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ABSTRACT: The buckling phenomenon of prismatic column is experimentally investigated in this work,
being major structural design concern. A number of tests were performed on aluminum made prismatic columns
with slenderness index λef remaining within range of 15 to 460 submitted to programs of multiple in time
compressive loads – force and displacement controlled. The experimental evidence obtained here for stocky and
slender columns confirm already well known information that column failure results from structural material
plastic flow deformation or lateral buckling, respectively. A new, interesting observation has been made for
intermediate slenderness columns that “drop” of buckling load takes place (reaching in some cases over 20%
of early critical force value) after the very initiation of elasto-plastic buckling process. The observation is in
contradiction to adopted in elasto-plastic buckling models assumption of constant (Engesser model) or growing
(Shanley model) buckling load during buckling process. The obtained experimental evidence indicates that
mysterious scatter in buckling loads for apparently identical columns with intermediate slenderness index can
be attributed to minute residual stresses, which easily and in hardly controlled manner can be introduced during
industrial production processes.

1 INTRODUCTION

1.1 Elastic buckling model

Engineering structures must comply to a number of
requirements in order to exhibit required from them
functional features. They must be strong enough to
withstand applied load, and at the same time they
must be sufficiently stiff not to deform beyond pre-
scribed limits. Sometimes load and initially acceptable
by itself deflections may lead in combined action to a
situation when structure warps and undergoes changes
leading to catastrophic failure. Spectacular example of
such a situation is phenomenon called buckling when
a structure, due to increasing axial load, looses its sta-
bility by depletion of its capacity to withstand a lateral
loading. The comprehension of the physical reason for
losing structural stability by axially loaded column, i.e.
depletion of its lateral stiffness to zero value led Euler,
in his masters thesis from 1744, to formulation of a
fundamental at present criterion for elastic buckling –
Pn = nπ2EI/L2, n = 1, 2, 3…We will be here interested
only in the lowest value of critical load (n = 1), com-
monly at present called Euler load or buckling load:

where PE = Euler buckling load, E =Young modulus,
A = column cross section area, λef = column effective
slenderness, σE = Euler buckling stress, L = column

length, k = index depending on column support con-
ditions (for clamped-clamped ended column k = 1/2,
I = column cross section moment of inertia (for rect-
angular prismatic column I = bh3/12; b = cross section
width, h = cross section height), r = radius of inertia.

Euler formulated his criterion under the general
assumption that everything is proportional, i.e. he
assumed linear material behavior, linear geometri-
cal effects – there appear only small deflections, and
small strains. An interesting outcome from Euler lin-
ear mathematical model formulation of the buckling
phenomenon has been observation that the instant
of total physical depletion of column capacity to
withstand even slightest lateral loading is equivalent
to the appearance of second (multiple) eigenvalue
and eigensolution of underlying mathematical bound-
ary value problem, expressing balance of flexural
moments. This resulted in one another name for buck-
ling phenomenon, i.e. buckling bifurcation. Later there
appeared the third very fruitful approach to investigat-
ing stability problems of structures, i.e. energy method
consisting in study of energy landscape of some neigh-
borhood of specific equilibrium state of a structure.
All three methodological approaches of investigating
structural stability are successfully used at present, see
Simitses & Hodge (2006).

1.2 Elasto-plastic buckling model

Since the pioneering work of Euler a lot of effort and
systematic works have been continuously undertaken
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aimed at expanding the scope of knowledge on struc-
tural stability. Excellent report on achievements in
that respect embracing not only columns but other
structural members like frames, plates or shells with
complications in the form of various types of nonlin-
earities geometrical, material or in boundary condi-
tions can be found in a book by Bažant & Cedolin
(2003). While considerable understanding and insight
has been gained in the field, it is the present authors
believe that still even the “simplest” case of prismatic
column buckling deserves further research attention.
The reason for that statement is considerable scatter
(reaching several dozen or so percent) of experi-
mentally registered values of critical loads at which
apparently identical columns are buckling, whenever
their effective slenderness index remain within the
range of intermediate values. The above inspiration is
further intensified by existence of numerous buckling
criteria for loaded in compression structural members.
Some of these criteria are predominantly experimen-
tal practice oriented, like Tetmeyer-Jasinsky criterion
in which case the relation between critical stress and
column slenderness is approximated by three segments
with straight line approximating the relation for inter-
mediate slenderness columns, or Johnson parabola
criterion,

whereσJohn = Johnson critical stress,σ0.2 = conventional
plastic yield stress.

The other phenomenological buckling criteria are
theoretically inspired, like in the case of Engesser tan-
gent modulus model developed for nonlinear elastic
regime of the material behavior, Engesser reduced
modulus or Shanley models developed for elasto-
plastic buckling

where σEngI = Engesser tangent modulus critical
stress, Et = instantaneous tangent Young modulus
(Et = dσ/dε), σEngII = Engesser reduced modulus crit-
ical stress, Er = reduced modulus value depends
on the column geometrical cross section e.g.
Er = 4EEt/(

√
E+√

Et)1/2 for rectangular cross sec-
tion, σShan = Shanley critical stress. The modeling
predictions of buckling stress – for fixed slenderness
column, can be ordered as follows: σEngI ≤ σEngII <
σShan < σE. These models of column buckling assume
constant or increasing value of axial compressive load
in the stress states neighboring elasto-plastic buckling
event, see excellent book by Gere (2001) for detailed
discussion of these models.

Nowadays design practice of loaded in compression
structural members, limit state design, bases on (modi-
fied) Perry formula, see Dwight (1999). The approach
is a return to three segment idea of Tetmayer-Jasinsky,

in which additionally “imperfections” of column-load
system are taken care of by experimental curve fit-
ting in order to properly handle observed experimen-
tally large scatter of buckling loads for intermediate
slenderness columns

where σPerr = Perry critical stress, η = Perry fac-
tor characterizing the column-load system imper-
fections (initial curvature, load eccentricity, residual
stresses, inhomogeneities, etc). The η is usually
expressed in terms of column slenderness index
λef , η = c·(λef − λ1)/λ2. The value of c is taken
depending on mode of column operation, e.g.
pure compression, torsion, bending, etc. For stocky
columns 0 < λef < λ1σPerr = σ0.2 and for slender ones
λ2 < λef σPerr = σE. The admissible value of stress is
obtained by dividing Perry critical stress with some
safety coefficient.

In order to better understand the origins and depen-
dence of buckling load values scatter observed for
intermediate slenderness columns an experimental
program has been planed and executed.

2 EXPERIMENTAL PROCEDURES

2.1 Material properties

For purposes of the present study there have been
used specimen in a form of prismatic aluminum
flats, commercially produced, with rectangle cross
section A = b × d = 5.88 ± 0.01 × 19.98 ± 0.01 =
117.5[mm2], cut to appropriate lengths to obtain
required effective slenderness. Geometric precision of
manufacturing of the used flats is high as thickness
and width deviations did not exceed 0.02 mm along 1
meter length of the flats. Similarly straightness devi-
ation has been assessed not to exceed 1 mm/m. The
flats originated from commercial source and its pro-
cessing history has been unknown. In view of that
the material properties have been first determined
by performing tests on dog bone specimen with use
of MTS 858 machine – force and frame displace-
ment control accuracy estimated to be �F ∼= 2.5 [N],
�u ∼= 4[µm]. The loading program consisted in uni-
axial tension–compression with enforced 1% plastic
strain, see Figure 1. The values of material properties
determined from experimental charts are as follows:
E = 63.3[GPa], Poisson ration – υ = 0.38, Proportion-
ality limit – σP = 150[MPa] (λP = π·(E/σp)0.5 = 64.6),
σ0.2 = 189 [MPa] (λ0.2 = π·(E/σp)0.5 = 57.6), σUTS =
217.5 [MPa], εUTS = 6.91[%], εbreak

∼= 11.6 [%.].
The proportionality and yield limits have been

determined from stress-plastic strain chart (σ − εp),
where εp = ε − σ/E with offsets 0.02% for determi-
nation of σP and 0.2% for determination of σ0.2. The
character of stress-strain curve and material parame-
ters values allow to indicate the material to be Al-6000
series submitted to artificial aging, stress relieving
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Figure 1. The uniaxial, tension-compression, nominal
stress – nominal strain curve obtained for used in program of
buckling tests aluminum material.

heat treatment after extrusion process (T6 the most
probably).

2.2 Experimental setup and testing program

The program of buckling tests has been performed
using MTS 810 machine with 250 KN load capac-
ity – force and frame displacement control accuracy
estimated to be �F ∼= 25 [N], �u ∼= 3 [µm], at
room temperature. The specimen in the form of pris-
matic flats cut to appropriate length were clamped in
machine grips (fixed-fixed column) to assure required
effective slenderness. It was not possible to assure
accuracy of gripping better than �L= ±0.5 [mm]
(�Lef = 0.5 [mm]). Such accuracy results in the fol-
lowing variation of predicted Euler loads – see formula
(1): {Lef = 5 [cm], λef = 29.5�PE = 1718[N]},
{Lef = 12 [cm], λef = 70.7�PE = 123[N]}, {Lef =
17 [cm], λef = 100.1�PE = 43 [N]}, {Lef = 40
[cm], λef = 235.6�PE = 3[N]}. Lateral deflection
in the middle length of buckling column has been
measured with laser sensor – of estimated accuracy
�f ∼= 3 [µm], mounted on a moving frame to fol-
low vertical motion of the buckling column vertical
midpoint. The column specimen with the following
effective lengths has been tested Lef = 2.5, 5, 8.5, 12,
17, 24, 40 [cm] – also with b = 3 [mm]. The specimen
has been submitted to force controlled, displacement
controlled and mixed controlled programs selected in
such a way as to carefully investigate the specimen
behavior in the neighborhood of buckling event, and
also their post-buckling behavior. Selected, represen-
tative results from the testing program are presented
in the next section.

3 RESULTS AND DISCUSSION

3.1 Stocky and slender column behavior

In Figure 2 buckling and post-buckling behavior of
stocky λef = 30.3 column behavior is shown. The col-
umn initially exhibits elastic behavior, then enters
plastic flow regime to finally start buckling at strain

Figure 2. Buckling and post buckling behavior of column
with slenderness λef = 30.3, (Lef =5.1 cm, PE = 84.3 [KN],
σE = 717.2 MPa) under displacement load control. Buckling
force – PB = 25200 [N] (σB = 212 [MPa]).

Figure 3. Buckling and post buckling behavior of column
with slenderness λef = 235.6, (Lef = 40.0 cm, PE = 1321
[N], σE = 11.2 MPa) under displacement load control.
Buckling force – PB = 1342 [N].

ε = 0.62% and stress σ = 212∼=217 [MPa] – ultimate
stress of the material.

In Figure 3 buckling and post-buckling behavior of
slender λef = 235.6 column behavior is shown. The
column behavior is perfectly as predicted by Euler
elastic buckling model. The red (grey) color in fact
presents several loading-unloading of column with its
elastic buckling involved. Only when later deflection
exceeds about 7 mm the unloading path starts differ
from the loading one indicating for plastic deformation
regime.

In Figure 4 buckling and post-buckling behavior
of slender λef = 100.1 column behavior is shown sub-
mitted to force and displacement controlled loading,
respectively. It is interesting to note that “post catas-
trophic” buckling path in load controlled test follows
practically the same series of states (P, f), which are fol-
lowed in “non-catastrophic” way during displacement
controlled experiment. In both tests the same value of
buckling force is reached (within experimental error
tolerance) and this being 98.9% of Euler load. No
buckling load drop discussed below has been observed
for column with this slenderness.
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Figure 4. Comparison of buckling and post buckling behav-
ior of column with slenderness λef = 100.1, (Lef = 17.0 cm,
PE = 7320 [N], σE = 62.3 MPa) under displacement and
force load control. Force controlled test buckling force,-
PB = 7240 [N]; Displacement controlled test buckling force,-
PB = 7180 [N].

Figure 5. Buckling and post buckling behavior of column
with slenderness λef = 71.9, (Lef = 12.2 cm, PE = 14200 [N],
σE = 120.9 MPa) – PB = 13870 [N] drops to P = 12000 [N].

3.2 Intermediate slenderness column behavior

In Figure 5 buckling and post-buckling behavior of
intermediate slenderness λef = 71.9 column behav-
ior is shown. The column after reaching buckling
force load PB = 13870 [N] (97.7% of Euler buckling
load), remaining under displacement control, rapidly
drops this load and stabilizes at loading force of
P = 12000 [N]. Upon the column unloading resid-
ual displacement is ures = 0.06 [mm] and residual
deflection fres = 0.2 [mm] – this last value remaining
on the level of allowable deviation from straight-
ness accepted as standard for commercially produced
aluminum flats. Upon repeated loading the column
attains the last “stabile” value of buckling force, i.e.
P = 12000 [N] (84.5% of Euler buckling load) before
further plastic bending, buckling takes place. The
described above sequence of events allows to explain
scatter of buckling load values observed by different
researchers for apparently identical columns with the
same slenderness index.

The character of buckling load drop process can be
best observed in time chart of column loading and its
response shown in Figure 6.

Figure 6. Loading program displacement – u controlled
of column with slenderness λef = 71.9 and its force and
deflection – f response graphed in time.

4 SUMMARY

Experimental results of a program of prismatic
columns buckling tests have been presented in the
paper within the context of known theoretical column
buckling models and currently applied design practice.
The obtained experimental evidence allows to dare
statement that minute residual stresses present in col-
umn member are responsible for several dozen scatter
of observed buckling load value in the case of columns
with intermediate slenderness index (around λP- here
64.6). The practical implication of the presented here
research effort can be formulated as follows: It is fully
justified to apply safety coefficients on the level of 1.6
(around 40% safety margin in buckling load) for inter-
mediate slenderness columns as this guarantees that
after accidental (force major) introduction of moder-
ate residual stresses caused by these accidental plastic
bending of the column member, it will still possess
expected (required) in design process load capacity.
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