
www.elsevier.com/locate/enbuild

Energy and Buildings 37 (2005) 301–310
Three-dimensional conduction z-transfer function coefficients

determined from the response factors

Elisabeth Kosseckaa,*, Jan Kosnyb

aDepartment of Eco-Building Engineering, Polish Academy of Sciences, Swietokrzyska 21, 00 049 Warsaw, Poland
bOak Ridge National Laboratory, Buildings and Materials Group, Building 3247, M.S. 6070, Oak Ridge, TN 37831-6070, USA

Received 20 January 2004; received in revised form 15 June 2004; accepted 30 June 2004
Abstract
A method of derivation of the conduction z-transfer function coefficients from response factors, for three-dimensional wall assemblies, is

described.

Results of the conduction z-transfer function coefficients calculations are presented for clear walls and separated details which are listed in

ASHRAE research project 1145-TRP: ‘‘Modeling Two- and Three-Dimensional Heat Transfer Through Composite Wall and Roof

Assemblies in Hourly Energy Simulation Programs’’. Resistances, three-dimensional response factors and so-called structure factors, have

been computed using the finite-difference computer code HEATING 7.2. The z-transfer function coefficients were then derived from a set of

linear equations, constituting relationships with the response factors, which were solved using the minimum-error procedure.

Test simulations show perfect compatibility of the heat flux calculated using three-dimensional response factors and three-dimensional z-

transfer function coefficients, derived from the response factors.

# 2004 Elsevier B.V. All rights reserved.
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1. Introduction

The z-transfer function method is used in the whole

building simulation programs to model one-dimensional heat

transfer through walls, roofs, and floors. Transfer function

procedures, developed by Stephenson and Mitalas [1],

pertain to one-dimensional structures made up of layers of

homogeneous materials and have no allowance for walls with

thermal bridges in which three-dimensional flow occurs.

Seem et al. [2,3] presented a method for calculating

transfer functions for multidimensional heat transfer from a

state space formulation. Spatial discretization of the

problem results in the set of first-order differential equations.

Exact solution to this set of equations is determined to

represent response to the excitation modeled by a continuous

piecewise linear curve.
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Burch et al. [4,5] presented a numerical procedure for

calculating first-order conduction-transfer function coeffi-

cients for complex building constructions containing two-

dimensional thermal bridges. The heat-transfer response to

the ramp excitation was predicted by the finite-difference

model; the regression analysis was applied then to subtract

the steady-state response, and to determine the first pole of

the transfer function.

Brown and Stephenson [6] developed a method to

determine transfer function coefficients from the surface-

frequency response. This method, based on the Laplace and

z-transfer function formalism, has been used to determine

the z-transfer functions of the full-scale wall specimens with

complex geometries, using the guarded hot-box procedures.

A method of derivation of the conduction z-transfer

function coefficients from response factors, for three-

dimensional wall assemblies, is presented here.

The response factors, which represent surface averaged

heat flux due to triangular temperature excitations at discrete

time instants, are calculated with the help of a finite-difference
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Nomenclature

bn, cn, dn dimensionless heat conduction

z-transfer function coefficients

cp specific heat (J/(m3 K))

[Btu/(lb 8F)]

C capacity per unit surface area

of a wall or detail (kJ/(m2 K))

[Btu/(ft2 8F)]

Eb, Ec relative errors of the z-transfer

function calculations

Nb, Nc, Nd maximum index of numerically

significant coefficient bn, cn, dn,

respectively

Qi,nd heat flux at time nd across the

interior surface (W/m2)

[Btu/(h ft2)]

R thermal resistance per unit surface

area of a wall or detail (m2 K/W)

[ft2 8F h/Btu]

Te,nd exterior temperature at time

nd (8C) [8F]

Ti,nd interior temperature at time

nd (8C) [8F]

V volume of a wall element

(m3) [ft3]

Xn, Yn response factors (W/(m2 K))

[Btu/(h ft2 8F)]

Z{Q}, Z{T}, Z{X},

Z{Y}, B(z),

C(z), D(z)

z-transforms

Greek letters

d time instant (h)

’ii, ’ie structure factors

u dimensionless temperature

r density (kg/m3) [lb/ft3]
computer code, to simulate three-dimensional heat conduc-

tion. They are used as ‘‘input data’’, to determine z-transfer

function coefficients from the set of linear equations, which

includes relationships with the response factors and compat-

ibility conditions. This primarily infinite set of equations is

reduced to a finite one and solved using the minimum-error

procedure. The method gives very good results, in the sense

that heat-flux courses obtained from simulations, using the

response factors and the z-transfer function coefficients, in

most cases almost coincide.
2. Relationships between response factors and

z-transfer function coefficients

In terms of response factors, heat flux across the interior

surface of a wall element at time instant nd, Qi,nd, can be
represented as follows [7,8]:

Qi;nd ¼
Xn

k¼0

XkTi;ðn�kÞd � YkTe;ðn�kÞd
h i

; (1)

where {Ti,nd} and {Te,nd} are sequences of the ambient (or

surface) temperature values, and {Xn} and {Yn} are

sequences of the response factors.

As far as three-dimensional problems are concerned, the

heat-flux values in Eq. (1), as well as the response factors,

are to be understood as averages over the surfaces of a wall

element, separated from rest of the wall by an adiabatic

lateral surface. Driving temperatures are functions of time

only, and do not depend on spatial coordinates, which is also

the case when boundary conditions of the first kind are

assumed. Dimensions of the element and location of the

lateral cut surface are to be established while developing a

three-dimensional model, in order to determine its thermal

characteristics.

The z-transform of the interior heat flux, Z[Qi] is related

to the z-transforms of the interior and exterior temperature,

Z[Ti] and Z[Te], by the following equation (see [9]):

Z½Qi� ¼ ZfXng 	 Z½Ti� � ZfYng 	 Z½Te�; (2)

where Z{Xn} and Z{Yn} are the z-transforms of the

sequences of the response factors, {Xn} and {Yn}:

Z½Qi� ¼
X1
n¼0

Qi;ndz
�n; ZfXng ¼

X1
n¼0

Xnz�n;

ZfYng ¼
X1
n¼0

Ynz�n:

(3)

The compatibility condition which the response factors, Xn

and Yn, should satisfy:

X1
n¼0

Xn ¼
X1
n¼0

Yn ¼ 1

R
(4)

is equivalent to the following condition for the z-transforms

Z{Xn} and Z{Yn}:

lim
z! 1

ZfXng ¼ lim
z! 1

ZfYng ¼ 1

R
: (5)

Here, R denotes the resistance per unit surface area, deter-

mined from the average heat flux in the steady-state condi-

tions.

Now let Z{Xn} and Z{Yn} be given as the quotients:

ZfXng ¼ 1

R

CðzÞ
DðzÞ; ZfYng ¼ 1

R

BðzÞ
DðzÞ; (6)

where

BðzÞ ¼
X1
n¼0

bnz�n; CðzÞ ¼
X1
n¼0

cnz�n;

DðzÞ ¼
X1
n¼0

dnz�n:

(7)
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Eq. (2) can be rewritten in the following form:

DðzÞ 	 Z½Qi� ¼
1

R
CðzÞ 	 Z½Ti� � BðzÞ 	 Z½Te�f g: (8)

Eq. (1) for Qi,nd, assuming d0 = 1, is now replaced by (see

[1]):

Qi;nd ¼
1

R

Xn

m¼0

cmTi;ðn�mÞd �
Xn

m¼0

bmTe;ðn�mÞd

" #

�
Xn

m¼1

dmQi;ðn�mÞd: (9)

The dimensionless conduction z-transfer function coeffi-

cients bn and cn correspond to the coefficients bn and cn from

[10], multiplied by R. For the purpose of simulations, only

numerically significant coefficients are important.

Formulae (6) for the z-transforms, when rewritten in the

form:

CðzÞ ¼ R 	 ZfXng 	 DðzÞ;

BðzÞ ¼ R 	 ZfYng 	 DðzÞ
(10)

are equivalent to the convolution type relationships between

the response factors Xn, Yn and the conduction z-transfer

function coefficients bn, cn, and dn:

bn ¼ R
Xn

k¼0

Yn�kdk; cn ¼ R
Xn

k¼0

Xn�kdk: (11)

Eq. (5) for the z-transforms Z{Yn} and Z{X} now has the

following form:

BðzÞ
DðzÞ

����
z¼1

¼ CðzÞ
DðzÞ

����
z¼1

¼ 1: (12)

Eq. (12) yields the following compatibility condition for the

dimensionless z-transfer function coefficients:

X1
n¼0

bn ¼
X1
n¼0

cn ¼
X1
n¼0

dn: (13)

3. Determining the z-transfer function coefficients from

the response factors

On the basis of Eqs. (11) and (13), one may try to

determine z-transfer function coefficients from sequences of

the response factors, {Yn} and {Xn}. This is the most

straightforward method; the z-transfer functions obtained in

this way are expected to ‘‘exactly’’ reproduce the output for

any input function composed of straight-line segments,

joining the points which represent its values at t = nd.

Assuming that z-transfer function coefficients with

indices above some n are negligibly small, and d0 = 1,
we obtain the following set of linear equations:

b0 þ b1 þ b2 þ b3 þ 	 	 	 þ bn

¼ 1 þ d1 þ d2 þ d3 þ 	 	 	 þ dn (14.1)

b0 ¼ RY0 (14.2)
b1 ¼ RðY1 þ Y0d1Þ (14.3)
b2 ¼ RðY2 þ Y1d1 þ Y0d2Þ (14.4)
bn ¼ RðYn þ Yn�1d1 þ Yn�2d2 þ Yn�3d3 þ 	 	 	 þ Y0dnÞ

(14.n)

0 ¼ RðYnþ1 þ Ynd1 þ Yn�1d2 þ Yn�2d3 þ 	 	 	 þ Y1dnÞ

(14.n+1)

c0þc1þc2þc3þ 	 	 	 þ cn ¼ 1þd1þd2þd3 þ 	 	 	 þdn
(15.1)

c0 ¼ RX0 (15.2)
c1 ¼ RðX1 þ X0d1Þ (15.3)
c2 ¼ RðX2 þ X1d1 þ X0d2Þ (15.4)
cn ¼ RðXn þ Xn�1d1 þ Xn�2d2 þ Xn�3d3 þ 	 	 	 þ X0dnÞ

(15.n)

0 ¼ RðXnþ1 þ Xnd1 þ Xn�1d2 þ Xn�2d3 þ 	 	 	 þ X1dnÞ

(15.n+1)

If structure factors are calculated together with resistance

and response factors, one may use conditions imposed by the

structure factors on z-transfer function coefficients as

subsidiary equations [11]:

X1
n¼1

nbn �
X1
n¼1

ndn ¼ RC

d
’ie

X1
n¼0

dn; (16)

X1 X1 RC X1

n¼1

ncn �
n¼1

ndn ¼ �
d

’ii
n¼0

dn: (17)

The structure factors, ’ii and ’ie, are given by (see

[11,18,19]):

’ie ¼
1

C

Z
V

rcpuð1 � uÞ dv; (18)

’ ¼ 1
Z

rc ð1 � uÞ2 dv; (19)
ii C V
p

where C is the total thermal capacity of a wall element of

volume V:

C ¼
Z

V

rcp dv; (20)

and u is the dimensionless temperature for a problem of

steady-state heat transfer through the wall element with an

adiabatic lateral surface, for ambient temperatures Ti = 0 and

Te = 1. For plane walls, the products C	’ii and C	’ie are

equivalent to the thermal mass factors, introduced by [12] (see

also [13]).
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One may use more equations than the number of

unknowns and apply minimizing procedures to get the

solution. Maximum indices Nb, Nc, and Nd of the coeffi-

cients bn, cn, and dn, which should be included, depend

on the specific dynamic thermal properties of a given

wall assembly. In general, the total number of numeri-

cally significant z-transfer function coefficients increases

with resistance and mass of wall; however, it is not the

rule. Trying different kinds of cut off of the sequences

{bn}, {cn}, and {dn}, one should control the following

quantities:

Eb ¼
PNc

n¼0 bnPNd

n¼0 dn

�1; Ec ¼
PNb

n¼0 cnPNd

n¼0 dn

�1: (21)

Eb and Ec represent the resultant errors of the z-transfer

function coefficients calculations.

The z-transfer function coefficients determined in this

way correspond to the selected time step—here 1 h. If a

smaller time step is to be used in simulations, say 1/2 h or

15 min, the whole procedure must be repeated.

For plane walls, response factors with sufficiently high

indices, above some M, satisfy the condition:

Ymþ1

Ym
¼ Xmþ1

Xm
¼ const ¼ a; m>M (22)

a ¼ e�1=t1 ; (23)
where t1 is the first, of largest value, time constant of a

wall. Therefore, the set of equations (14.1, . . ., 14.n+k),

(15.1, . . ., 15.n+k) for bn, cn, and dn, practically is not infinite

in the sense that for sufficiently high indices, successive

equations are just the preceding ones multiplied by a.

Because a is the root of D(z), the condition d1 < �a is

always satisfied.

Numerically calculated response factors for three-

dimensional wall assemblies have, in general, similar

properties; however, their ratios show small variations even

for large indices, where they drop several orders of

magnitude as compared with the first ones.

Solving Eq. (11) for Yn and Xn, with d0 = 1, gives the

recurrence formulae which may be used to additionally

verify a solution obtained for z-transfer function coeffi-

cients:

Y0 ¼ b0

R
; X0 ¼ c0

R
; (24)

Xn Xn
Fig. 1. Dimensionless response factors R	Xn for the 2 � 4 steel-stud system

wall assemblies.
Yn ¼ bn

R
�

k¼1

Yn�kdk; Xn ¼ cn

R
�

k¼1

Xn�kdk;

n 1:

(25)

Results of such verification, for a wood-stud wall, are

presented in Appendix A.
4. Conduction z-transfer function coefficients for

common-wall assemblies

Dynamic thermal properties of 20 common wall

assemblies were analyzed within the ASHRAE research

project ASHRAE 1145-TRP: ‘‘Modeling Two- and Three-

dimensional Heat Transfer Through Composite Wall and

Roof Assemblies in Hourly Energy Simulation Programs’’

[14,15,17]. The list of wall assemblies considered includes

clear walls and details of the wood- and steel-framed

wall systems, insulated concrete forms (ICF wall), sandwich

walls with metal and plastic ties, and two-core block

masonry walls, uninsulated and with insulation inserts.

A representative sample of details includes: corners,

intersections between above-grade wall, floor, foundation,

wall/roof interfaces, and framing-in of walls around

windows.

Drawings of all those wall assemblies, with dimensioned

simulation areas, are included in the final report of ASHRAE

1145-RP project [14]. They are also available at ORNL

Internet site (http://www.ornl.gov/sci/roofs+walls/research/

detailed_papers/whole_bldg/index.html). Drawings of the

most common structures may be found in [10], chapter

24.

Response factors, resistances, and structure factors

were calculated using the finite-difference computer code

HEATING 7.2 [16], for boundary conditions of the first

kind. Dimensionless, normalized response factors, given as

R	Xn and R	Yn, for the 2 � 4 steel-stud system wall

assemblies, are depicted in Figs. 1 and 2. They represent

relations of the responses to unit triangular temperature

excitations after time nd, to the steady-state heat flux, due to

a unit boundary temperature difference, equal to 1/R.

The conduction z-transfer function coefficients were

determined as approximate solutions of finite sets of

equations, generated by Eqs. (14–17). The resultant errors,

http://www.ornl.gov/sci/roofs+walls/research/detailed_papers/whole_bldg/
http://www.ornl.gov/sci/roofs+walls/research/detailed_papers/whole_bldg/
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Fig. 2. Dimensionless response factors R	Yn for the 2 � 4 steel-stud system

wall assemblies.
Eb and Ec, were observed, while trying different kinds of cut

off of the sequences {bn}, {cn}, and {dn}, and also different

kinds of reduction of the number of equations to satisfy

compatibility Eq. (13) as well as possible. Modern

professional calculation software allows one to easily

examine different solutions of a problem, modifying the

numbers of unknowns and using minimum-error procedure

to find the solution of a set of N linear equations with M

variables (N  M).

The results are collected in Tables 1–3. The maximum

index of a coefficient does not exceed five; accuracy is

within five decimal digits. Negative values of the

coefficients bn with higher indices, which appear for almost

all lightweight wood- and steel-framed wall assemblies, and
Table 1

Wood-stud system—clear walls and details (z-transfer function coefficients for t

Wall assembly R value (m2 K/W) [ft2 8F h/Btu] n 0

2 � 4 Clear wall 2.00486 [11.39127] bn 0.

cn 7.

dn 1.

2 � 6 Clear wall 3.07767 [17.48678] bn 0.

cn 10.

dn 1.

2 � 4 Corner 1.84391 [10.47675] bn 0.

cn 6.

dn 1.

2 � 4 Window header 1.65508 [9.40385] bn 0.

cn 5.

dn 1.

2 � 4 Wall/floor 1.72387 [9.79471] bn 0.

cn 5.

dn 1.

2 � 4 Wall/roof 1.65447 [9.40040] bn 0.

cn 7.

dn 1.
empty-core concrete masonry blocks, seem questionable at

first sight. It was necessary to admit them to satisfy, with

sufficient accuracy, the compatibility condition (Eq. (13)).

For steel-framed walls with heavy layers, brick or stucco, all

bn are positive. For the coefficients cn and dn, the sign

sequence is always + and �, alternately. One should take

into account, however, that a negative value of some bn does

not mean that impact of some temperature value may be

‘‘negative’’, as temperatures enter into the expression for the

current heat flux (Eq. (9)) not only through bn and cn, but also

through preceding values of the heat flux itself. Compara-

tively high values of the coefficients cn are due to the fact

that surface-film resistance were not included while

calculating response factors.

As an example, let us consider 2 � 4 wood-stud clear wall

(see Table 1). Summing up the z-transfer function

coefficients gives:

X4

n¼0

bn ¼ 0:30363;
X4

n¼0

cn ¼ 0:30365;

X4

n¼0

dn ¼ 0:30364; Eb ¼ �0:00003; Ec ¼ 0:00003:

The errors Eb and Ec (see Eq. (21)) here are very small.

(For most cases the errors are below10�2, for several cases

below 10�5, maximum error appears for the wood-stud wall/

roof intersection, Eb = 0.036). Results of the ‘‘reversibility

test’’, using Eqs. (24) and (25), show very good compatibility

of the response factors recalculated from z-transfer function

coefficients with those originally calculated for three-

dimensional models of wall assemblies (see Appendix A).

Heat flux test calculations (Fig. 4) show an excellent
hree-dimensional models)

1 2 3 4

19337 0.24476 �0.15501 0.01954 0.00097

64880 �12.33863 5.81307 �0.84437 0.02478

00000 �0.91447 0.23694 �0.01887 0.00004

15322 0.251223 �0.28426 0.06269 0.00765

64983 �20.93661 12.97188 �2.59789 0.06460

00000 �1.25323 0.45295 �0.04808 0.00018

19209 0.20133 �0.14086 0.00992

43935 �9.92949 4.08246 �0.32742

00000 �0.93234 0.20719 �0.01098

10141 0.16607 �0.01517 0.01302

05305 �7.80490 3.47950 �0.46234

00000 �0.99046 0.27744 �0.02166

08635 0.14395 �0.00347 0.00869

34251 �7.49327 2.44246 �0.05226

00000 �0.89680 0.13624

09812 0.14358 �0.01307 0.00500

09777 �9.93976 3.20196 �0.11769

00000 �0.92645 0.16872



E. Kossecka, J. Kosny / Energy and Buildings 37 (2005) 301–310306

Table 2

Steel-stud system–clear walls and details (z-transfer function coefficients for three-dimensional models)

Wall assembly R value (m2 K/W) [ft2 8F h/Btu] n 0 1 2 3 4 5

2 � 4 Steel-stud clear wall 1.54809 [8.79595] bn 0.27544 0.46780 �0.03740 �0.00348

cn 5.38342 �5.43867 0.77712 �0.01951

dn 1.00000 �0.32450 0.02704 �0.00018

2 � 4 Corner 0.92953 [5.28141] bn 0.27182 0.23733 �0.11860 0.00796 0.00019

cn 3.32708 �4.25094 1.46144 �0.14221 0.00333

dn 1.00000 �0.73120 0.13649 �0.00664 0.00004

2 � 4 Window header 1.54924 [8.80252] bn 0.38340 0.40350 0.00274

cn 2.00592 �1.25812 0.04204

dn 1.00000 �0.21374 0.00358

2 � 4 Wall/floor 0.66806 [3.79581] bn 0.10985 0.07647 �0.20620 0.05227 0.00743

cn 2.69068 �5.29400 3.35848 �0.74658 0.03217

dn 1.00000 �1.61234 0.75266 �0.10020 0.00062

2 � 4 Wall/roof 0.43190 [2.45400] bn 0.32878 0.33525 �0.08624 �0.00082

cn 2.67848 �2.71613 0.65392 �0.03925

dn 1.00000 �0.48144 0.05880 �0.00035

2 � 4 Steel stud + 1-in EPS + brick 2.25132 [12.79160] bn 0.01014 0.15042 0.11515 0.00060

cn 6.99557 �12.38192 7.07266 �1.50306 0.09593

dn 1.00000 �0.96989 0.26922 �0.02015

2 � 6 Steel-stud clear wall 1.99120 [11.31363] bn 0.20008 0.48490 �0.02034 �0.00691

cn 6.90969 �7.48203 1.26283 �0.03276

dn 1.00000 �0.37815 0.03605 �0.00017

2 � 6 steel-stud + EPS + stucco 2.66764 [15.15703] bn 0.10508 0.34909 0.01933

cn 8.12097 �11.41045 4.10657 �0.33939 0.00108

dn 1.00000 �0.57984 0.05862

2 � 6 steel stud + EPS + brick 2.72190 [15.46532] bn 0.00820 0.14244 0.12483 0.00222

cn 8.28614 �14.88340 8.59382 �1.82738 0.10926 �0.00005

dn 1.00000 �0.97089 0.26764 �0.01836
agreement of the results obtained using three-dimensional

response factors and three-dimensional z-transfer function

coefficients.

Some general conclusions concerning dynamic thermal

properties represented by the response factors and the
Table 3

Wall assemblies constructed of concrete and insulation (z-transfer function coeffi

Wall assembly R value (m2 K/W) [ft2 8F h/Btu] n

ICF-wall 1.97768 [11.23044] bn

cn

dn

Sandwich wall with metal ties 1.34800 [7.65912] bn

cn

dn

Sandwich wall with plastic ties 1.86246 [10.58216] bn

cn

dn

Empty concrete blocks 0.23857 [1.35549] bn

cn

dn

Insulated concrete blocks 0.40328 [2.29137] bn

cn

dn
z-transfer function coefficients for subsequent types of walls

are as follows:

Wood-framed wall system. Differences in dynamic

thermal properties of clear walls and separated details are

rather small; resistance differences are more significant.
cients for three-dimensional models)

0 1 2 3 4

0.00333 0.01647 0.00388 0.00022

12.44518 �24.90756 14.40928 �1.92311 0.00012

1.00000 �1.16082 0.18473

0.02377 0.24051 0.14861 0.00778

35.22708 �49.09367 15.08613 �0.79797

1.00000 �0.70113 0.12272 �0.00002

0.01576 0.22377 0.16632 0.00908

50.74143 �71.97368 23.01010 �1.36291

1.00000 �0.71157 0.12653 �0.00002

0.19225 0.14069 �0.16884 0.04993 0.00318

5.98628 �10.21773 5.26507 �0.84659 0.03018

1.00000 �1.00519 0.23533 �0.01301 0.00009

0.04707 0.13063 0.01402 0.03217 0.00389

9.72126 �16.99955 8.85120 �1.39633 0.05121

1.00000 �0.98904 0.23027 �0.01356 0.00012
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Fig. 4. Comparison of the heat-flux simulation results for the 2 � 4 wood-

framed system clear wall.
Steel-framed wall system. Differences in dynamic

thermal properties of clear walls and separated details are

more significant here. The effect of an additional layer of

brick or stucco, together with an EPS foam layer, is

substantial.

ICF wall, with the complex internal three-dimensional

concrete core. With limited amount of concrete, it

shows dynamic thermal properties, which are specific

for very heavy structures; Yn response factors (and also

Xn response factors with high indices) decay very slowly,

and bn coefficients are very small. For the heat flow

simulations (to secure sufficient accuracy) one should use

much more than 40 response factors; at the same time,

maximum index of bn, cn, and dn is, respectively, only three,

four, and two.

Concrete/foam/concrete sandwich walls. Resistance for

the wall with plastic ties is significantly higher than for the

similar wall with metal ties; however, dynamic properties

are similar.

Heavy concrete blocks. Dynamic thermal properties of

empty-core masonry blocks are essentially different as

compared with those for blocks filled with insulation.
5. Test simulations

The test simulations were performed using, as the outside

surface temperature excitation, the sol–air temperature

calculated for a vertical surface facing west for a sunny day

of February in Warsaw (see Fig. 3). The sol–air temperature

(see ASHRAE Handbook) represents combined effect of the

air temperature and solar radiation in problems with linear

boundary conditions of the third kind. We used it here just as

an example of rapidly varying thermal excitation. Tem-

perature at the inside surface of a wall assembly represented

periodic variations with amplitude of 1 8C [1.8 8F], around

mean value of 20 8C [68 8F]. The same daily temperature
Fig. 3. Inside and outside surface temperature courses used for simulations.
courses were repeated several times, to eliminate the effect

of initial conditions.

The heat flux across the inside surface of a wall assembly

was simulated in two ways, using the response factors for a

3-D model and the z-transfer function coefficients, derived

from the response factors. The results of simulations for the

2 � 4 wood-framed clear wall are presented in Fig. 4.

Differences between the heat flux values, calculated using

the 3-D response factors and the 3-D z-transfer function

coefficients, are almost invisible. Fig. 5 presents the results

of simulations for the corner; differences here are also very

small.

Figs. 6–8 present the heat flux courses for the 2 � 4 steel-

stud system clear wall, the corner, and the wall/floor

intersection. Differences are significant only for the last

case.

Fig. 9 presents the results of simulations for the 2 � 6

steel-stud wall covered with 1-in. EPS foam and brick,

Fig. 10 for the massive concrete blocks, filled with
Fig. 5. Comparison of the heat-flux simulation results for the corner; 2 � 4

wood-framed wall system.
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Fig. 6. Comparison of the heat-flux simulation results for the 2 � 4 steel-

stud system clear wall.

Fig. 7. Comparison of the heat-flux simulation results for the corner; 2 � 4

steel-stud wall system.

Fig. 9. Comparison of the heat-flux simulation results for the 2 � 6 steel-

stud wall with 2.5 cm [1 in.] EPS foam and brick.

Fig. 10. Comparison of the heat-flux simulation results for the insulated

concrete blocks.

Fig. 8. Comparison of the heat-flux simulation results for the 2 � 4 steel-

stud system wall/floor intersection.

Fig. 11. Comparison of the heat-flux simulation results for the sandwich

wall with metal ties.
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insulation, and Fig. 11 for the sandwich wall with metal

ties. Compatibility of the heat-flux courses here also is

excellent.
6. Conclusions

The method of derivation of the conduction z-transfer

function coefficients from response factors for three-

dimensional wall assemblies gives satisfactory results.

The list of 20 wall assemblies analyzed includes: clear

walls and details of the wood- and steel-framed wall

systems, insulated concrete forms (ICF wall), sandwich

walls with metal and plastic ties, and two-core block

masonry walls, with or without insulation inserts.

The response factors for three-dimensional models were

calculated with the help of the finite-difference computer

code HEATING 7.2, for boundary conditions of the first kind.

They were used as ‘‘input data’’ to determine the z-transfer

function coefficients from the primarily infinite set of linear
ppendix A

omparison of the original dimensionless 3D response factors with those recalculated from the z-transfer function coefficients,

or the 2 � 4 wood-stud wall

Dimensionless response factors R	Xn Dimensionless response factors R	Yn

Recalculated

from cn, dn

R	Xn original

values

R	DXn Recalculated

from bn, dn

R	Yn original

values

R	D Yn

0 7.6488000 7.6488030 �0.0000027 0.1933700 0.1933737 �0.0000037

1 �5.3440320 �5.3440460 0.0000146 0.4215911 0.4215949 �0.0000039

2 �0.8861932 �0.8878742 0.0016811 0.1847053 0.1847107 �0.0000054

3 �0.2442194 �0.2442498 0.0000304 0.0922046 0.0922092 �0.0000046

4 �0.0897458 �0.0897582 0.0000124 0.0494752 0.0494763 �0.0000011

5 �0.0406983 �0.0406981 �0.0000002 0.0268640 0.0268632 0.0000008

6 �0.0205236 �0.0205199 �0.0000036 0.0145756 0.0145795 �0.0000038

7 �0.0108082 �0.0108069 �0.0000013 0.0078935 0.0078996 �0.0000061

8 �0.0057850 �0.0057861 0.0000010 0.0042696 0.0042756 �0.0000060

9 �0.0031149 �0.0031169 0.0000020 0.0023080 0.0023128 �0.0000048

0 �0.0016808 �0.0016829 0.0000020 0.0012473 0.0012508 �0.0000035

1 �0.0009077 �0.0009094 0.0000017 0.0006740 0.0006764 �0.0000024

2 �0.0004904 �0.0004916 0.0000012 0.0003642 0.0003657 �0.0000016

3 �0.0002649 �0.0002658 0.0000009 0.0001968 0.0001978 �0.0000010

4 �0.0001431 �0.0001437 0.0000006 0.0001063 0.0001069 �0.0000006

5 �0.0000773 �0.0000777 0.0000004 0.0000574 0.0000578 �0.0000004

6 �0.0000418 �0.0000420 0.0000002 0.0000310 0.0000313 �0.0000002

7 �0.0000226 �0.0000227 0.0000001 0.0000168 0.0000169 �0.0000001

8 �0.0000122 �0.0000123 0.0000001 0.0000091 0.0000091 �0.0000001

9 �0.0000066 �0.0000066 0.0000001 0.0000049 0.0000049 �0.0000001

0 �0.0000036 �0.0000036 0.0000000 0.0000026 0.0000027 �0.0000000

Mean standard deviation s = 0.000367 Mean standard deviation s = 0.0000032
A

C

f

n

1

1

1

1

1

1

1

1

1

1

2

X

equations, which includes relationships with response factors

and compatibility conditions. For each case, different kinds

of cut off were considered, and minimum-error procedure

was applied while seeking for the solution to satisfy, as best as

possible, the compatibility conditions.

With accuracy of five decimal digits, the maximum index

of a z-transfer function coefficient does not exceeds five. It

was necessary to admit negative values of the coefficients bn

with higher indices for the lightweight wood- and steel-

framed wall assemblies, and for the empty concrete blocks,

to satisfy, with sufficient accuracy, compatibility equations.

For the coefficients cn and dn, the sign sequence is always +

and �, alternately. The ‘‘reversibility test’’ shows very high

accuracy in reproducing response factors from the z-transfer

function coefficients.

Test simulations, performed for a continuously varying

temperature excitation of high amplitude, show perfect

compatibility of the heat flux calculated using the 3-D

response factors and the 3-D z-transfer function coefficients,

derived from the response factors.
Y
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