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The present paper is concerned with the modelling of fatigue crack ini-
tiation and propagation by applying the non-local critical plane model,
proposed by Seweryn and Mróz (1996, 1998). Using the linear elastic
stress field at the front of a crack or sharp notch, the damage growth
on a physical plane is specified in terms of mean values of the stress
and strength function. The model is applied to study crack propagation
under cyclically varying tension-compression conditions. The predictions
are compared with experimental data.
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1. Introduction

Most engineering elements subjected to variable loads experience multia-
xial stress and strain states for which the principal stress vary in time. Usually,
the elements contain stress concentrators (notches, holes, joints), which am-
plify nominal stresses and generate fatigue cracks. In most cases of combined
loads the notch tip stress and strain fields do not vary proportionally, and
multiaxial fatigue parameters should be introduced to provide crack initiation
and propagation conditions. Most fatigue data in the form of S-N curves have

1This paper was presented on Symposium Damage Mechanics of Materials and Structures,

June 2003, Augustów, Poland, 2003
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been generated for uniform specimens under uniaxial loading and next used
to predict the fatigue life for notched specimens in terms of the local stress
and strain amplitudes.
The critical plane approaches have been widely used in correlating fatigue

data and in formulating fatigue conditions. This approach is natural since
the plane crack initiation and growth is dependent on the surface traction
components, and the resulting crack opening and shear provide damage strains
associated with the crack surface.
Consider a physical plane in a material element specified by the unit normal

vector n. The plane traction vector and its components are

T = σn σn = (n · σn)n τn = (I−n⊗ n)σn (1.1)

Similarly, the surface strain components are

Γ = εn εn = (n · εn)n γn = (I− n⊗ n)εn (1.2)

where I is the identity tensor. The critical plane can be assumed in advance as
a representative plane on which the critical condition is satisfied. It was first
Findley et al. (1956) was the first to postulate that the representative plane is
the maximum shear plane with both shear and normal strain amplitudes spe-
cifying the damage parameter. A particular form of the mentioned condition
was proposed by Brown and Miller (1973). McDiarmid (1991) provided an
alternative stress condition expressing the fatigue parameter in terms of shear
and normal stress amplitudes on the maximal shear planes. Other criteria of
this type combine the shear strain amplitude and the maximal normal stress
acting on the maximal shear plane, cf. Socie (1993).
These conditions can be easily applied to the case of proportional loading.

However, for non-proportional loading, the proper definition of stress and stra-
in amplitudes should be generated. Furthermore, experimental observations
indicate that cracks do not develop on the maximum shear planes for all me-
tals.
A more consistent approach is not obtained by specifying the critical plane

approach in advance but requiring the maximum of the failure condition to be
reached with respect to all orientations, thus

max
n
F (σn, τn, εn, γn) = Fc (1.3)

where Fc represents the critical value reached by the failure condition. The
present definition provides the critical plane which is also the extremal plane,
so that the critical condition is not violated on other potential failure planes.
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A particular form of Eq. (1.3) is obtained by applying the strain energy
density associated with the amplitudes of stress and strain components acting
on the critical plane, cf. Glinka et al. (1995). This parameter represents only
a fraction of the strain energy. However, it does not account for the effect
of the mean stress. An alternative energy condition was proposed by Chu
(1995) by combining the maximum normal and shear stresses with the strain
amplitudes. The formulation of Seweryn and Mróz (1996, 1998) followed the
idea of the non-local stress or strain measures on the critical plane area of size
d0 × d0. In the present paper, we shall develop this critical plane model for
the prediction of fatigue crack propagation under uniaxial loading conditions.
The predictions are compared with experimental data.

2. Basic assumptions

To illustrate applicability of the model, consider a plate of uniform thick-
ness (Fig. 1a) with an edge crack of the length l, loaded by a cyclically varying
stress σ of the amplitude ∆σ and mean value σm = ∆σ/2 (Mróz et al., 2000).
The material is assumed to be linear elastic but exhibiting a process or damage
zone Ω of the length d0 at the crack tip (Fig. 1b).

Fig. 1. (a) Polar coordinate system connected with the tip of the edge crack,
(b) scheme of the damage zone propagation

The existence of the localized damage zone is usually assumed for the
cohesive crack model with an additional rule relating the stress to displacement
discontinuity. Here, however, the stress distribution will be treated within the
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linear elasticity but the existence of the process zone will be accounted for
using the non-local damage rule discussed in the previous section.
It is assumed that damage growth occurs only in the damage zone and is

specified by the mean value ωn affecting the critical stress σc. The mean value
of the normal stress in the zone Ω equals

σn =
1

d0

d0
∫

0

σn dr =
2KI√
2πd0

(2.1)

where KI is the stress intensity factor for mode I. Let us note that σn is twice
as large as the stress value at the end of the damage zone.

3. Damage accumulation and crack growth in one cycle of loading

We divide the cycle of fatigue loading into four stages (Fig. 2).

Fig. 2. Consecutive stages in one loading cycle

When the stress in a cycle increases from zero, then in stage I there is
no damage growth as σn < σ0 and KI < KIth where σ0, and KIth are the
damage initiation threshold values. Let us note that both σ0 and KIth depend
on the damage state, thus

σ0 = σ
∗
0(1− ωn)

p KIth = K
∗
Ith(1− ωn)

p (3.1)

where σ∗0 and K
∗
Ith are the respective values for the undamaged material.
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In the second stage σ0 < σn < σc, the damage growth occurs in the
zone Ω, according to the following rule

dωn = A
(σn − σ0
σc − σ0

)n dσn
σ∗c − σ∗0

dσn > 0 σn > σ0 (3.2)

and we have

σc = σ
∗
c (1− ωn)

p KIc = K
∗
Ic(1− ωn)

p (3.3)

where σ∗c and K
∗
Ic are the critical values for the undamaged material.

Let us note that in Eq. (3.2) the stress difference (σ∗c −σ∗0) in the denomi-
nator occurs. This differs from the original formulation of Seweryn and Mróz
(1996) where the form (σc−σ0) was used. Introduce the ratio σ∗0/σ∗c = η and
assume that

η =
σ∗0
σ∗c
=
σ0
σc
=
KIth
KIc
=
K∗Ith
K∗Ic

(3.4)

In view of Eqs (3.1), (3.3) and (3.4), the damage evolution rule takes the form

dωn =
A

(1− η)n+1
( KI
K∗Ic(1− ωn)p

− η
)ndKI
K∗Ic

(3.5)

A this stage, the stress value σn increases but the values of σ0 and σc decrease,
according to Eqs (3.1) and (3.3). When σn reaches the critical value σn = σc
and KI = KIc, the crack growth process occurs, so that the condition

Fc = σn − σc = σn − σ∗c (1− ωn)
p = 0 or

(3.6)

F c = KI −KIc = KI −K∗Ic(1− ωn)
p = 0 and dl > 0

is satisfied.
The consistency condition for the growth crack is

dFc = dσn − dσc = 0 dF c = dKI − dKIc(ωn) = 0 (3.7)

Let us note that KI = KI(σ, l), so we have

dKI =
∂KI
∂σ
dσ +

∂KI
∂l
dl (3.8)

In most cases, the first term dominates as the crack growth value dl/dN is
small. Then

dKI ∼=Mk
√
πl dσ (3.9)

where Mk depends on the geometry of the plate.
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The damage growth during the propagation stage is decomposed into two
terms

dωn = dωn1 + dωn2 dωn1 > 0 dωn2 < 0 (3.10)

where the first term is associated with the loading increment and the second
is associated with the damage zone propagation, so

dωn =
2AdKI√

2πd0(σ∗c − σ∗0)
− ωn

dl

d0
or

(3.11)

dl

d0
= −
[

1 +
pA

(1− η)
(1− ωn)p−1

]dωn
ωn

Integrating Eq. (3.11), we obtain

∆l

d0
= −

ωnp
∫

ωnk

[

1 +
pA

(1− η)
(1− ωn)p−1

]dωn
ωn

(3.12)

where ωnk and ωnp denote the damage values at the beginning and the end
of propagation stage III. Noting that

K∗I = K
∗
Ic(1− ωnk)

p KImax = K
∗
Ic(1− ωnp)

p (3.13)

where K∗I denotes the stress intensity factor at the beginning of the propaga-
tion stage, relation (3.12) can be rewritten in the form

∆l

d0
=
1

p

KImax
∫

K∗
I

[C(KI)

(

1

p
−1

)

+BCp

1− C(KI)
1

p

]

dKI (3.14)

where

C =
( 2

σ∗c
√
2πd0

)

1

p
B =

pA

1− η

Relations (3.12) and (3.14) specify the crack growth during one cycle, so
that ∆l = dl/dN . Consecutive stage IV corresponds to elastic unloading, so
that

dσn < 0 dKI < 0 dωn = 0 dl = 0 (3.15)

Using the double logarithmic scale, the crack propagation curves are shown
in Fig. 3, for varying exponents n and for varying values of the damage
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Fig. 3. Crack propagation curves log(∆l/d0) versus log(KImax/K
∗

Ic
):

(a) dependence on the exponent n, (b) dependence on the parameter A

Fig. 4. The effect of a single overloading cycle on crack propagation rates: (a) single
overloading cycle KImax/K

∗

Ic
= 0.9 and subsequent cycles KImax/K

∗

Ic
= 0.5;

(b) single overloading cycle KImax/K
∗

Ic
= 0.42, 0.6, 0.8, 0.9 with subsequent cycles

KImax/K
∗

Ic
= 0.4
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growth parameter A. The curves can be compared with the usual diagrams
dl/dN = f(∆KI) available in literature. It is seen that the crack propagation
curves correspond qualitatively well to experimental curves. When KI tends to
K∗Ic, the crack propagation rate tends to infinity, when KI tends to KIth, the
propagation rate tends to zero (or the logarithmic measure to minus infinity).

Figure 4 illustrate the effect of overloading on the subsequent crack pro-
pagation rate for a single overloading cycle and different values of A and
overloading amplitude.

The model presented in this section considers the translation of the damage
zone at the propagating crack tip. It is possible to propose an alternative
approach considering both: motion of the damage zone and growth of this
zone.

4. Unstable crack growth condition

Let us note that when KI tends to K
∗
Ic (or σn tends to σ

∗
c ), then the

case of brittle fracture occurs. Let us remind that the first term of Eq. (3.8)
dominates for the stable crack growth, and the second term is greater for the
unstable growth. To formulate the brittle fracture condition, we can disregard
the first term of Eq. (3.8) because

∂KI
∂σ
dσ ≪

∂KI
∂l
dl so dKI ≈

∂KI
∂l
dl (4.1)

which is justified in the case of the load control (then dσ/dl  0). When a
kinematic control occurs, we have dσ/dl < 0 and it is necessary to consider
the complete form of (3.8).

Rearranging Eq. (3.7), we can formulate the brittle fracture criterion in
the following form:

— crack propagation condition

KI = K
∗
Ic(1− ωn)

p (4.2)

— unstable crack growth condition

∂KI
∂l


pK∗Ic(1− ωn)
pωn

d0
[

1− ωn + pA
1−η
(1− ωn)p

] (4.3)
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An alternative form of (4.3) is

∂KI
∂l

KI
d0

p
[

1−
(

KI
K∗
Ic

)

1

p
]

(

KI
K∗
Ic

)

1

p
+ pA
1−η

KI
K∗
Ic

(4.4)

Figure 5 shows a graphic illustration of these equations.

Fig. 5. Dependence of the critical crack length on KI for the unstable crack growth
(a) p = 1, η = 0.1, (b) A = 50, η = 0.1

5. Experimental verification

An experimental program was executed by plane testing specimens of
PMMA with edge notches. The selection of the material was motivated by
its linear elastic response and the possibility of visual observation of the crack
tip. The tests were carried out using the MTS tensile machine, and the crack
growth measurement was realised by means of a spiral microscope (VEB Carl
Zeiss Jena) with accuracy of the order of 0.001mm. Fig. 6 and Fig. 7 present
the experimental data of the crack growth measurement and the predicted
values pertaining to the present model. The comparison with the prediction
resulting from Paris (1963) equation

dl

dN
= C(∆K)m (5.1)

was also presented.
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Fig. 6. Diagrams of fatigue crack growth: comparison of experimental data with
model prediction: (a) specimen 14A, (b) specimen 14B

Five types of specimens were used (12A, 12B, 12C, 14A, 14B) in the tests.
The parameter specification for the Paris model is presented in Table 1, and
of the present model in Table 2.

It is seen that the parameter values are scattered, which typical for fatigue
tests for PMMA. The present model predicts much better fatigue crack growth,
especially for high values of KImax close to K

∗
Ic. We note that the value of

the parameter p equals one, and then the specification of damage zone growth
is essentially simplified. It is also interesting to note that the maximum size
of the damage zone d0 = 0.16mm was confirmed from both static and cyclic
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Fig. 7. Diagrams of fatigue crack growth: comparison of experimental data with
model prediction: (a) specimen 12A, (b) specimen 12B, (c) specimen 12C
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loading tests, providing good correlation with the experimental data. Biaxial
stress programs are being currently tested, and the prediction of crack paths
will be compared with measurements.

Table 1. Parameter specification for Paris equation

Sample No. C m

12A 6.19 × 10−7 3.31
12B 7.09 × 10−7 3.55
12C 6.65 × 10−7 3.78
14A 1.52 × 10−6 5.21
14B 8.66 × 10−7 4.43

Table 2. Parameter specification for present model

Sample No. A n p
K∗Ith K∗Ic d0

[MPa
√
m] [MPa

√
m] [mm]

12A 0.009 9 0.5 1.2
12B 0.013 12.5 0.6 1.2
12C 0.007 7 1 0.55 1.2 0.16
14A 0.024 7 0.6 1.35
14B 0.017 8 0.6 1.35

Unstable crack growth condition (4.4) for loading mode I was also verified.
Let us remind that for each sample, the parameter p equals 0, so equation
(4.4) can be rewritten in the form

∂KI
∂l

KI
d0

1− KI
K∗
Ic

KI
K∗
Ic

(

1 + A
1−η

) (5.2)

To verify the unstable crack growth condition, the critical values lc were
calculated according to equation (5.2) and presented in Table 3. The valu-
es lc exp were measured after experimental tests from the surface of fatigue
fractures. It is possible that the values lc are a little underrated because it
was assumed that the decohesion process occurs when KI = KImax. In re-
ality, a crack could start propagate unstable in the last cycle of the loading
for KI < KImax – which corresponds with a greater value of the damage
measure ωn.
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Table 3. Critical values of the crack length and corresponding values
∂KI/∂l

Sample No.
∂KI
∂l

[

MPa√
m

]

lc exp [mm] lc [mm]

12A 51.949 12.63 14.588

12B 51.943 13.19 14.587

12C 51.948 13.33 14.589

14A 59.317 13.17 13.757

14B 59.320 13.22 13.754

6. Concluding remarks

The present paper provides a model for the analysis of crack initiation and
propagation for monotone and variable loadings. A damage zone of a constant
length is introduced with averaged measures of the stress and damage within
the zone. The zone is assumed to propagate with the crack tip when the critical
propagation condition is reached. Stable and unstable growth stages can be
treated.

The model proposed enables calculation of the crack growth in a linear
elastic material and analysis of the effect of overloads on the crack growth
rate. The analysis is confined to asymptotic stress fields near the crack tip.
However, it can be extended to more complex descriptions containing more
terms of asymptotic expansions or generated by approximate methods. The
analysis can also be extended to two dimensional stress states and the associa-
ted damage zones. Furthemore the damage initiation function and the stress
failure function can be then introduced to describe damage accumulation and
crack propagation processes in a cycle of the loading.
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Nieokalny model wzrostu szczeliny zmęczeniowej i jego doświadczalna

weryfikacja

Streszczenie

Praca dotyczy modelowania inicjacji i propagacji szczeliny zmęczeniowej przy
wykorzystaniu nielokalnego podejścia związanego z płaszczyzną krytyczną (Seweryn
i Mróz, 1996, 1998). Wykorzystując liniowo sprężyste pola naprężeń przed wierzchoł-
kiem szczeliny opisano kumulację uszkodzeń i wzrost szczeliny na płaszczyźnie fizycz-
nej. Do rozważań przyjęto uśrednioną w strefie kumulacji uszkodzeń miarę uszkodzeń
oraz uśrednione naprężenia. Wyniki obliczeń numerycznych porównano z wynikami
badań doświadczalnych.
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