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SUMMARY

In order to predict the critical number of cycles before rupture, the stress distribution
within the structure should be known under cyclic loading. Generally, a steady cyclic state
occurs before onset of failure. For moderate temperatures, the viscous effects can be neglected
and only instantaneous plastic deformations need to be considered.

To describe analytically a steady cyclic state for moderate temperatures, a simplified
approach has been used, It is assumed that the material possesses a discrete memory of past
loading history and only maximal values of stresses from the past affect the actual behaviour
which is piecewise analytical. Principal shear stress rate reversals define consecutive portions
of stress paths along which finite stress-strain relations are valid.

Particular constitutive relations are discussed which are based on the concept of field of
hardening moduli (see: Z. Mrdz, On the description of anisotropic workhardening, J. Mech.
Phys. Sol., vol. 15, 1967). Several boundary-value problems are treated for disks, tubes and
circular plates subjected to cyclic loading. For non-linear homogeneous stress-strain relations,
the dissipation per cycle can be simply calculated and stress distribution during proportional
cyclic loading can be obtained by proper scale mapping of the solution for monotonic loading.

For high temperatures, the viscous strain components should be accounted for. The
total strain is assumed to be composed of elastic, thermal, instantaneous plastic, and viscous
terms. The viscous strain rates are determined using acreep hardening law and accounting
for the anisotropy of viscous hardening.

The initial transient cyclic state is most difficult to analyse and rate constitutive relations
should be used with additional state variables defining the state of hardening. The cyclic
solution can be determined by step-by-step integration of constitutive rate equations.
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1, Intreduction

When a metal structure is subjected te cyclic loading, a steady state may set in after
an initially transitorY period. In some cases, the steady cycliec state correspends te pu-
rely elastic behavieur /elastic shake-dewn/, whereas for mere intensive loading, this
state correspends te an aldstic-plastic o,olo. For a large clase of wisceelastic materials
or plastic materials it can be proved that the steady plastic oyele is umiquely defined
by the loading conditiems and is independemt ef the prior deformation histery eor initial
state, Experimental obesrvatione cenfirm that this property ie typioal of many struotural
materiale,

The ateady avclie state is followed by the onset of failure and is most important in
understanding the cyclie behaviour of structures and formulating proper fatigue eriteria.
However, no general theory of steady plastie cycles is available so far, and the problem
of cyolie loading cannot be cast into a standart moutine of solutien of boundary-value
problems, The aim of this paper is to consider some fairly eimple materiml models that ocan
be used in treating boundary-value problems for steady cyclic behaviour, We shall introduce
the concept of material with discrete memory which is sensitive to stress rate reversals
and other details of the loading history except for the maximum stress and points of etress
rate reversals do not affect the actual behaviour. For surface structures, such hardening
rules oan be directly deseribed in terme of generalized stresses and straine and thus

applied in solving particular gtructural problems.

2, Stress-strain relations for cyclic loading

2.1, Uniaxial loading

Comprehensive review of plastic behaviour of metals under uniaxial loading /tension-compre-
ssion/ has recently been given by Burbach /1/. It has been demonstrated that under symmetrie
or almost aymmetric cyoclic loading, a elosed steady loop is obtained under transitery peried,
Fig. 1a. For asymmetrio loading, a progressive cycle is observed and plastic strain aceumu-
lation oceurs, Fig. 1be

Consider first the case of uniaxial loading for which the hardening curve is described by
the relation

$30.650; o=f(z) o e=dl). )

whereas the reverse loading curve form A is ven by
(‘<O/ G"'G;: ‘F:\ (éA 1 é‘iq) , g'fg :é({A IGI-Q/A>
/2/
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where KA and SA denote the values of stress and strain at the point A of stress rate
reversal, Fig, 1a, When upen reaching B, the stress rate & is reversed, the stress strain

curve BA is generally described by <
6L7O‘; Gz-d=¥2(£3’€'£'33 ' £- €B:¢2({B|€- B).
/3/
For further cyoling between A and B, the relations /2.2/ and /2,3/ are valid and steady

cyelic state ooours for which hysteresis loop is described by these relations. Thus, we
negleot the transitery period durimg which oycle stabilizes to its eteady shape,

It has been demonstrated that for numerous metals, a simple relationship oceurs betweem
monotonio bardeming ocurve or skelaton curve and hysteresis curves in the steady state. Aseu-
me first that the funotions -F,] and -?2 are identical and the hysterssis curve is derived
by preper scaling of variables occuring in the skeleton ourve. Then, inetead of /2/ and
/3/s we shall have

cor | TS ag(ea. S, SElsln, T

/4/

and

& Y0, _GJ?B - (%, S x ), a;.g" - ¢ (%, L’ﬁﬂ) /5/

where & ia a scaling facter. A particular form of /4/ is obtained when the values of
stress and strain for whioch revarsal of leading oceurs, do not affect the hysteresis
ourve, Then, clogsed loops are described and there im no progressive plastie deformation

during cyelie loading., Thus, wa have v
. -6, £-5n L& _ 4 (S-%a >
s<0, —gi =f (“—5 ) s ¢ ( g

/6/
and identical relationes for loading from B te A. When & =2, eq. /6/ correspond to Masing
relations which can be derived by considering an assemblage of elastio-plastic elements
with different yield points, cennacted in serias er in parallel. Relations /6/ have been
showm to provide fairly goed approximation to actual steady oyclic etates for symmetrie
or nearly symetrio loading, Let us exemplify our assumptione by assuming that the gkeleton

ourve is approximated as follows

G/ —()_-, n .
5“5‘*@35 0. /1/
and the cyclio curve is expreesed in the form
fop. . TR =<0 , G<5y
R~ E

s Y0 , & v9s /8/
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where E denotes the Young modulus, B is the material constant and 6/{ is either Gp
or S § 0 is an odd integer. When upon reaching &, stress further increases, the stress-
atrain curve follows eq. /7/.

Let ue note that in the uniaxial case, eqa. /1-8/ can be ragarded ae piecewise elastic
relations and the material after unloading possesses A memory ot the last reversal stress
and the maximum stress of the previous loading histery. In fact, if DJA ig the maximum
gtress, then any cyclic loading between <, and -G, is described by /6/, whereas for G YGj
or 6+ <(§A , the equation of the initial hardening curve /1/ applies.

Following this property, let us introduce the strain and stress potentials in the form

V(e €)= S:r@*ma)ds  W(ssk)= é:é‘ffﬂd“—

where 6',-{‘ € are the values of stress and strain corresponding to last reversal of the
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stress rate, For the eqs. /7/ and /8/, the straess potentirls are given by
N

W(s)= WiE0) = 355 « 2m on

W(s )= W (6-Sc)= é'f'”_g’{j_J‘- a4 <L‘GR> 1 710/

n+4 oot g"

The total strains are derived as follows
. } < S .
W O) 15)0/ S'sq= ’b\/\/( Pr) =<0

€= og o5 oy

and similar relations for further cycles batween < 4 And s 3 ¢ The work dissipated on
a stress oycle ABA im given by the expreasion

Wi= V(es—2a) - W(sh. Sa).

/ 12/

2.2 Yultiaxial stress state

We ehall generalize this simple model te multimxial stress state by assuming that the
material exhibits limited path dependence: it behaves as non-linenrly elastioc for some
portions of the strees path belonging to specified sub-domaine and etress-strain rela-
tions change when the path enters new sub-domain in the stress space. In this way, only
a discrete det of points of the loading history affects the astual behaviour,

Coneider a gtress trajectory OABCD with a set of discrete points A, B, C, D which are
used as switching points for different etress-strain relations. Similarly as in /9'/, defi-

ne the stress potentials W(QJA‘O), W@A.{n)as follows
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and the stress strain relations are £a
/DW(.(_{AIO) —-W G)B‘o)
£a= oA En-ga= (,;Q, o ) /14/

~G

and the diseipation feor any olosed stress cyecle with switohing points &, B, C is expre-

ased as follows

WA (20,6 ) = Ssde = W(sash ) +W (e d5)-V Ense) 115,

To determine the material bshaviour cempletely, we should specify the ewitching pointe
on the stress trajectery, To this end, let us divide the stress space inte several
subregions.For any given point on the stress trajectery, the subsequant behaviour
depends on the direection of stress increment sinse in each subregion differemt stress-
strain relations occur. To define these suregions, let us introduce a veoter functien
of stress , . =g. (6*’3')' ¢=4,23,. guch that stress potentials are expressed in
terms of cemponents of ;s W (K,cj) = W<9") » Let us define the correspor=

ding strain measures, such that
v (' ~W(94) o - W(g.

> =
1 g 092 3 D94

/16y

and
The relations /16/ oceur when 9. 3‘2 and 9, bhave some fixed signe, When the

sign of 9, chmges, the stress potential takes the form

W= \/\/(9‘2?2A ' 92'93> 11/

and the respeative streaa strain relations are ,
- ’DW —oW
L A VL

=N

’092 ' gk /18/

where n denotes the order of homogeneity of the stregs potentinl er its additive terms,
Lat ug exemplify these relations by assuming that £y By 33 ocoinecide with prineie

pal etresses defined as follows

Ta= %(dz‘é3> , &= L (636, > Ty= 2(ch-5% ).

/19/
and the corrssponding shear strains are .
- 2 = 3 £, —
1{:': %‘(52-53) . %-2,‘ 3(51‘{1) 1 gs 3( 1 533‘ /20/

For the power law, mssume that the initial loading ocorresponds to asome signs ef
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T B8AY 'I:1 0 {f—z Y0 T3<0 . The strese potential is sxpressed:in the form
/ R
n n4Aq n4q o~ nid
W = ,i_i [C"T/l +~ T, ~ C3 j ! /21/
and in view of/16f we have
e fa=27eT = 27c, 7"
}Q:QC,‘T/I ) 2= =2 &, 3 3 Lz 722/
agsume now that at A the rate of 'T:, changes its sigm, so that for subesequent stage we
have (t‘ <O , 't.z 7.0 q’LJ <O + Then
2n = ‘t n4q
= = —CaA ntq nad
W(E T w @)= 55 [ e ﬁ) e e gy
" n n - n n
By bop = 26 (T TR) . s 20w, =29,

Bquations/21=24/ crn eneily be generalized to any loading program. Stress-strain relations
are piecewige finite as for elmstic materials and change only when the rate of any of ma-
ximum ehear streeses changes its eign. Obviously, more complex hardening rules and non-statio-
nary hardening processes can be incorporated in this model by formulating proper stress-

gtrai relations between T and ¥ , i= 1, 2, 3.

3. Ixtremem principle and bounds on diseipation

Consider now the power hardening law defined by the astress potentirl /21/ and limit our
analyeis to the cage of proportionally varying load between to extreme valueg, In view

of homogeneity of stress potential, the radial stress path are induced at each point of
the body and ewitching points A and B correspond to pointe of load reversal on the stru-

cture boundary. For the steady cyclic state and Haaing hardening rule, we have

W(sa sa) =W (dr,8a ) = W (¢a-5a )
Visage)=Visn s0) = V(- 20, /25/

and the specific energy dissipation per cycle and unit volume is axpresged as follows

Wl = @&-TA) Cgr:wfp.) -2W CfAérs) = Gr-a )W (s'c-So )
W= 5= V(s-ga) /26/

The relations /26/ imply that bounds om WJ- cAn be derived ueing minimum principles of

the non-linear elasticity theory, In fact, we have

0 [ SV@;{: )a\v&ﬂ"aw‘dg]‘ §hln G W (sa-s7 ) v, /21/
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where Agg S&S-gns, 4§K" EBK' EAK ) 4,‘:"K= 9‘; -t ”K | 2T =Ta-Ta
denete gtatioally and kinematically admissible strese, strain and displacement amplitudes.
Thue solution for monotonic loading betweem extreme values of load implies the solution
for oyclic loading.
For more general case when loading is not propertional and more than two switching points
oceur on the londing path, the stationarity of more gemeral functional can be proved.
Using /13/ and /14/,1let us write the generalized complementary energzy functional
Me= §Wn0) «w (sa.ga) + Wis ) Jdv - STaal dsu
- ST (g —wi s~ § T (u2-ud )dSa Gd
whare g—: ,El_‘\))y: denote dieplacements preacribed on the portion of the boundary SM .
This functional not enlv depends on the value of stress at the end point of stress path

but also on values of stresses at switching points. The extremum of /28/ occurs provided

variation is perfermed with respeot to firet argument in each term, that is

SW(sa.6) = &HW(sagh) = 235

~
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