasticity of single crystals deformed by multislip has been proposed for
incorporating size effects. A single internal length scale has been derived as an ex-
plicit function of the flow stress defined as the isotropic part of critical resolved shear
stresses. The present work is focused on verification whether the simplifications in-
volved are not too severe and allow satisfactory predictions of size effects. The model
has been implemented in a finite element code and applied to three-dimensional
simulations of fcc single crystals. We have found that the experimentally observed
indentation size effect in a Cu single crystal is captured correctly in spite of the ab-
sence of any adjustable length-scale parameter. The finite element treatment relies
on introducing non-local slip rates that average and smoothen on an element scale
the corresponding local quantities. Convergence of the finite element solution to the
analytical one is also verified for the one-dimensional problem of a boundary layer
formed at a constrained interface.
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1. Introduction

In Part I [1] of this paper, a novel ‘minimal’ framework of gradient-enhanced
plasticity of metal single crystals at arbitrary deformation has been developed.
The aim was to capture the effect of slip-rate gradients in a possibly simple man-
ner consistent with phenomenological laws established in materials science. This
has been done in the framework of classical continua, using balance equations
in the most standard form only, avoiding thus a dilemma concerning the choice
between alternative higher-order theories. The essence of the proposed modifica-
tion of the classical theory of crystal plasticity is in extending only the evolution
equations for critical resolved shear stresses, by a single non-conventional term
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involving slip-rate gradients. That gradient-enhancement of the conventional the-
ory is called ‘minimal’ as it can hardly be simplified further. Selected references
to the vast literature on other gradient theories of crystal plasticity and on the
related background from materials science can be found in Part I. The reader is
also referred to Part I for the details of the derivation of the model used here.

As one of the major results of Part I, the derived internal length scale ℓ has
been expressed through standard quantities that appear in a non-gradient hard-
ening law. Hence, for a given conventional model of crystal plasticity without
size effects, its gradient-enhancement is obtained automatically, as no further
assumption is needed to define the characteristic length. Moreover, in the cir-
cumstances specified in Part I, the derived internal length scale possesses a di-
rect physical interpretation that is frequently missing in other gradient-plasticity
models.

The present paper is focused on verification whether the simplifications in-
volved are not too restrictive, in particular, whether size effects are captured
correctly. The primary challenge here is to verify soundness of the predicted
indentation size effect by comparison with experimental observations. Satisfac-
tory prediction of size effects is crucial for validation of the model in which the
internal length scale is varying with the flow stress in a definite manner and
thus cannot be used for fitting purposes. The indentation size effect has been se-
lected for such validation since indentation is one of best-known size-dependent
tests, cf. Nix and Gao [2]. In Section 4.4, the results of 3D finite element (FE)
simulations of spherical indentation in a single crystal of high-purity copper are
compared with experimental data taken from the literature. This is preceded,
in Sections 4.1–4.3, by the analytical and numerical study of boundary layers at
constrained interfaces and of convergence of the FE solution to the analytical
one.

It is pointed out that FE implementation of the model is not a routine one
because the model involves slip-rate gradients that are not available in a typical
implementation of crystal plasticity. In particular, it is not immediate how to
impose appropriate boundary constraints on slip-rates. Moreover, spatial jumps
in slip-rate gradients are not excluded in general, so that irregular solutions can
be expected in addition to smooth ones. Therefore, a kind of regularization is
required to perform computations effectively. In the proposed FE treatment, non-
local slip-rates are introduced as additional global unknowns that average and
smoothen on an element scale the local slip-rates evaluated at element Gauss
points. The plastically convected derivative of the dislocation density tensor
is then computed in terms of those non-local slip-rates. Feasibility of this for-
mulation is verified against an analytic solution of a boundary layer problem
formulated for a constrained half-space.
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2. Summary of the gradient-enhanced crystal plasticity model

The ‘minimal’ gradient-enhancement of the classical incremental hardening
law of crystal plasticity has been summarized in Box I of Part I [1]. When
incorporated in the standard set of equations governing the rate-boundary value
problem of crystal plasticity, it generates the model used here. For convenience
of the reader, the set of basic equations of the model is repeated below. The
reader is referred to Part I for a more detailed description and for references to
the literature.

2.1. Classical continuum deformed plastically by multislip

The standard multiplicative decomposition is adopted

(2.1) F = F∗Fp, F∗ = R∗Ue, (Ue)2 = Ce =
T

F∗F∗,

where F is the deformation gradient, Fp is its plastic part and F∗ is decomposed
into elastic stretch Ue and rotation R∗ (see footnote 1 in Part I for the notation
convention). Plastic deformation results from the collective effect of plastic slip
on individual slip systems,

(2.2) Ḟp = LpFp, Lp =
∑

α

γ̇α sα ⊗mα, γ̇α ≥ 0,

where sα and mα are fixed orthogonal unit vectors that specify the slip direction
and slip-plane normal, respectively, and γ̇α is the corresponding plastic slip-rate,
non-negative by convention (note, however, that the convention will be changed
in the numerical treatment in Section 3). Normality flow rule can be expressed
in the following subgradient form,

(2.3) Lp ∈ ∂{M | τα ≤ τ c
α ∀α},

where the Mandel stress M,

(2.4) M =
T

F∗S∗,

is defined in terms of the Piola stress tensor S∗ taken relative to the intermediate
local configuration as a function of F∗. The (generalized) resolved shear stress
τα on slip system α is most simply defined in terms of M,

(2.5) τα = M · (sα ⊗ mα).

The evolution equations for the corresponding critical resolved shear stresses τ c
α,

that constitute the essence of the proposed gradient-enhancement, are recalled
below.
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2.2. The gradient-enhanced incremental hardening law

To account for the effect of slip-rate gradients, the standard slip-system in-
cremental hardening rule τ̇ c

α = θ
∑

β qαβ γ̇β is extended to

(2.6) τ̇ c
α = θ

(∑

β

qαβ γ̇β + ℓχ̇
)
,

in which the slip-rate gradient effect is introduced through the effective slip-rate
gradient χ̇ and characteristic length ℓ (to be specified below), while θ, the in-
stantaneous isotropic hardening modulus, and qαβ , the dimensionless parameters
describing unequal hardening of distinct slip systems, are the parameters of a
typical non-gradient hardening law that is recovered in the special case when
ℓχ̇ = 0.

In the specific form (2.6) of an anisotropic hardening law, the slip-rate gra-
dients affect only the rate of flow stress τ defined as the isotropic part of critical
resolved shear stresses,

(2.7) τ̇ = θ (γ̇ + ℓχ̇)

where, as in the classical case, the effective slip rate γ̇ is defined through

(2.8) γ̇ =
∑

α

γ̇α.

Consistently with phenomenological laws established in materials science, the
flow stress τ is assumed to be a function of the total dislocation density ρ through
the (generalized) Taylor formula

(2.9) τ = τρ(ρ) = aµb
√

ρ,

where, for a given material, the strengthening coefficient a, the elastic shear
modulus µ and the Burgers vector modulus b are known parameters. As discussed
in detail in Part I, the characteristic length ℓ is then found in the following explicit
form,

(2.10) ℓ =
dτρ/dρ

bθ
=

a2µ2b

2τθ
.

Note that ℓ has been defined through standard quantities that appear in a non-
gradient hardening law. Furthermore, the internal length-scale ℓ has been shown
in Part I to possess a physical interpretation.

The formula (2.10)2 for the characteristic length ℓ involves the flow stress τ
and the isothermal hardening modulus θ, the later representing classically the
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derivative of τ with respect to the accumulated slip γ. It is convenient to specify
θ by a constitutive function of τ ,

(2.11) θ = θτ (τ) = θ0

(
1 − τ

τmax

)
,

where the latter formula, adopted in the calculations, defines the Voce-type
strain-hardening law in a non-gradient case, cf. equation (2.48) in Part I. On
combining Eqs. (2.10)2 and (2.11)2, the internal length scale ℓ is finally found
as an explicit function of τ only, with all constant parameters having a fully
standard meaning.

To complete the model, the effective plastic slip-rate gradient χ̇ must be
defined. In general, this scalar quantity can be assumed as a suitable function of
slip-rate gradients ∇γ̇α, i.e. χ̇ = ϕ(∇γ̇α). By referring to the dislocation density
tensor G defined by Cermelli and Gurtin [3] as a finite-strain counterpart of
the classical Nye’s [4] tensor in the small-strain framework, the effective slip-rate
gradient χ̇ has been postulated in Part I in the following form,

(2.12) χ̇ = ‖
⋄

G‖ ,
⋄

G =
∑

α

sα ⊗ (∇#γ̇α ×mα), ∇#γ̇α =
−T

Fp ∇γ̇α.

Here, ‖·‖ denotes the Euclidean norm and
⋄

G the plastically convected (Oldroyd)
derivative of the dislocation density tensor G, cf. [3], so that

(2.13)
⋄

G = Ġ − LpG −G
T

Lp = Fp ∂

∂t

( −1

FpG
−T

Fp
) T

Fp.

In the small-strain framework, which will be employed to derive an analytical
solution in Section 4.1, the effective slip-rate gradient χ̇ is defined as the norm of
the rate of Nye’s dislocation density tensor α, thus χ̇ = ‖α̇‖, see equation (2.59)
in Part I. In fact, formula (2.12) provides a consistent generalization of that
definition to the finite-strain format.

The gradient-enhanced incremental hardening law (2.6) introduces, through
definition (2.12), slip-rate gradients ∇γ̇α into the standard set of equations gov-
erning the rate-boundary value problem of crystal plasticity.

3. Numerical implementation

Numerical implementation of the model developed in Part I and briefly de-
scribed above has been carried out using the finite element (FE) method. The
most important aspects of the FE implementation are briefly outlined in this
section. For brevity, standard details are omitted.
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3.1. Computation and regularization of slip-rate gradients

The present model is formulated in the framework of classical continua, and
as such it does not involve additional balance equations, in spite of the slip-rate
gradients involved in the constitutive equations. As shown later in Section 4.1, an
analytical solution describing the boundary layer in a constrained half-space can
be found directly with no additional treatment, just using Eqs. (2.6)–(2.12) in the
isotropic-hardening small-strain version, and imposing the boundary constraint
γ̇α = 0. However, in a FE implementation of the model, computation of slip-rate
gradients and imposing boundary constraints on slip-rates constitutes the main
difference (and challenge) with respect to usual implementations of non-gradient
crystal plasticity models.

A special treatment is also needed for another reason. As illustrated in Sec-
tion 4.1, see Eq. (4.6) and the related discussion, the set of assumptions intro-
duced does not ensure uniqueness of the incremental solution to a boundary-value
problem. Spatial jumps in ∇γ̇α are not excluded in general, so that irregular so-
lutions can be expected in addition to smooth ones. A kind of regularization is
thus required to avoid undesired oscillatory solutions.

In the standard FE setting of crystal plasticity, slip rates γ̇α, or the cor-
responding increments ∆γα, are determined locally and independently at each
integration (Gauss) point. This approach is also followed here so that the pro-
posed gradient enhancement can be combined with an arbitrary implementation
of multislip crystal plasticity (non-regularized or regularized, rate-dependent or
rate-independent, etc.). The possibility of determining the necessary slip-rate
gradients locally within individual elements using the Gauss-point values of slip
rates, e.g. [5], has been rejected because this approach is not suitable for low-
order (linear) elements nor for constraining the slip rates on the boundary. The
popular mixed formulation, e.g. [6–8], in which slip gradients or related quanti-
ties are introduced as independent variables, has also been considered. However,
initial trials have turned unsuccessful, possibly because the scheme itself does
not introduce any regularization of slip-rate gradients. Similarly, the regulariza-
tion effect is missing in the approach based on introducing a global continuous
approximation of the Gauss-point slip rates using Lagrange multipliers or the
penalty method, e.g. [9].

The proposed FE treatment, which meets the requirements mentioned in
the first two paragraphs of this subsection, relies on introducing non-local slip
rates ˙̄γα that provide a global continuous approximation of the corresponding
local slip rates γ̇α. This is achieved by averaging the local slip rates γ̇α through
the following partial differential equation (PDE) that is solved for each slip
system α,

(3.1) ˙̄γα − l2h∇2 ˙̄γα = γ̇α,
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where ∇2 denotes the Laplace operator, and lh is a numerical parameter of the
dimension of length. The numerical length-scale lh is assumed to be proportional
to the size h of individual finite elements so that the above PDE provides element-
scale averaging and smoothing of γ̇α, independent of the physical length scale ℓ
in the proposed gradient-enhancement of crystal plasticity.

The above equation (3.1) is inspired by the so-called implicit-gradient model
frequently employed in damage mechanics and softening plasticity, e.g. [10, 11].
In the related models, the averaging delivered by introducing the non-local vari-
able provides a regularization of the ill-posedness that results from strain soft-
ening, and the implicit-gradient formulation has been shown to be particularly
convenient as compared to alternative approaches. In contrast to the present FE
treatment, in those implicit-gradient models the characteristic (intrinsic) length
is considered as a material parameter that specifies the size of the region over
which the local variable is averaged.

Two kinds of typical boundary conditions can be prescribed for the non-local
slip rates,

(3.2) ˙̄γα = 0 or ∇ ˙̄γα · n = 0,

which correspond to ‘micro-clamped’ and ‘micro-free’ conditions, respectively,
with n denoting the unit outer normal to the boundary. Accordingly, the bound-
ary constraint γ̇α = 0 is introduced numerically through the boundary condition
(3.2)1 enforced on the non-local counterpart ˙̄γα.

The above formulation admits a standard FE treatment with C0-continuous
interpolation of the non-local variables, the gradient of which can be naturally
evaluated and used in the gradient-enhanced model. In the FE implementation of
the model, the rates ˙̄γα and γ̇α are replaced by the respective increments ∆γ̄α and
∆γα, see Section 3.3. The non-local variables ∆γ̄α constitute global unknowns,
while the local increments ∆γα are the Gauss-point variables governed by the
constitutive equations of crystal plasticity.

3.2. Rate-independent regularization of multislip crystal plasticity

In order to avoid the well-known problems related to non-uniqueness of se-
lection of active slip systems in multislip crystal plasticity, the kinetic equation
governing the slip rates γ̇α is adopted in the form

(3.3) γ̇α =
ζ̇

τ c
α

(
τα

τ c
α

)2m−1

,

where m ≫ 1 is an integer, and ζ̇ is a plastic multiplier to be discussed below. In
order to decrease the number of unknowns, slip-systems of the same slip-plane
normal mα and opposite slip directions sα are not longer treated as distinct, in
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contrast to Section 2 where the slip rates were assumed to be non-negative. In
the present numerical treatment, the resolved shear stress τα and corresponding
slip rate γ̇α can be both of either sign.

The plastic multiplier ζ̇ in Eq. (3.3) is here eliminated using a single yield
condition [12, 13],

(3.4) F =

(∑

α

(
τα

τ c
α

)2m)1/(2m)

− 1 ≤ 0,

which provides an approximation of the collection of Schmid-type yield condi-
tions |τα| ≤ τ c

α formulated for all individual slip systems. This leads to a rate-
independent multislip crystal-plasticity model that is governed by the following
associated flow rule of Mandel’s type [14] accompanied by the usual complemen-
tarity conditions,

(3.5) Lp = ζ̇
∂F

∂M
=
∑

α

γ̇α sα ⊗ mα, ζ̇ ≥ 0, ζ̇F = 0,

with γ̇α given by Eq. (3.3). The plastic multiplier ζ̇ is determined from the
consistency condition Ḟ = 0.

In spite of the noticeable analogy to the viscoplastic models of crystal plas-
ticity with the popular power-law, e.g. [15, 16], the factor ζ̇/τ c

α in Eq. (3.3) does
not represent a given reference slip rate, rather, it is here solution-dependent and
different for each slip system. Evidently, the minimal gradient-enhanced frame-
work summarized in Section 2 can be combined equally well with the viscoplastic
flow rule.

3.3. Incremental finite-step formulation

Incremental constitutive equations are obtained by applying the implicit
backward-Euler scheme to all evolution equations and by enforcing all the gov-
erning equations to hold at the end of each time increment.

The incremental form of the flow rule (3.5)1, see also Eq. (2.2), is obtained
by applying the exponential map integrator [17, 18],

(3.6) F
p
n+1 = exp

(∑

α

∆γα sα ⊗mα

)
Fp

n

so that incompressibility of plastic flow is automatically satisfied. Here, ∆γα =
γ̇α∆t denotes the slip increment corresponding to the time step tn → tn+1 =
tn + ∆t, and the subscript n or n + 1 indicates the time instant at which the
quantity of evaluated. The increment ∆γ of the total plastic slip, cf. Eq. (2.8),



Minimal gradient-enhancement of crystal plasticity. Part II 495

and the effective slip-increment gradient ∆χ, cf. Eq. (2.12), are given by

(3.7)

∆γ =
∑

α

|∆γα|,

∆χ =
∥∥∥
∑

α

sα ⊗ (∇#(∆γ̄α) ×mα)
∥∥∥,

∇#(∆γ̄α) =
−T

F
p
n+1 ∇(∆γ̄α).

Note that ∆χ is determined in terms of the gradients of non-local slip increments
∆γ̄α, as discussed in Section 3.1.

The hardening modulus θn+1 is related to the isotropic part τn+1 of the
critical resolved shear stress and to the current internal length-scale ℓn+1, cf.
Eqs. (2.7), (2.11) and (2.10), by

(3.8)

τn+1 = τn + θn+1(∆γ + ℓn+1∆χ),

θn+1 = θτ (τn+1),

ℓn+1 =
a2µ2b

2τn+1θn+1
,

and the anisotropic hardening law (2.6) takes the form

(3.9) τ c
α,n+1 = τ c

α,n + θn+1

(∑

β

qαβ∆γβ + ℓn+1∆χ
)
.

Note that the internal length-scale ℓ enters the model only through the product
θℓ. Therefore, in the numerical calculations, only the product θn+1ℓn+1 is actually
computed to avoid ill-posedness of ℓn+1 when θn+1 → 0.

Finally, in view of Eq. (3.3), slip increments ∆γα are related to the respective
current resolved shear stresses τα,n+1 by

(3.10) ∆γα =
∆ζ

τ c
α,n+1

(
τα,n+1

τ c
α,n+1

)2m−1

, τα,n+1 = Mn+1 · (sα ⊗mα),

where the Mandel stress Mn+1 is derived from the elastic strain energy function
W (Ce). Since elastic strains are small in ductile crystals, the elastic response is
simply assumed to be governed by the anisotropic St. Venant–Kirchhoff model
so that we have

(3.11) W =
1

2
Ee · LEe, Ee =

1

2
(Ce − 1), M = 2Ce ∂W

∂Ce
,

where L is a given fourth-order elastic stiffness tensor.
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For illustration purposes, the dislocation density tensor G will also be com-

puted. Since
⋄

G defined by Eq. (2.12)2 is the plastically convected (Oldroyd)
derivative (2.13) of G, the following update formula is obtained upon applica-
tion of the backward-Euler scheme in the reference configuration followed by a
push-forward to the local intermediate configuration,

(3.12)

Gn+1 = f
p
n+1Gn

−T

f
p
n+1+

∑

α

sα ⊗ (∇#(∆γ̄α) ×mα),

f
p
n+1 = F

p
n+1

−1

Fp
n.

The second term in the formula for Gn+1 is recognized to appear also in Eq. (3.7)
defining the effective slip-increment gradient ∆χ.

3.4. Finite element implementation

The implementation has been carried out using the AceGen/AceFEM sys-
tem. AceGen is a code generation system that combines symbolic capabilities of
Mathematica (www.wolfram.com) with an automatic differentiation (AD) tech-
nique and advanced expression optimization techniques [19]. Application of Ace-
Gen largely simplifies implementation of complex constitutive models thanks
to the automation of otherwise tedious steps, like derivation and coding of the
consistent tangent matrix. FE computations reported in Section 4 have been
performed using AceFEM, a highly flexible FE code that is closely integrated
with AceGen.

The formulation outlined in Sections 3.1–3.3 leads a computational scheme in
which the global unknowns are the displacements and non-local slip increments.
In three-dimensional problems, there are thus 15 degrees of freedom per node
(3 displacements and 12 slip increments for fcc metals), and the nonlinear equa-
tions resulting from the FE discretization are solved simultaneously with respect
to all unknowns using the Newton method. The tangent matrix required by the
Newton method is obtained by exact linearization of the incremental constitutive
equations including the coupling between the displacement-based formulation of
crystal plasticity and the PDE governing the non-local slip increments.

Overall, the FE implementation has proven to be fairly robust so that 3D
simulations of spherical indentation have been successfully carried out for a wide
range of indenter radii, see Section 4.4. However, our experience shows that the
convergence behaviour is sensitive to implementation details, such as regulariza-
tion of the norm in the definition of ∆χ, see Eq. (3.7)2. For instance, tuning of
the algorithm was important for performing the convergence study reported in
the next section.
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4. Study of size effects

Three examples are analyzed below. The first and second examples are con-
cerned with the problem of shearing of a constrained half-space and strip, re-
spectively. These examples are intended to illustrate the proposed gradient-
enhancement of crystal plasticity by the analysis of dimensional dependencies
in boundary layers at constrained interfaces. Furthermore, the two examples are
used for verification of the present FE formulation against an analytic solution.
The third example is aimed to provide an answer to the major question whether
the predicted size effect in indentation of a single crystal is captured correctly in
comparison with experimental observations. That verification is essential for val-
idation of predictive capabilities of the present approach since here no possibility
is left for adjusting the internal length scale ℓ responsible for the size effect.

4.1. Boundary layer in a constrained half-space subjected to shear

In this section, shearing of a constrained half-space y ≥ 0 is considered, see
Fig. 1a. The half-space is subjected to a uniform shear stress σxy ≥ 0, and plane-
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Fig. 1. Shearing of a constrained half-space: (a) schematic of the problem; (b,c) profiles of
accumulated slip γ at relatively small (b) and moderate (c) strains.
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strain conditions are assumed. For illustrative purposes, plastic deformation is
assumed to result from activity of two slip systems, α = 1, 2, oriented at an angle
φ with respect to the interface, as shown in the figure. Plastic slip is constrained
at the interface, thus γ̇α = 0 at y = 0. A similar problem of a constrained
half-space has been considered by Han et al. [20], and a related problem of a
constrained strip has been studied in numerous works, e.g., by Shu et al. [21],
Bittencourt et al. [22], and others.

The Schmid-type rate-independent yield criterion |τα| ≤ τ c
α is used directly

since no constitutive regularization is needed in the present case of double-slip
crystal plasticity. Material parameters are adopted as in the subsequent example
of spherical indentation, see Table 1 in Section 4.4, except that, for simplicity,
isotropic elasticity is here assumed with µ = 40.3 GPa and ν = 0.34. Orientation
of slip planes is specified by φ = π/3.

An analytical solution is derived below for the corresponding one-dimensional
small-strain problem, which is also used to verify the convergence of the finite-
strain FE results to the small-strain solution. The analytical solution requires
that anisotropic hardening in the model defined in Section 2.2 is not included,
thus q = 1 in the small-strain analysis, implying qαβ = 1 in the hardening
law (2.6).

The rotations are neglected in the small-strain framework so that symmetric
orientation of the two slip systems is maintained throughout the deformation
process. As a result, by symmetry, the resolved shear stresses and slip rates are
identical on both slip systems, thus τ1 = τ2 = σxy cos 2φ, γ̇1 = γ̇2, and we have
γ̇ = 2|γ̇1|.

The small-strain counterpart α̇ of the incremental dislocation density tensor
⋄

G is given by Eq. (2.12)2 on taking Fp as the identity tensor. In the present
case, the only non-zero component of α̇ is α̇yz = 2γ̇′

1 sin2 φ, and thus χ̇ = ‖α̇‖ =
2|γ̇′

1| sin2 φ, where γ̇′
1 = dγ̇1(y)/dy.

The hardening law τ̇ c
α = τ̇ = θ(γ̇ + ℓχ̇), cf. Eqs. (2.6) and (2.7), along with

the yield condition |τα| = τ c
α lead now to the following differential equation for

the effective slip rate γ̇ = γ̇(y),

(4.1) |γ̇′| + 1

ℓy
γ̇ = A σ̇xy, ℓy = ℓ sin2 φ, A =

|cos 2φ|
θℓ sin2 φ

,

for σxy ≥ σxy,0 and σ̇xy > 0, where σxy,0 = |cos 2φ|τ0 is the initial yield stress.
Note that parameters ℓ and θ, and thus also ℓy and A, depend on the current
critical resolved shear stress τ , but they do not depend on the position y. This is
because the stress is constant within the half-space, thus τ c

α = |τα| = σxy|cos 2φ|
is also constant, and we have τ = τ c

α in the absence of anisotropic hardening
(q = 1). This is actually the reason why anisotropic hardening has not been
included in the small-strain model.
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Assuming that the effective slip-rate γ̇ increases monotonically from 0 at
the interface as y increases, we have γ̇′ > 0, and thus χ̇ = γ̇′ sin2 φ. The exact
solution of the spatial differential equation (4.1) for γ̇′ > 0 with the boundary
condition γ̇(0) = 0 is immediate,

(4.2) γ̇ = Aℓy(1 − e−y/ℓy)σ̇xy.

The effective slip rate γ̇ is thus found as an exponential function of the distance
from the interface with parameters ℓy and A specifying a conventional thickness
of the (instantaneous) boundary layer and the asymptotic value far from the
interface, respectively. It is worth emphasizing that it is the internal length-scale
ℓ that plays (through ℓy) the crucial role in defining the slip-rate profile, as it
specifies the boundary layer thickness. The accumulated slip γ is obtained by
time integration of the rate γ̇ given by Eq. (4.2) with time dependent parameters
ℓy and A. The time integration is performed numerically.

The results are presented in Fig. 1b,c where they are compared with the
FE results obtained for the finite-strain model without and with anisotropic
hardening, for q = 1 and q = 1.4, respectively. As the model is rate-independent,
the monotonically increasing stress σxy is adopted as a time-like parameter, and
the solution is parameterized by the normalized stress σxy = σxy/σxy,0.

The small-strain model (solid lines) and the geometrically-exact finite-strain
model without anisotropic hardening (dashed lines) agree perfectly when the
strains are relatively small, Fig. 1b. At larger strains, the corresponding results
differ visibly, Fig. 1c, due to the finite-deformation effects, notably due to lattice
rotation.

The effect of anisotropic hardening (dotted lines) is substantial regardless of
the strain level. This is expected because, in the case of anisotropic hardening,
the additional latent hardening increases the effective hardening modulus so that
the accumulated slip γ at a fixed stress is reduced.

It is, however, interesting to note that the gradient of γ at y = 0 is identical
in the three cases. This is because the plastic slip is constrained at y = 0 so that
hardening is solely due to slip (rate) gradients, and additional latent hardening
does not intervene. This also implies that there is no lattice rotation at y = 0,
and thus finite deformations do not influence the solution at y = 0.

The derivative γ′ = dγ/dy at y = 0 can be determined analytically in closed
form. From Eqs. (4.1) and (2.10) we have

(4.3) γ̇′(0) = Aσ̇xy =
2 cos2 2φ

sin2 φ

1

a2µ2b
σxyσ̇xy,

and time integration yields the following compact formula

(4.4) γ′(0) = c (σ2
xy − 1), c =

τ2
0

a2µ2b sin2 φ
=

bρ0

sin2 φ
,
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where σxy = σxy/σxy,0 , σxy,0 = | cos 2φ|τ0, and ρ0 is the initial dislocation
density corresponding to the initial value τ0 of the flow stress. Note that the
above formula (4.4) does not depend on the specific form of the hardening law
θ = θτ (τ).

A still more general formula for the slope γ′(0) of the profiles of γ at the
boundary is obtained by time integration of the equation τ̇ c

α = τ̇ ≡ (dτρ/dρ)ρ̇ =
(dτρ/dρ)(χ̇/b) obtained from Eqs. (2.7) and (2.10)1 in the special case when
γ̇α ≡ 0. In this way, at y = 0 we obtain the expression

(4.5) γ′(0) = c

(
ρ(0)

ρ0
− 1

)

which holds for arbitrary functions τρ and θτ . If the Taylor formula (2.9)2 is
used for defining τρ as in the preceding results then the fraction ρ(0)/ρ0 can be
replaced with σ2

xy , and formula (4.4) is recovered.
Finally, we point out that a general solution to Eq. (4.1) need not be smooth

as above, but can also be composed of smooth segments that satisfy

(4.6)
either γ̇′ = c1 e−y/ℓy for γ̇′ > 0

or γ̇′ = −c2 ey/ℓy for γ̇′ < 0,

where c1 ≥ 0 and c2 ≥ 0 are integration constants. It can easily be checked that
a solution to Eq. (4.1) can be constructed in that way such that γ̇(y) is a contin-
uous function, implying continuity of |γ̇′|(y), but with abrupt changes of the sign
of γ̇′(y) at the connection points. A particular case of such irregular solutions
is considered in Subsection 4.3. The regularization method based on Eq. (3.1)
helps in obtaining smooth solutions convergent to the analytical solution (4.2),
see the discussion presented in the next subsection.

4.2. Boundary layer: convergence of the FE-based computational scheme

In this subsection, we illustrate the convergence of the proposed computa-
tional scheme based on the non-local slip rates, as introduced by Eq. (3.1).
For that purpose, the smooth analytical solution derived in Section 4.1 for the
boundary layer formed in a constrained half-space is used as a reference. Conver-
gence is here studied in terms of the accumulated slip γ. In the FE model, γ is
obtained by summing the non-local slip increments, ∆γ =

∑
α |∆γ̄α|, and is lin-

early interpolated between the nodes. Recall that the analytical solution employs
the small-strain model, while the FE solution is based on the finite-deformation
model.

In order to reduce the effect of finite deformations, convergence has been
studied for the shear strain γxy below 0.0025 and accumulated slip γ below
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0.005, attained at the normalized shear stress σxy = 1.2. In all cases, time
integration has been performed with a shear stress increment of ∆σxy = 0.1 used
in Section 4.1. The one-dimensional FE computations have been carried out in
the domain of the height of 100 µm which is sufficient to accurately resolve the
boundary layer of a smooth profile dependent on the current value of ℓ in the
investigated range and formed in the vicinity of the constrained boundary at
y = 0. As in the 3D model of spherical indentation, Section 4.4, piecewise-linear
interpolation of the displacements and non-local slip increments has been used.

Figure 2a shows the profiles of the accumulated slip γ at σxy = 1.2 obtained
for the numerical parameter lh equal to the element size h for varying h. It can
be seen that the FE solution converges to the analytical one as the element size
decreases. Actually, the analytical solution and the solutions corresponding to h
equal to 2 µm and 1 µm can hardly be distinguished on the diagram.
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Fig. 2. Shearing of a constrained half-space: (a) profiles of accumulated slip γ for lh = h and
for varying element size h; (b) profiles of accumulated slip γ for h = 2 µm and for varying lh.

Results corresponding to a fixed element size h = 2µm and lh varying be-
tween lh = 4h and 0.5h are shown in Fig. 2b. It is apparent that with decreasing
lh the solution converges to the analytical one. A quantitative evaluation of the
solution error is presented in Fig. 3 which shows the relative error in γ as a
function of lh in log-log scale. The relative error is defined here as the L2 norm
of the error in γ on the interval 0 ≤ y ≤ 100µm normalized by the L2 norm of
γ. Four mesh densities are included in the figure, and lh is in each case varied
between lh = 0.5h and lh = 16µm. The results indicate that the error is mainly
governed by lh, and the rate of convergence is close to 2. It has been checked that
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Fig. 3. Shearing of a constrained half-space: relative error in γ (L2 norm) as a function of lh
and h.

the decrease in the convergence rate observed for h = 0.5µm and lh = 0.25µm
(the leftmost point in Fig. 3) results from the finite-deformation effects that are
not included in the analytical solution.

4.3. Shearing of a constrained strip

In order to further illustrate the size effects predicted by the present model
and the performance of the computational treatment based on Eq. (3.1), selected
results are provided below for the problem of a constrained strip of thickness H ,
see Fig. 4a. As in the preceding subsections, the double-slip crystal-plasticity
model is considered, but the constraint γ̇α = 0 is now imposed on plastic slip
both at y = 0 and at y = H . An analytical solution is constructed which is
assumed to consist of two smooth segments corresponding to γ̇′ > 0 and γ̇′ < 0,
see Eq. (4.6) and the related discussion in Section 4.1, with a jump in γ̇′ at
y = H/2.

The analytical solution is illustrated in Fig. 4b,c. Figure 4b shows the profiles
of shear strain γxy corresponding to a fixed overall shear strain 〈γxy〉 = 0.05 and
for strip thickness H varying between 20 and 320 µm. The kink in the profile of
γxy, which results from the jump in γ̇′ at y = H/2, is clearly visible for small
strip thickness H . As illustrated in Fig. 4c, the overall stress–strain response is
size dependent due to the GND hardening effect that is more pronounced for
small strip thickness H .

Convergence of the FE solution with decreasing characteristic length lh is
illustrated in Fig. 5a. The dashed line indicates the previous analytical solution
in the constrained half-space. It is actually identical to a smooth solution for
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Fig. 4. Shearing of a constrained strip of thickness H: (a) schematic of the problem; (b)
size-dependent profiles of shear strain γxy at fixed overall shear strain 〈γxy〉 = 0.05; (c)
normalized shear stress σ2

xy as a function of overall shear strain 〈γxy〉 for varying H.

the strip with a constrained interface at y = 0 only and a fully unconstrained
interface at y = H ; alternative non-smooth solutions are not discussed here. In
the FE solution, the kink in the profile of γ at y = H/2 is smoothed, however,
with decreasing lh the solution converges to the analytical one.

As both the analytical solution and the numerical one exhibit a kink in the
profile of γ, the latter being smoothed at the element scale by Eq. (3.1), it is in-
teresting to examine how the kink evolves with increasing shear stress and strain,
and how the evolving kink is represented in the FE solution. This is illustrated in
Fig. 5b which shows the profiles of the accumulated slip γ normalized by 〈γ〉, the
average accumulated slip in the layer. It is apparent that the kink becomes less
pronounced for increasing stress σxy. This is because the internal length scale
ℓ decreases with increasing stress within the examined range, and so does the
apparent thickness of the instantaneous boundary layer, cf. Eqs. (4.2) and (4.1)2.
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Fig. 5. Finite-element simulations of shearing of a constrained strip of thickness H = 50 µm:

(a) profiles of accumulated slip γ for σxy = 1.2 and for varying lh at fixed h = 1 µm;
(b) evolution of normalized accumulated slip γ/〈γ〉 with increasing stress σxy and average

accumulated slip 〈γ〉 (here h = lh = 1 µm).

4.4. Finite element simulation of spherical indentation

As the major example, FE simulations of spherical indentation in a (001)-
oriented single crystal of copper have been carried out, and the results are re-
ported in this section. The indenter radius R has been varied between 2µm and
500µm. The ratio of the maximum penetration depth hmax to the indenter radius
has been kept constant, hmax/R = 0.11, hence the deviations of the solutions
from self-similarity are solely due to size effects introduced by the gradient-
enhanced model proposed in this work. The adopted ratio of hmax/R = 0.11
allows comparison to experimental results reported by Kucharski et al. [23]
for two indenter radii of 5µm (maximum load of 10 mN) and 190µm (nominal
radius 200µm, maximum load of 8 N), as presented below.

Material parameters used in the simulations are provided in Table 1. The
parameters can be divided into three groups. Standard elastic constants (c11,
c12, c44) of a copper single crystal of cubic symmetry have been adopted from
the literature.

Table 1. Material parameters used for high-purity copper single crystal.

c11 c12 c44 τ0 τmax θ0 q m a µ b

170 GPa 124 GPa 75 GPa 5 MPa 240 MPa 240 MPa 1.4 20 0.33 40.3 GPa 0.256 nm

Hardening parameters (τ0, τmax, θ0) have been calibrated using the results
of spherical indentation reported in [23]. Specifically, the load–penetration P–h
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curve corresponding to R = 190µm and to crystal orientation C1, which is
close to (001), see [23], has been used for that purpose. The crystal plasticity
model with the gradient effect neglected has been used in the simple calibra-
tion procedure of the model for R = 190µm as outlined below. First, consid-
ering that the copper single crystal is of high purity, a low value of the initial
critical resolved shear stress, τ0 = 5MPa, has been assumed. Next, parame-
ters τmax = θ0 = 240MPa have been found such that the predicted P–h curve
fits the experimental one, and a very good agreement has been achieved (note,
however, that the hardening parameters cannot be determined uniquely using
the P–h curve alone). The comparison in Fig. 9b made later for the gradient-
enhanced model has shown that the agreement for R = 190µm is still very good.
Anisotropic hardening parameters have been adopted as qαβ = 1 for coplanar
systems and qαβ = q = 1.4 for non-coplanar systems, which are typical values
used for fcc metals. Parameter m in the regularized yield function (3.4) has been
set equal to m = 20.

Parameters a, µ and b in the Taylor formula (2.9), which appear in the
gradient-related part of the present model, constitute the last group of material
parameters. From the materials science literature, the strengthening coefficient
a for fcc crystals in monotonic deformation can be estimated as a ≈ 0.30−0.36,
see Sauzay and Kubin [24, page 748], and an intermediate value of a = 0.33 has
been adopted in this work. Further, following Sauzay and Kubin [24, p. 753],
the shear modulus µ is assumed as the one for 〈110〉{111} slip systems, thus
µ = (c11 − c12 + c44)/3 = 40.3GPa here. Finally, the Burgers vector modulus in
copper is b = 0.256nm.

It is emphasized that Table 1 provides the complete set of parameters that
define a typical model of crystal plasticity without any slip-gradient effect. Pre-
cisely the same set of parameters defines the gradient-enhanced computational
model used here, so that no extra length-scale parameter is introduced. It is re-
called that the internal length scale ℓ is fully expressed by standard parameters
of the non-gradient hardening law, cf. formula (2.10).

The FE mesh used in the computations is shown in Fig. 6. The size of the
FE model is reduced by exploiting the symmetry of the (001)-oriented crystal.
In addition to the usual constraints imposed on the displacement components
normal to the two symmetry planes, adequate symmetry conditions are enforced
on the nonlocal slip increments ∆γ̄α which constitute global unknowns in the
present formulation. Equality of the linked unknowns on the symmetry planes
is enforced using the Lagrange multiplier technique. Micro-free boundary condi-
tions (3.2)2 are prescribed on the free surface, including beneath the indenter.
The numerical parameter lh in the PDE governing the non-local slip rates, cf.
Eq. (3.1), is set equal to the local element size h, thus lh = h, as motivated by
the results shown in Figs. 2, 3 and 5a.
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The computational domain is a cube of the edge size of 18amax, where amax

is the nominal contact radius corresponding to the maximum penetration depth
hmax, amax =

√
hmax(2R − hmax), which is proportional to R for a fixed ratio of

hmax/R. The mesh is refined towards the indentation zone, and the finest mesh
occupies a cube of the edge size of 1.5amax, see Fig. 6. Hexahedral eight-node
F-bar elements are used [25], and a trilinear interpolation of nonlocal slip incre-
ments ∆γ̄α is employed. At each node there are thus 15 unknowns (3 displace-
ments and 12 nonlocal slip increments). Accordingly, even though the mesh is
relatively coarse, the total number of unknowns exceeds 270,000, and the problem
is computationally demanding. The direct linear solver (Intel MKL PARDISO)
uses over 20 GB of RAM, and one Newton iteration takes about 140 seconds on
a 24-core workstation. Further mesh refinement is thus not feasible within our
present computational environment. Therefore, we are unable at present to ver-
ify convergence of the results with mesh refinement and to estimate the accuracy
of the quantitative predictions given below.

The indenter is modelled as a rigid sphere, and frictionless contact is assumed
between the indenter and the crystal surface. The impenetrability condition is
enforced using the augmented Lagrangian technique [26, 27].

Figure 6 shows the deformed mesh in the vicinity of the indenter. The color
map indicates the accumulated slip γ for two selected indenter radii of 2 µm and
200 µm. It follows that the distribution of γ is in general only slightly influenced
by the variation of R by two orders of magnitude. However, the flow pattern is
size dependent which can be seen in Fig. 7 that shows the topography of the
residual imprints corresponding to R = 2 and 200 µm. Surface topography is
anisotropic with a characteristic pattern of pile-up and sink-in regions, showing
less piling-up and more sinking-in with decreasing indenter radius.

The values of the norm ‖G‖ of the dislocation density tensor G are, of course,
strongly size-dependent, see Fig. 8. The values are approximately inversely pro-
portional to the indenter radius R. For instance, the maximum values are of
the order of 0.008, 0.08 and 0.8 µm−1 for the radius R equal to 200, 20 and
2 µm, respectively (results for the intermediate radius of 20 µm are not included
in Fig. 8). However, there is also a qualitative difference in the pattern of the
distribution of ‖G‖, which is clearly visible in Fig. 8.

The dependence of hardness on the maximum penetration depth hmax is
strongly size dependent, as shown in Fig. 9a. The upper curve in Fig. 9a cor-
responds to the actual hardness H = Pmax/A determined as the ratio of the
maximum load Pmax to the corresponding (projected) contact area A. The lower
curve corresponds to the nominal hardness Hnom = Pmax/Anom in which the load
is related to the nominal area Anom = πa2

nom, where anom =
√

hres(2R − hres)
is the nominal contact radius determined in terms of the residual indentation
depth hres.
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R = 2 µm R = 200 µm

Fig. 6. Spherical indentation of (001)-oriented Cu single crystal: finite element mesh (top);
distribution of accumulated slip γ shown in the deformed configuration in the vicinity of the

imprint for R = 2 µm (bottom-left) and R = 200 µm (bottom-right). Spherical indenter is
indicated by a semi-transparent surface.
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Fig. 7. Spherical indentation of (001)-oriented Cu single crystal: size-dependent normalized
residual impressions. Height is normalized by the residual depth hres, in-plane position is

normalized by the nominal residual radius anom =
p

hres(2R − hres).
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R = 2 µm R = 200 µm

Fig. 8. Spherical indentation of (001)-oriented Cu single crystal: distribution of the norm
‖G‖ of the dislocation density tensor G shown in the deformed configuration. Spherical

indenter is indicated by a semi-transparent surface.
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Fig. 9. Spherical indentation of (001)-oriented Cu single crystal: (a) dependence of hardness
on the maximum penetration depth at fixed ratio hmax/R = 0.11; (b) normalized

size-dependent load–penetration curves. Experimental results taken from
Kucharski et al. [23].

Two experimental points [23] corresponding to R = 5 and 190 µm are also
included in Fig. 9a. The contact area was not measured in the experiment, hence
the nominal hardness Hnom is only reported. Figure 9b shows the comparison of
the respective normalized P–h curves. It is recalled that the experimental P–h
curve for R = 190µm has been used to calibrate the hardening parameters in the
crystal plasticity model (although without gradient enhancement). At the same
time, the P–h curve for R = 5µm and the corresponding hardness are predicted
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using the same set of material parameters. The agreement with experiment can
be regarded as surprisingly good in view of no freedom to adjust the size effect
in the present model.

It is stressed here that the results of spherical indentation reported by
Kucharski et al. [23] are characterized by high repeatability both for R = 5µm
and for R = 190µm, and also for different maximum indentation depths, see
Figs. 2 and 3 in [23]. Accordingly, the two experimental P–h curves used in the
present work are representative of the indentation behaviour of the high-purity
copper crystal tested by Kucharski et al. [23].

It is worth noting that, in the experimental P–h curves measured for R =
5µm, the well-known pop-in effect has been observed at the low load of 1–2
mN [23]. This effect is also visible in the experimental curve included in Fig. 9b.
It is related to discrete events accompanying the plastic flow at low scales, and
is not described by the present continuum model.
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A: FE results for spherical indentation of (001)-oriented single

crystal copper are compared to experimental results of Berkovich-tip indentation of
(111)-oriented single crystal copper (after Nix and Gao [2]) and of polycrystalline OFC

copper (after Lim and Chaudhri [29]).

Two experimental points as in Fig. 9a (one of them used for calibrating the
model) might be treated as insufficient for a convincing verification of the pre-
dicted size effect. Therefore, an independent comparison with other experimental
indentation data for copper is also provided. Figure 10 shows a comparison to
the experimental results reported by Nix and Gao [2], see also McElhaney
et al. [28], for Berkovich-tip nano-indentation of a (111)-oriented single crystal
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of annealed copper. Nix and Gao [2] have developed a model which predicts
that the squared hardness is a linear function of the inverse of indentation depth
and showed that experimental points indeed follow this trend. In order to enable
comparison of the results corresponding to different tip geometries, the square
root of the contact area is used here as a parameter characterizing the pertinent
length scale. In case of a perfect Berkovich indenter, the nominal contact area A is
related to the contact depth h by A = 24.5h2, and this formula has been applied
to transform the experimental results reported in [2]. The dashed line in Fig. 10
indicates the linear fit of those results, as also reported by Nix and Gao [2],
with the hardness H normalized by H0, the hardness in the size-independent
limit of large indentation depths. Additionally, experimental results of Lim and
Chaudhri [29] obtained for annealed polycrystalline oxygen-free copper (OFC)
using Berkovich-tip nano-indentation are also included in Fig. 10.

In the case of the present results, the contact area A is taken directly from
the FE simulations, and the hardness corresponding to R = 500µm is adopted
as the reference hardness H0. It can be seen in Fig. 10 that the dependence of
(H/H0)

2 on 1/
√

A predicted by the present model is not exactly linear, which
is, however, in qualitative accord with some other experimental data, cf. Lim
and Chaudhri [29], Pharr et al. [30]. At the same time, in quantitative terms,
the agreement visible in Fig. 10 is quite satisfactory in view of the essential
differences between the Berkovich-tip and spherical indentation processes. The
main conclusion drawn from the above comparison is that the present computa-
tional model formulated in the minimal gradient-enhanced framework of crystal
plasticity correctly captures the observed size effect in indentation of Cu single
crystals, is spite of the absence of any adjustable length-scale parameter.

5. Conclusion

The model of gradient-enhanced crystal plasticity proposed in Part I [1] has
been implemented in a finite element code and applied to three-dimensional sim-
ulations of fcc single crystals. The major aim of the simulations has been to verify
whether the model correctly captures the experimentally observed indentation
size effect. The comparison has been performed for a Cu single crystal, and the
agreement has been found satisfactory. This can be interpreted as a verification
that the internal length scale (2.10) in combination with the effective slip-rate
gradient (2.12) in the incremental hardening law (2.6) lead to predictions of size
effects that are in accord with experiment. Of course, further work is needed to
confirm validity of that conclusion by other examples.

The model has been incorporated into the framework of classical continua,
and the gradients of slip rates enter the formulation only through the enhanced
hardening law. It was thus not immediate how to compute, in the finite-element
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framework, the slip-rate gradients and also how to impose the boundary con-
straints on slip-rates. To address these issues, a finite-element treatment has
been developed in which non-local slip-rates are introduced that provide a global
continuous approximation of the respective local Gauss-point quantities. The
gradients of those non-local slip-rates are then used in the enhanced hardening
law.

As another verification of the proposed approach, a one-dimensional problem
of shearing of a constrained half-space has been studied. It has been shown
that the finite-element solution converges to the analytical one as the mesh size
decreases. The regularizing effect achieved by introducing the non-local slip-rates
has also been demonstrated in the case of shearing of a constrained strip. The
corresponding non-regularized analytic solution exhibits a kink in the profile of
the accumulated slip. It has been shown that, in the finite-element solution, the
profile of the accumulated non-local slip is smooth, but, at the same time, it
provides a consistent approximation of the non-smooth analytic solution.
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