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Abstract The buckling and post-buckling behaviour of
prismatic aluminium columns from stocky to very slender
shapes is investigated. The unconventional, in terms of
buckling tests, displacement control of compressive load
and a series of loadings provided an enhanced insight into
the buckling process. A phenomenon of buckling load drop
has been detected in columns of intermediate slenderness,
reaching over 20% of the load early critical value. This
newly observed occurrence resembles finite disturbance
instability, which until recently was commonly believed to
only appear in cases of thin walled cylindrical shells, but
not columns. The observation is in contradiction to
predicted results from the elasto-plastic buckling models
of Engesser or Shanley, with constant or growing values of
load during the post-buckling process. Further tests on
columns of intermediate slenderness, with strain gauges
glued at node and anti-node locations of the buckled
profiles, revealed that even minute buckling results in fields
of highly non-symmetric residual microplastic strain. The
results of the present study indicate that running column
buckling tests under displacement control is worthy of
being adopted as common practice. The envelope of
column post-buckling states can be conveniently deter-
mined. This information will in turn allow for the quick and
reliable estimation of the safety of a column, which has
undergone accidental or deliberate damage in the form of
limited buckling when under operational load.

Keywords Aluminium column instability . Finite
disturbance buckling . Buckling load drop . Post-buckling .

Micro plastic strains . Non-symmetric residual stresses .

Column design criteria

Introduction

The failure of structural elements through buckling has
aroused, and still generates, vivid interest amongst researchers
and engineers. The study of the buckling behaviour of
prismatic columns is a convenient step towards understanding
and evaluating the reliability of more complex structures. It is
currently well known that the basic physical action causing
the underlying buckling of axially compressed columns is the
depletion of its lateral stiffness to a value of zero. A number of
intricacies exist, which complicate the prediction of buckling
loads in actual engineering situations. The Euler linear elastic
model of the prismatic, simply supported column still remains
the fundamental tool for investigations of buckling stability. It
predicts that the column will buckle at load PE (see e.g.
Simitses and Hodge [10]):

PE ¼ E A � p2=l2ef ; sE ¼ Ep2=l2ef ; lef ¼ Lef =r; Lef

¼ k � L; I ¼ A � r2; ð1Þ
where PE denotes the Euler buckling load, σE is the Euler
buckling stress, E is the Young’s modulus, A is the column
cross section area, λef is the column effective slenderness (in
the sequel subscript “ef” is skipped to simplify notation), L is
the column length, k is the index depending on column
support conditions—k=1 for pinned-pinned ended column,
k=1/2 for fixed-fixed ended column, I denotes the column
cross section moment of inertia, and r denotes the radius of
inertia.
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Systematic works, both theoretical and experimental, are
continuously undertaken, aimed at expanding the scope of
knowledge on the structural stability of columns to embrace
various types of nonlinearities. The problem of finding a
buckling column post-critical equilibrium shape when large
displacements are admissible, an Elastica problem, was
already solved by Lagrange in the nineteenth century in
terms of elliptic integrals . However, the stability of these
post-buckling configurations was only recently investigated
by Kuznetsov and Levyakov [7]. Garikipati et al. [4] extended
the formulation of classic elastic column stability problems to
include large strains in order to enable the study of soft
biological tissues. Domokos et al. [2] considered the buckling
of elastic columns with lateral defections constrained by rigid,
frictionless side-walls both theoretically and experimentally, i.
e. problems with nonlinearities arising due to contact with
boundary conditions. Magnusson et al. [8] abandoned the
commonly adopted assumption in the investigation of the
post-buckling behaviour of compressed columns, of constant
loading force in post-buckling equilibrium states, and
investigated instead the behaviour of “extensible” elastica.
Their study was further enhanced by the work of Mazzilli [9]
who analytically approached the problem of extensible
elastica by loading not only axial forces but also transverse
forces and bending moments at the column ends, and found
post-buckled configurations in a number of cases.

Structural design practice requires the incorporation of
other factors besides material and geometrical nonlinear-
ities, such as load-column system imperfections (e.g. initial
curvature, non-uniformity of cross-section, eccentricity of
load), heat affected zones, residual stresses or the inter-
actions of various modes of deformation. Barbero et al. [1]
experimentally studied the interaction of local (flange) and
global (Euler) buckling modes of a column, and revealed
that upon interaction of the mechanisms a tertiary combined
mode of buckling develops. They showed that the critical
load value of the combined mode is lower than that
predicted by the classic single mode Euler buckling model
and that it is highly sensitive to imperfections.

Nowadays in practice, the design of column-like
structural elements largely relies on two modelling “design
tools”. The approach recommended by the Aluminium
Association takes advantage of the less refined theory of the
Tetmayer-Jasinski failure criterion for axially compressed
columns, see Figure 5.16 in Kissel and Ferry [6]:

sTJ ðlÞ ¼
s0:2 0 � l � l1
sP þ ðs0:2�sPÞ

ðlP�l1Þ � ðlP � lÞ l1 � l � lP; lP ¼ p
ffiffiffiffiffiffiffiffiffiffiffi
E=sP

p
sEðlÞ ¼ p2E=l2 lP < l

8<
:

ð2Þ
where σTJ (λ) denotes the Tetmajer-Jasinski critical stress,
σ0.2 is the conventional plastic yield stress and σP is the
proportionality limit stress. The three regimes of com-

pressed member failure are distinguished depending on its
slenderness, in the range 0 � l � l1, where the primary
failure mechanism is due to bulk plastic flow with the
slenderness λ1 determined experimentally for a specific
material, in the range l1 � l � lP where inelastic buckling
is the dominant failure mechanism and the slenderness λP
denotes the end of theoretical validity of linear elastic Euler
buckling model, and in the range λP<λ were Euler elastic
buckling is the failure mechanism.

The British Standards and AISC (American Institute of
Steel Construction) employ the Ayrton-Perry formula as the
basic tool to evaluate structural buckling safety:

ðs0:2=sAP � 1Þ � ð1� sAP=sEÞ ¼ h ð3Þ
where σAP (λ) denotes the Ayrton-Perry critical stress, and
η is the dimensionless Perry “imperfection” factor charac-
terising the column-load system “imperfection”. On purely
theoretical grounds, formula (3) is only valid for a column
with initial shape imperfections in the form of a half sine
function f0ðxÞ ¼ d0 sinðp x=LÞ; x 2< 0; L >. Detailed deri-
vation and underlying assumptions of the formula counter-
part to (3) can be found in Simitses and Hodge [10]. The
Perry factor has the following exact interpretation h ¼
d0 � ðh=r2Þ in this case, where δ0 is the initial lateral
deflection of the column centre, and h denotes the extreme
fibre distance from the centroidal axis in the column cross
section. When imperfections of the load-column system
take the form of an eccentricity of load, the Ayrton-Perry
formula takes the following form:

ðs0:2=sAP � 1Þ cos p
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
sAP=sE

p� �
¼ h; h ¼ e � ðh=r2Þ: ð4Þ

where e denotes load eccentricity. Detailed derivation of the
counterpart formula to (4) can be found in Gere and
Goodno [5]. Numerical computations produce very similar
values of σAP (λ) originating from equations (3) and (4)
upon substitution of the same value of η. Formula (3) is
preferred in design practice as being quadratic in terms of
σAP it readily delivers a closed form solution:

sAPðlÞ ¼ s0:2 � ½ l2 þ 1þ h
� �

�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðl2 þ 1þ hÞ2 � 4l2

q
�=ð2l2Þ; l

¼ l=l0:2 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
s0:2=sE

p
; l0:2 ¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffi
E=s0:2

p
: ð5Þ

The Perry factor η used in contemporary design practice
is not used in its strictly theoretical sense but rather in quite
a formal way as a kind of adjustable parametric function to
describe any kind of column-load system deficiency,
special loading conditions or processing, e.g. existence of
a heat affected zone. Only the general functional characters
of the Ayrton-Perry plot remain in connection with rigorous
theoretical considerations. Various functional forms of η
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were proposed, e.g. Robertson proposed that for columns
with circular cross-sections made up of mild steel the Perry
factor should be taken as a linear function of slenderness in
the form η=0.003·λ. Dwight proposed that for aluminium
columns the Perry factor should be taken in the following
linear form:

h ¼ ðc=l2Þðl� l1Þ; l2 ¼ l0:2: ð6Þ
When slenderness increases, the relative importance of
column-load system deficiencies is diminished and the
failure stress σAP tends towards the Euler load σE. At the
other extreme, there is accepted cut off for slenderness for
stocky columns when it is accepted that failure takes place
through the bulk plastic flow mode. This cut off value for
particular materials and operating conditions is defined in
(6) through the ratio λ1/λ2. The constant c is a dominant
factor for determining the level of failure stresses for plastic
and elastic–plastic buckling failure modes. Its value is
preset depending on experimental test results obtained for
specific column operating conditions, e.g. operation in
joints. British Standard BS8118 recommended the follow-
ing values of c ∈ <0.1,0.8> and λ1/λ2 ∈ <0.2,0.6>—see
Dwight [3].

Contemporary semi-curve fitting design practices for
determining buckling failure stress are adopted due to the
existence of serious difficulties in adequate separation, and
taking into account not only subtle and minute details of
specimen imperfections, loading control process and
boundary conditions but also mutual interaction of various
factors. The present work is targeted at the investigation of
the imperfection-interaction phenomena of the prismatic
column buckling process. These phenomena express them-
selves the most distinctly in columns of intermediate
slenderness. The direct motivation for the work was the
considerably scattered experimental values of buckling
loads reported in the literature, which were obtained for
ostensibly identical columns.

Experimental Setup and Procedures

Material

Industrially manufactured, prismatic aluminium flats of
rectangular cross-section were used for testing purposes. The
one metre long flats, originating from the same production lot,
were purchased from a commercial supplier. The detailed
processing history of the flats was unknown and undocu-
mented, but the flats manufacturing precision was high. Their
thickness, b=5.88±0.01 mm, and width, d=19.98±
0.01 mm, did not deviate more than 0.02 mm along one
metre length. Three measurements of the cross-section were
taken along the one metre long flat. The straightness of the

flats was evaluated to be 1/1000 mm, and remained better
than required by the industrial standard for this type of
products, i.e. 2/1000 mm. In order to determine the material
properties of the aluminium, dog bone specimens were
manufactured with a total length of 170 mm, gauge length of
55 mm and a cross–section of A=10.05×5.88 mm2. An
MTS 858 machine was used to carry out the material
properties tests. The accuracy of the MTS 858 frame
displacement and force load control was estimated to be
Δu≅4 μm, ΔF≅2.5 N. The loading program consisted of
three cycles of uniaxial tension–compression loading, the
first two cycles remaining in the elastic range of material
behaviour and the last cycle involving around 1% of plastic
strain. The longitudinal and transverse strains were registered
with extensometers. Elasto-plastic properties of the material
were determined from prepared nominal stress–nominal
strain curves, shown in Fig. 1.

The value of the linear elastic modulus was estimated to be
E=63300 MPa. The behaviour of the material started to
deviate away from linear elastic at 0.01% strain and 150MPa
stress, which was accepted as the proportionality limit σP. The
characteristic slenderness λP=64.5, calculated from equation
(2), represents the limit of the Euler buckling model validity.
The conventional plastic yield stress, σ0.2, at 0.2% offset
permanent strain is 189 MPa and the corresponding
characteristic slenderness lP ¼ p � ðE=sPÞ0:5 ¼ 57:6. The
Poisson ratio varied with the level of loading, from an initial
value of 0.45 to a value of 0.38 at peak load. The
instantaneous unloading elasticity modulus at 1% permanent
strain was determined to be 58.9 GPa. The ultimate stress
σUTS=217.5 MPa (εUTS=6.91%) and fracture strain εfrac≅
11.6% of the material was determined in separate tests.
Comparison of the stress–strain curves and material data
obtained with the information present in existing literature,
led the present authors to the conclusion that the tested
material is most probably Al6063-T6, which is material
submitted to artificial aging and stress relieving heat
treatment after the extrusion process. This allows the
presumption that residual stresses are at a negligible level in
the as-delivered material.

E=63.3
[GPa]

E=58.9
 [GPa]

-200

-100
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200
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Fig. 1 Nominal stress—nominal strain curve obtained from uniaxial
testing of aluminium
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Buckling Test Setup

The program of buckling tests was performed on a MTS 810
machine with a load cell capacity of 250KN and crossheads
distance exceeding 1 m. The photograph of the experimental
set up when ready for performing buckling tests is shown in
Fig. 2(a), and the scheme of measurements configuration is
shown in Fig. 2(b). A fix-fix scheme of column buckling
was employed as this led to a convenient mounting
procedure. Prismatic flats specimens were simply clamped
in machine grips at an appropriate length. During the tests
only the upper grip of the testing machine was moving,
attaining a displacement u(t), while the lower one remained
motionless. This layout called for the installation of special
fixtures with a frame moving with half the vertical speed of
the machine grip. Laser sensors mounted on the moving
frame enabled precise measurement of the lateral deflection
2f (t) of the buckling column in its mid length with an
estimated accuracy of Δf≅3 μm. A Teststar control unit of
the MTS 810 machine allowed for the measurement and
registration of displacement u(t) and load P(t). Both of these
signals could be used as control parameters. After a skilled
tune up, the Teststar control unit delivered excellent accuracy
of results of displacement and force signals, estimated by the
present authors to be Δu≅3 μm, ΔP≅25 N. In the majority
of tests the displacement u(t), force P(t) and lateral deflection
f(t) signals were measured and registered. However, in order
to inspect the mechanism of plastic buckling a number of
tests were performed with strain gauges glued at the node
and antinode of the buckling column. In total four strain
gauges were glued, one on each side of the sample in two
locations, see Fig. 2(b). At the node locations the bending
and axial modes of deformation operated to full extent (no
shearing effects appeared since φ x ¼ L

2

� � ¼ dy
dx x ¼ L

2

� � ¼ 0,
where ϕ is the angle of the neutral axis vs. vertical direction).

At the antinode locations only an axial mode of deformation
is significant, while bending and shearing modes are
negligible due to zero curvature κ and small values of ϕ,
respectively. The buckling testing program comprised a
broad range of column slenderness in order to cover all three
mentioned above modes of column failure. Column speci-
mens with the following nominal working lengths were
tested: L =5 (λef=14.7), 10 (29.5), 17 (50.1), 24 (70.7), 34
(100.1), 48 (141.4) and 80 (235.6) cm. Additionally, speci-
mens with an effective slenderness of 470 were tested with a
working length of 80 cm and a cross-sectional thickness of
3 mm. They originated from a different stock of aluminium
flats. The length between the first rows of knurling teeth of
the lower and upper grips was accepted as the working
length of the column specimen. It was not possible to grip
the specimen with a length accuracy better than
ΔL=±0.5 mm. This variation in specimen length leads to
the following variation (accuracy) in the predicted Euler
loads (see formula (1)): λef=70.7→ΔPE=123N (PE=
14691N), λef=100.1→ΔPE=43N (PE=7320N), λef=
141.4→ΔPE=15N (PE=3673N), λef=235.6→ΔPE=3N
(PE=1322N). These values are to be compared with the
internal accuracy of the machine’s force measurement of 25
N. It was also difficult to grip the specimen with a precisely
planned nominal length. Due to that reason the actual lengths
presented in the results section differ by up to 3 mm from the
nominal one. The corrections were made after performing
the buckling tests on the basis of the markings made on the
specimens after being gripped.

Testing Program

Three series of experiments were performed. The first series
consisted of a single loading unloading cycle involving the
“considerable” lateral deflection of the buckling specimen.

E,I 

Lef=   L 
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L 

u 

2f 

antinode

node
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y

T1 

T2 

T3 

T4 

(b) 

mounting arm 
of laser sensor 
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machine 
grips 

laser 
sensor

machine 
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moving fixture 
following vertical 
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/1 2

Fig. 2 (a) Experimental setup
for column stability tests on
MTS 810 machine (b) Schema-
tic view of experimental buck-
ling configuration with
measurement points
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The specimen loading was displacement controlled, as
force controlled experiments lead to a “catastrophic”
buckling event. The results of the first series of tests served
for the determination of the range of loadings for the
subsequent second series of tests involving several loading
cycles. The aim of this second series of tests was to
investigate the behaviour of the specimens in the area of the
buckling event. Various control program schemes were
tried. Finally, a single test loading program comprised of
force controlled loading cycles on the loading and unload-
ing phases before the first buckling event occurred, and
subsequently mixed controlled loading cycles, i.e. displace-
ment controlled on loading and force controlled on
unloading until a zero value of force was reached. The
third series of tests was mixed controlled like in the second
series. The difference was that additional signals were
recorded during these tests, originating from strain gauges
glued at the node and antinode locations. In addition several
force controlled, “catastrophic”, buckling tests were per-
formed. Selected, representative results from the testing
program are presented in the next section.

Results

The results of the experimental program are divided into three
groups corresponding to the currently accepted three regimes
of column failure, i.e. material plastic yielding, inelastic
(elastic-inelastic) buckling and elastic buckling. The slender-
ness ratios λ1 and λ2 that delimit these ranges are
experimentally determined for each construction material
used in current design practice. In the present authors’
opinion, further research is required for their precise
theoretical rationalisation. For example, in the case of
6063T6 alloy, the value of slenderness λ2=78 is accepted
in the design process to delimit inelastic and elastic buckling,
while on theoretical grounds the validity of the linear Euler
theory is delimited by the value λP=64.5. Clearly some non-
expressed explicitly additional factors, besides the elastic
buckling mechanism, play a role when estimating the safety
of column against failure. The analysis of graphs describing
the buckling process can help in identifying these factors.

Slender Column Behaviour

The buckling and post buckling behaviour of slender
columns is shown in Fig. 3. Plots of force versus lateral
deflection, traditionally used in buckling analyses, are
shown on the right-hand side of Fig. 3. These kinds of
graphs are very good for the detection of the buckling event
itself, but they do not provide clear information on the
energy aspects of the buckling phenomenon as lateral
deflection is just perpendicular to the operating loading

force. Due to that reason, plots of axial force versus axial
displacement showing the relevant energy information were
prepared, as shown on the left hand side of Fig. 3. In
graphs 3a-b, the buckling and post-buckling behaviour of
columns of slenderness λ=235.6 is shown. The force curve
(marked with dark blue circles) shows that the column
buckles at the value of load (force) as predicted by the
Euler elastic buckling model. The Euler load being shown
in the graphs by a pink horizontal broken line. The buckling
event in graph 3a is marked with pink vertical dot-dash
line. The event can be simply and conveniently determined
as an asymptote towards the x-axis of the lateral deflection
versus the axial load curve (marked with green triangles).
The buckling test consisted of several loading-unloading
cycles. When the lateral deflection did not reach too great a
value, the loading and unloading paths were practically the
same, in other words no hysteresis loop was exhibited by
the column-load system. The extent of lateral deflection to
which no hysteresis loop was observed, is marked in a red
colour on the respective curves in graphs 3a-b. It can be
surmised that in such situations the column buckles in the
elastic range of material behaviour, and plastic deformation
effects can be neglected. It should be noted that in the post-
buckling phase, the buckling load remains constant as
predicted by the Euler model. In graph 3b, a rounding off of
the force curve before actually reaching the Euler load can
be clearly noticed. This is a characteristic feature for
column-load system imperfections.

The buckling and post-buckling behaviour of a column
of slenderness λ=141.4 is shown in graphs 3c-d. This
column also buckled at the value of force predicted by the
Euler model with a wide, post-buckling plateau of constant
force. The no hysteresis loop range of lateral deflection,
marked by a red colour respective curves in graphs 3c-d, is
shorter in comparison to the behaviour of the column of
slenderness λ=235.6. A gentle decrease in the post-
buckling force indicates that plastic deformation of the
column starts to play a role. In graphs 3e-f, the buckling
and post-buckling behaviour of columns of slenderness λ=
101.3 is shown. For this slenderness conformance to the
Euler model is still exhibited, as the column buckles at the
force predicted by the Euler model. However, only a very
short post-buckling plateau of constant force is exhibited in
the region of the buckling event. For columns with
slenderness λ=101.3, it was practically impossible to
distinguish the range of post-buckling behaviour, in which
no hysteresis loop could be observed. This means that
shortly after the elastic buckling process, the plastic
deformations start to play significant role, which also
shows through a considerable decrease in post-buckling
force. We have already highlighted the issue of control of
the buckling process. In graphs 3e-f, the results of the
controlled displacement load test, drawn with a dark blue
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line and designated “Force df”, were overlaid with force
controlled buckling test data, marked with light blue
rectangles and designated “Force ff”. The curves are
practically identical with the same pre-buckling behaviour,
buckling load value and post-buckling phase. The differ-
ence is that the post-buckling phenomena in force con-
trolled experiments cannot be easily observed, if at all. The
experimental data registered in the post-buckling phase of
force controlled tests were actually registered after a safety
trip out of the testing machine, signifying a catastrophic
event in engineering life. Graphs 3e-f provide grounds to
establish laboratory tests aimed at investigating the buck-
ling phenomenon for the purposes of engineering design,
which can, and should, be performed in displacement
control mode. They then are capable of delivering more
information in a credible and meaningful way. This is
further demonstrated in the subsequent tests. In graphs 3e-f
it can be noticed that when the buckled column is unloaded
to zero force from a certain arbitrary post-buckled state and

then reloaded again, the loading path closely follows that of
the unloading one, showing very small hysteresis. Upon
exactly reaching the force level from which the unloading
process was originally initiated, the post-buckling states
envelope is further followed, as if the unloading process
never took place. Thus buckling columns exhibit a so called
return point memory (RPM) effect. This kind of behaviour
was observed for buckling columns with any slenderness
index, and from whichever post-buckling state the unload-
ing process was initiated, see also Fig. 4(a).

This observation is of great practical value. The envelope
of post critical states, which can be determined simply and
easily in one displacement controlled buckling test, ran to
advanced values of lateral deflection, and in fact determines
the post-buckling load bearing capacity of the column
structure. Let us suppose that accidental (as a result of major
force) or purposeful (due to some kind of assault) buckling of
a column structural element occurred that did not lead to
immediate structure collapse. Then the remaining capacity of

0

500

1000

1500

0 0.5 1 1.5 2 2.5

0

2.5

5

7.5

Force
Euler load
Deflection - f
Buckl. Start

Force
[N]

Displacement u 

[mm]

[m
m

]

(a)

0

500

1000

1500

-0.1 2.4 4.9 7.4

Force
Euler load

Force
[N]

Deflection f 

[mm]

(b)

0

1500

3000

4500

0 0.5 1 1.5 2 2.5

0

2.5

5

7.5

Force
Euler load
Deflection - f
Buckl. Start

Displacement u 

Force
[N]

[mm]

[m
m

]

(c)

0

1500

3000

4500

-0.1 2.4 4.9 7.4

Force
Euler load

Deflection f 

Force
[N]

[mm]

(d)

0

3000

6000

9000

0 0.5 1 1.5 2 . 3

0

4

8

12
Force ff
Force df
Deflection - f

Force
[N]

Displacement u 

[mm]

[m
m

]

(e)

RPM

0

3000

6000

9000

-0.1 2.9 5.9 8.9 11.9

Force
[N]

Deflection - f 

Displacement
controlled test

Force 
controlled test

Start of catastrophic
buckling event

[mm]

(f)

RPM

Fig. 3 Buckling and post buck-
ling behaviour of slender col-
umns submitted to displacement
controlled axial compressive
load. (a–b) Column with slen-
derness λ=235.6 (Lef=40.0 cm),
(c–d) Column with slenderness
λ=141.4 (Lef=24 cm), (e–f)
Column with slenderness λ=
101.3 (Lef=17.2 cm). Results of
force load controlled buckling
test marked with light blue
rectangles, keyed “Force ff” are
overlaid on displacement load
controlled test data drawn in
dark blue line, keyed “Force df”

1340 Exp Mech (2011) 51:1335–1345



the structure to support the load after the harmful event can be
simply and credibly evaluated, even if only the size of the
lateral deflection amplitude in the buckling node of column
structural element can be estimated. In turn, this information
allows for the sound evaluation of the remaining structural
safety and ability to take a decision as to whether to permit
further operations within the harmed construction. The
experimental results of the slender column behaviour dis-
cussed, agree well with the Euler buckling model predictions
in reaching the Euler buckling load value and maintaining this
value in post-buckling states. Finally, examination of
graphs 3b, 3d and 3e show that the curving of the lateral
deflection curve in the area of the buckling event is small. This
allows the assessment that the aluminium flats tested were
manufactured with high precision.

Intermediate Slenderness Column Behaviour

Buckling and post buckling behaviour of columns of
intermediate slenderness is shown in Fig. 4. No precise
definition of the expression “intermediate” slenderness can
be found in literature. The common acceptance is that this is
a range of slenderness situated on both sides of the
slenderness value λ0.2, here λ0.2=57.6. Buckling design
procedures allow the assertion that the range is defined by
values of slenderness l 2< l1; l2 >, also refer to the text
below formula (6). When accepting this last statement, λ1
should be taken as greater than 20. Force versus axial
displacement and force versus lateral deflection curves
obtained for columns of slenderness λ=72.5 are shown in

graphs 4a-b. The markings and colours in Fig. 4 have the
same meaning as those of Fig. 3, so are not explained again
here. Two distinctive features can be noticed in graphs 4a-b,
which are at odds with the Euler model predictions. First, the
column buckles at smaller load than predicted by the Euler
model, i.e. at 92% of the Euler load. A similar observation
was already reported by numerous authors reviewed in the
literature and attributed to load-column system imperfections.
The presence of such imperfections in the investigated case
express themselves in a characteristic way through the
rounding off of the force–deflection curve just before the
buckling event is noticeable, see graph 4b). Second, a drop in
the buckling load occurs, practically at the very moment of
the buckling event. This phenomenon is not easily noticeable
in the traditional studies of buckling in the force-lateral
deflection graph of 4b. The sign that something happens
takes the form of noticeable gaps between individual
experimental data points appearing in graph 4b, immediately
after the buckling event peak load. The effect is better
percieved in graph 4a, where noticeable gaps between
individual experimental data points appear immediately after
the buckling event. The most obviously evidence of the
buckling load drop phenomenon can be perceived in the
force versus time plot of the column-load system shown in
Fig. 4(c). Peak buckling load drops by 20.8% in the case of
the column of slenderness λ=72.5. When the column was
unloaded to zero force and then submitted to consecutive
loading, it buckled at 73% of the Euler load, exhibiting the
return point memory (RPM) effect discussed in the previous
section. The force versus axial displacement curve obtained

0

5000

10000

15000

0 0.5 1 1.5 2 2.5

0

2.5

5

7.5

Force
Euler load
Deflection - f
Buckl. Start

Force
[N]

Displacement u

[mm]

[m
m

]

Load drop

RPM

(a)

0

5000

10000

15000

-0.1 2.4 4.9 7.4

Force
Euler load

Deflection f

Force
[N]

 [mm]

Load drop

(b)

RPM

0

5000

10000

15000

550 850 1150 1450

0

2

4

6

Force
[N]

[m
m

]

Time [s]

Load
drop

Force

Displ - u

Defl. - f

(c)

0

8000

16000

24000

0 0.5 1 1.5 2 2.5

0

2.5

5

7.5

Force
Pl.Yield Load
Deflection - f
Buckl. Start

Force
[N]

Displacement u

[mm]

Load
drop

(d)

[m
m

]

RPM

Fig. 4 Buckling and post buck-
ling behaviour of intermediate
slenderness columns. (a–b)
Force vs. axial displacement and
force vs. lateral deflection plots
for column with slenderness λ=
72.5 (Lef=12.3 cm)—elastic–
plastic buckling, (c) Part of
loading program and load-
column system response for
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72.5 before and after first buck-
ling event (tBuckl=1185.5 s), (d)
Force vs. axial displacement for
column with slenderness λ=
50.1 (Lef=8.5 cm)—plastic
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for columns of slenderness λ=50.1 (<λ0.2=57.5) is shown in
graph 4d. The column buckled at a smaller load then that
corresponding to material plastic yield stress, i.e. at 88% of
plastic yield load. The buckling load drop effect also
appeared for this column, and peak buckling load dropped
by 21.7%. When the column was unloaded and reloaded
again, it buckled at 69% of plastic yield load, exhibiting a
return point memory (RPM) effect.

The buckling load drop phenomenon occurring for
intermediate slenderness columns is entirely new informa-
tion to the best of the knowledge of the present authors. The
observation is in disagreement to conjectures/predictions
made in all major buckling models of Euler, Engesser and
Shanley, which predict constant or increasing values of
post-buckling force in the vicinity of the buckling event.
Detailed discussion of Euler, Engesser and Shanley column
buckling models and their predictions can be found in Gere
and Goodno [5]. The second discrepancy is that the
buckling load does not reach the Euler stress or plastic
yield stress at the moment of the buckling event.

Anatomy of the buckling load drop phenomenon

The reasons and mechanisms of the peculiarities of
intermediate column global buckling behaviour as previ-
ously described were not clear to the present authors.
Therefore a series of tests were carried out on columns with
strain gauges glued at the node and antinode locations [see
Fig. 2(b)] in order to obtain local information on the

buckling column-load system. The registered signals from
respective strain gauges are designated: εT1, εT2, εT3, εT4.
The global and local behaviour of the intermediate
slenderness column (λ=72.5) in the region of the buckling
event, where it exhibiting a load drop effect, is shown in
graphs 5a and 5b, respectively. Graph 5a is a suitably
selected detail of graph 4c, prepared to enable its
convenient comparison with the local responses of the
column-load system shown in graph 5b. Analogous global
and local responses versus time of slender columns (λ=
141.4) in the locality of the buckling event, not exhibiting a
load drop effect, is shown in graphs 5c and 5d. Strains in
graphs 5b and 5d are depicted as positive when compres-
sive, inconsistent with common convention but convenient
for the investigation of column buckling phenomena.

The buckling event itself is recognised here with the aid of
an asymptote towards the x-axis of the lateral deflection versus
axial displacement curve. The event is marked by vertical dot-
dash lines in all graphs of Fig. 5. In the case of intermediate
slenderness columns, it is clearly seen in graph 5a that the
buckling event corresponds to the buckling load drop event
itself. Hence, in the case of intermediate columns, buckling
load drop can be accepted as the initiation of the buckling
process. Immediately after the initiation of the buckling event
complex stress state develops, which can be reconstructed to
some extent using information from the plots in Fig. 5. The
basic assumption of the Euler and Ayrton-Perry models is
that the stress state in the cross-section of any buckling
column can be decomposed into axial compression and pure
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bending stress states, and that the material does not enter the
inelastic range of behaviour. Then the strain in any fibre of
any cross-section of the buckling column can be expressed
analytically with the formula:

"ðx; zÞ ¼ "ax þ "bdðx; zÞ ¼ P=ðEAÞ þ kðxÞ � z; k
¼ MðxÞ=EI ; x 2< �L; L >; z 2< �h; h > :

The following analytical expressions are thus obtained
for the measurement of experimental strains:

"T3 ¼ "
1

2
L;�h

� �
¼ "ax � kmax � h; "T4 ¼ "ðL;�hÞ

¼ "ax þ kmax � h; kmax ¼ �P f =EI ; "T1

¼ "ð0;�hÞ ¼ "T2 ¼ "ðL; hÞ ¼ "ax; k ¼ 0: ð7Þ
Eliminating εax from (7)1,2 with the aid of (7)3, one

comes to the conclusion that the following relation must be
fulfilled for the above assumption on stress decomposition
to be valid:

I ¼ ð"T3 � "axÞ=ð"T4 � "axÞ ¼ �1; "ax ¼ ð"T1 þ "T2Þ=2: ð8Þ
Let us first analyse the behaviour of the slender column

(λ=141.4) shown in graphs 5c-d. The buckling event started
at time t=468.3 s. The stable combined post-buckling stress
state was formed soon thereafter whilst maintaining a
constant displacement u—the load control parameter. The
following values of strains were registered; εT3=0.000135,
εT4=0.000375, εT1=0.00044, εT2=0.00049 at time t=
474.5 s, i.e. in close vicinity to the buckling event.
Substituting these values into equation (8)1 results
in Iexp ¼ �1:03 ffi �1 (εax=0.00047). Thus the experimen-
tal data confirmed validity of assumption (7) and the
underlying Ayrton Perry formula, and proved that it can be
credibly used as phenomenological tool to predict the
buckling behaviour of slender columns. It should be noted
that a buckling load drop effect did not take place during the
process of switching deformation modes, from simple axial
compression to a combined stress state. Slight discrepancies
in the readings of strain gauges T1 and T2 most probably
originate from slight deviation from their exact antinode
location. Upon unloading to zero force, all strain gauge
readings returned to zero, indicating that no residual stress
fields had generated as a result of the buckling process that
the column experienced.

Now considering the intermediate slenderness column
(λ=72.5) behaviour as shown in graphs 5a-b. The column
buckled at time t=1198.5 s. After the buckling load drop
period, when the simple axial compression deformation
mode switched to a combined stress state deformation, a
stable combined post-buckling stress state was formed

while the load control parameter u remained constant. The
following values of strains were registered: εT3=0.0060,
εT4=−0.00166, εT1=0.00140, εT2=0.00153 at time t=
1205.35, i.e. in close vicinity to the buckling event after a
buckling load drop took place. Substituting these values
into (8) gives Iex ¼ �1:45 6¼ �1 (εax=0.00147). This
indicates that in the case of intermediate slenderness
columns, exhibiting the buckling load drop phenomenon,
the Ayrton Perry formula cannot be accepted as a suitable
phenomenological modelling tool to predict their behav-
iour, even as a rough approximation. In spite of the
appearance of only minute plastic strains being at the level
of 0.002 (see Fig. 5(b)), that is the value accepted as offset
defining macroscopic plastic strains. A complex stress state
is formed as a result of the switching process of
deformation modes involving a buckling load drop phe-
nomenon, largely asymmetric in the z direction of the cross-
section. An even more asymmetric, residual inelastic strain
field is formed when the buckled column is subsequently
unloaded to zero force. The following values of strains
were registered: εT3=0.00208, εT4=−0.00072, εT1=0.0000,
εT2=0.0000 at time t=1317.7 s (P=0). Substituting these
values into (8)1 results in Iex ¼ �2:9 6¼ �1 (εax=0.0).

Further research is required to fully grasp the essential
features of the buckling load drop effect, and in order to
develop an appropriate theoretical model in which the
presence of a minute, non-symmetric inelastic strain field
must be taken into account. This would probably involve
using finite element code equipped with an advanced load
stepping algorithm to overcome the problem which might
appear with the passage of sudden softening of the system.
in addition to further experimental work. At present, it can
be stated that the interaction mechanism of load-column
system imperfections with changing modes of deformation
is responsible for a qualitative change of the intermediate
slenderness column’s buckling behaviour. It expresses itself
in the form of a buckling load drop and the formation of a
highly asymmetric residual stress field and also as the
permanent deformations that arise during the small lateral
deflection of the intermediate slenderness column’s buck-
ling process, though at the buckling node (locally) these
reach a value of 0.2% which in global terms are hardly
noticeable. Residual displacement upon column unloading
is ures=0.09 mm, and this is to be referred to a specimen
with a total length of L=246 mm. Residual deflection is
fres=0.51 mm, and when referred to L=246 mm it gives a
deviation from straightness remaining within the level of
standard manufacturing tolerances for commercially pro-
duced aluminium flats requirement of less than 2/1000. A
researcher or engineer, unaware that an ostensibly virgin
column gripped in the testing machine had already
undergone a cycle of slight buckling (inescapably involving
a buckling load drop), would notice with surprise that the
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column would exhibit a buckling load at a level of 73% of
the Euler load and not the expected buckling load of 92%
of the Euler load. The authors would dare to suggest that
the buckling load drop phenomenon discovered can help
clarify the hardly explainable, considerably scattered
experimental values of buckling loads reported in the
literature for intermediate slenderness columns.

Behaviour of Stocky Columns

The buckling and post-buckling behaviour of stocky
columns is shown in Fig. 6. Force versus axial displace-
ment and force versus lateral deflection curves obtained for
column of slenderness λ=30.3 are shown in graphs 6a-b.
The column significantly enters the material bulk plastic
yield deformation regime well before the column starts to
buckle, which can be clearly observed in graph 6a. In fact
the column started to buckle at a load very close to the
ultimate stress of the material. This result conforms to that
reported in the literature. Similarly as in the case of slender
columns, no drop of buckling load is observed for stocky
columns.

Discussion and Concluding Remarks

The collective information on the failure of aluminium
columns subject to an axial compressive load gathered
within the present experimental program is shown Fig. 7.
The background information on existing buckling model
predictions and design practices is also presented. The
stresses at which columns of various slenderness failed are
marked with green and yellow triangles. Those cases where
slender column failure took place by elastic buckling, at
loads as predicted by the linear Euler model, are indicated
in Fig. 7 by a continuous red line. The circular markings in
dark blue and green, labelled with numbers, indicate certain
characteristic points important from a theoretical and/or
design practice point of view. The marking labelled 3,
located at slenderness λP—cf. (2), indicates the limit of the
linear Euler model’s prediction validity. The horizontal dark

blue line is drawn at the material plastic flow yield limit
stress, commonly accepted in design practice as the failure
stress for stocky columns. The marking labelled 2, located
at slenderness λ0.2—cf. (5), that is lying on the crossing
point of the Euler model extension and material plastic flow
yield limit stress, indicates the reference point commonly
accepted as loosely defining the transition region between
slender and stocky columns. The region of intermediate
slenderness columns is more precisely defined by slender-
ness λ1 and λ2 and indicated with markings labelled 1 and
2. In present design practice, this region is determined with
the aid of experimental tests and curve fitting procedures.
The reason for that is an insufficient and inadequate
theoretical base.

The common understanding is that columns can be divided
into three classes: slender which exhibit elastic buckling
failure mechanisms, intermediate which display elastic–
plastic or plastic buckling failure mechanisms and stocky
presenting bulkmaterial plastic flow before possible buckling.
The theoretical basis for the description of the behaviour of
columns at the point of failure from the first class is relatively
well developed. It is through the Ayrton Perry model, which
contains parameters enabling imperfections of the column-
load system to be taken into account. The theoretical basis for
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the description of the behaviour of the columns at failure
belonging to the third class is also well developed, being the
classic theory of plasticity. The behaviour of intermediate
slenderness columns at failure at present constitutes an open
scientific problem awaiting proper theoretical elaboration. It
has been shown that the Ayrton Perry model cannot be
accepted, even as rough approximation for describing the
behaviour of columns with intermediate slenderness. In the
task of elaborating the buckling model for intermediate
slenderness columns, mutual interaction-imperfection cou-
pling effects must be taken into account. These effects play an
essential role, as reported here for the first time, in the
phenomenon of the column buckling load drop. As a result
proper theoretical predictions of the size of such a buckling
load drop would be possible. The scale of this effect can be
observed in Fig. 7, where the vertical distance between the
respective green-yellow triangle markings and red-yellow
diamond markings indicates a drop of buckling load after the
occurrence of minute primary buckling in the column. The
diamond markings also indicate the stress at which buckling
is going to take place in the minutely buckled column upon
its subsequent reloading. The design practice approach
recommended by British Standards, based on the Ayrton-
Perry model, is shown by an olive line in Fig. 7. The
predicted buckling loads for intermediate slenderness col-
umns are obtained upon the substitution into the Ayrton-
Perry formula (5) of a sufficiently large value of a Perry
factor parameter, defined here as η=0.0055. The slenderness
λ1=11.5 arbitrarily delimits the “bulk plastic flow” and
“plastic buckling” region—see also Dwight [3] section 5.4.2
(λ0=57.5, C=0.2). When safety factors are included in the
Ayrton Perry modelling prediction, the values of allowable
design stresses are obtained. The dark green curve shows the
admissible stresses recommended by the Aluminium Asso-
ciation for the alloy Al60063-T6, i.e. Tetmayer-Jasinski
modelling predictions divided by factors of safety recom-
mended as n=1.65 for plastic flow region (“nonexistent”
here) and n=1.77 for plastic buckling (λ∈ < λ1=0, λ2=78>)
and the elastic buckling region (λ > λ2=78).

The results of the present study indicate that running
column buckling tests under displacement control is worthy
of being adopted as common practice. Since then, the
envelope of column post-buckling states can be conve-

niently determined. This information in turn allows for the
quick and reliable estimation of the safety of such a column
structure, upon taking advantage of the RPM property,
which has undergone some accidental or deliberate damage.
For example this could be as a result of foreign object
damage in the form of column limited buckling when under
operational load.
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