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A new method for determining optimum dimension ratios for small rectangular rooms has been pre-
sented. In a theoretical model, an exact description of the room impulse response was used. Based on the
impulse response, a frequency response of a room was calculated to find changes in the sound pressure
level over the frequency range 20–200 Hz. These changes depend on the source and receiver positions,
thus, a new metric equivalent to an average frequency response was introduced to quantify the overall
sound pressure variation within the room for a selected source position. A numerical procedure was em-
ployed to seek a minimum value of the deviation of the sound pressure level response from a smooth fitted
response determined by the quadratic polynomial regression. The most smooth frequency responses were
obtained when the source was located at one of the eight corners of a room. Thus, to find the best pos-
sible dimension ratios, in the numerical procedure the optimal source position was assumed. Calculation
results have shown that optimum dimension ratios depend on the room volume and the sound damping
inside a room, and for small and medium volumes these ratios are roughly 1 : 1.48 : 2.12, 1 : 1.4 : 1.89 and
1 : 1.2 : 1.45. When the room volume was suitably large, the ratio 1 : 1.2 : 1.44 was found to be the best
one.

Keywords: room acoustics; small rooms; optimum dimension ratios; room impulse response; frequency
room response.

1. Introduction

In room acoustics, enclosed spaces that have in-
terior volumes in the range from a few cubic meters
to a few hundred cubic meters are classified as small
rooms (Kleiner, Tichy, 2014). Small sizes cause
that room acoustics is dominated by wave behavior
(Meissner, 2016a), thus, a smooth frequency response
at low frequencies is important for the acoustic qual-
ity (Bistafa et al., 2012). A shape of small rooms
is usually rectangular, therefore, acoustic issues typi-
cal for such rooms stem from a flutter echo, amplifi-
cation or attenuation of sound at certain frequencies
and the unwanted sound coloration caused by strong
early reflections (Sevastiadis et al., 2010). These ef-
fects together with improper reverberation parameters
(Meissner, 2016b; 2017) prevent the correct percep-
tion of sound in small rooms such as performance stu-
dios, studio control rooms, listening rooms and lecture
rooms where speech, music, listening or recording is
part of normal use.

In order to obtain smooth frequency response in
rectangular rooms, attempts have been made to clas-
sify room’s low frequency sound distribution with re-
gards to its dimension ratios. Special metrics have been
proposed for the optimal modal response and from
these good dimension ratios have been found. Bolt
(1946) suggested that differences between frequencies
of the successive modes and a mean value in a cer-
tain frequency range is a measure of the regularity of
modal distribution. Using this metric he found the ra-
tio 1 : 1.25 : 1.6 to be the best one. Błaszak (2008)
pointed out that in the Bolt’s criterion the frequency
range that should be taken into account is especially
important. She used in the analysis a frequency range
up to the Schroeder frequency and found the dimen-
sion ratio 1 : 1.2 : 1.4 as particularly recommended. The
study of Sepmeyer (1965) has proved that to mini-
mize the irregularity of modal response one of the fol-
lowing room ratios should be selected: 1 : 1.14 : 1.39,
1 : 1.28 : 1.54 and 1 : 1.6 : 2.33. Louden (1971) assumed
that the distribution of modal frequencies is regular
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when it is very close to the modal spacing of three
dimensional enclosures at high frequency. Such a con-
dition led him to the dimension ratio of 1 : 1.4 : 1.9. In-
vestigations of Milner and Bernhard (1989) verified
and extended the results of Louden. Using the finite
element method they were able to reproduce the ana-
lytical results of Louden to five significant digits and
for the room volume chosen by Louden they found
the optimal dimension ratio as 1 : 1.186 : 1.439.

The metrics based on the pressure frequency re-
sponse take into account and require information on
the source and receiver positions, as well as the damp-
ing properties of the room. Cox and D’Antonio
(2001) and Cox et al. (2004) assumed that the source
and the receiver are located in opposite room cor-
ners and calculated the deviation from a predicted fre-
quency response and a flat frequency response in the
frequency range 20–200 Hz. In the optimization pro-
cedure, room dimensions were changed to achieve the
flattest possible frequency response and obtained re-
sults shown a dependence of the optimum ratios on
the room volume. This method produces the opti-
mum dimension ratio of 1 : 1.55 : 1.85 for a room vol-
ume close to the one selected by Louden and the
general ratio of 1 : 2.19 : 3 which performs well for all
room volumes studied. Another measure of overall fre-
quency response flatness, termed the Variance of Spa-
tial Average (VSA), was proposed by Welti and De-
vantier (2006). To determine the VSA, the mean
sound pressure levels for a number of receiving po-
sitions are calculated for frequencies from the band
of concern, and next the variance of this spatial av-
erage is computed in this frequency band. The VSA
metric has been used to analyze the low-frequency
performance of subwoofer-room systems (Welti, De-
vantier, 2006; Welti, 2012) and to examine the util-
ity of the Bonello criteria (Bonello, 1981) for small
room acoustics (Welti, 2009). Sarris (2011) stud-
ied and compared the various ’optimum’ ratios that
have been found till now and proposed a new method
for determining good room ratios based on the vari-
ance of mean sound pressure index (Sarris, 2014). He
found that the ratio of 1 : 2.19 : 3 provided by Cox et al.
(2004) performs acceptably well for small and larger
room volumes. Rindel (2015) considered the global
frequency response assuming source and receiver posi-
tions in room corners since this placement ensured that
all modes were included in the frequency response. He
used the modal energy analysis to calculate the fre-
quency response and reverberation time in small and
nearly rectangular rooms, but he did not report the
optimized dimension ratios.

This paper presents a numerical method for find-
ing acoustically good dimension ratios for a rectan-
gular room. Such room, termed also in the literature
as a rectangular prism, a rectangular parallelepiped,
a cuboid, a cuboidal room or a shoebox room, rep-

resents the most popular type of rooms in buildings.
A sketch of the rectangular room under study to-
gether with the associated coordinate system is shown
in Fig. 1. The floor of the room is taken to be in
the xy plane and the height along the z axis, and
it is assumed that room dimensions satisfy the rela-
tions: Lx ≥ Ly ≥ Lz. A theoretical model is based
on a modal description of the room impulse response.
The level of sound damping included in the model is
low which is inline with real room conditions where
the low-frequency absorption is usually small. Using
the room impulse response, a frequency response of
a room is calculated and this response is used to de-
termine variations of the sound pressure level inside
a room over the assumed frequency range. Since these
changes depend on the source and receiver positions,
a metric equivalent to an average frequency response is
introduced to quantify the overall sound pressure vari-
ation within the room for a selected source position.
In the numerical procedure, the deviation of the sound
pressure level response from a smooth fitted response
is determined and the task of calculations is to find
such room dimension ratios for which this deviation is
minimal. Simulation data are shown to compare the
effectiveness of the various dimension ratios in creat-
ing a flat frequency response. Based on these results,
the optimum and nearly optimum dimension ratios are
determined.

Fig. 1. A rectangular room under study together with the
associated coordinate system. It is assumed that room di-

mensions satisfy the relations: Lx ≥ Ly ≥ Lz.

2. Low-frequency room response

In the low-frequency range, typical room dimen-
sions are comparable with a length of sound wave.
Therefore, in this frequency limit the method, which
is most appropriate for describing the sound field in-
side a room, is based on the modal representation of
the room impulse response (RIR). The RIR is very
useful in room acoustics because a knowledge of the
RIR function h(r′, r, t), describing the pressure re-
sponse at the receiving point r to the time impulse
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at the point r′ = (x′, y′, z′), enables one to predict the
indoor sound pressure p(r, t) for an arbitrary sound
source. Indeed, by using the RIR function this pressure
can be found from the following expression (Damelin,
Miller, 2012)

p(r, t) =

∫
V

t∫
−∞

q(r′, τ)h(r′, r, t− τ) dτ d3r′, (1)

where V is the room volume, q(r′, τ) represents the vol-
ume source term and d3r′ = dx′ dy′ dz′ is the volume
element. The RIR function is zero for t < τ because
if an impulse occurs at τ , no effects of the impulse
should be present at an earlier time. A method for
finding the RIR function was presented in detail by
Meissner (2016c) and the final result in the form

h(r′, r, t) = c2
∞∑
m=0

e−rmt sin(Ωmt)Φm(r′)Φm(r)

Ωm
, (2)

describes a low-frequency behavior of the room re-
sponse and a chamber-like room behavior characte-
rized by the zero-order room mode. In Eq. (2), c is the
sound speed, the parameters Ωm =

√
ω2
m − r2m with

positive values of m are the modal frequencies, ωm are
the natural frequencies and rm are the modal damping
factors given by

rm =
c

2

∫
S

γ(rs)Φ
2
m(rs) ds, (3)

where γ is the specific wall conductance and rs is a po-
sition coordinate on the surface S of room walls. It is
assumed that γ is small because in the considered fre-
quency range, typical materials covering room walls are
characterized by a weak sound absorption (Kuttruff,
2009). The functions Φm occurring in Eqs. (2) and (3)
represent the mode shape functions for rectangular
rooms which fulfill the orthonormal property in the
room volume V . Thus, at low frequencies, these func-
tions can be approximated by

Φm(r) =

√
εnxεnyεnz

V
cos

(
nxπx

Lx

)

· cos

(
nyπy

Ly

)
cos

(
nzπz

Lz

)
, (4)

where the index ns (s = x, y, z) is a non-negative inte-
ger and εns

= 1 for ns = 0, and εns
= 2 for ns > 0. The

natural frequencies ωm corresponding to these func-
tions are the following

ωm = πc

√(
nx
Lx

)2

+

(
ny
Ly

)2

+

(
nz
Lz

)2

. (5)

The zero-order room mode, which is called the
Helmholtz mode, has the modal indices nx, ny, nz

equal to zero. The natural frequency ω0 for this mode
is zero and the mode shape function has the form
Φ0(r) = 1/

√
V . Thus, the Helmholtz mode does not

represent a typical resonant mode because for this
mode the room behaves like a pressure chamber. The
RIR function for the Helmholtz mode differs from
those for other modes because the zero-order compo-
nent in series in Eq. (2) can be written as

h0(t) =
c2(1− e−2r0t)

2r0V
, (6)

where the damping factor r0 is given by

r0 =
c

2V

∫
S

γ(rs) ds. (7)

Other types of acoustic modes of the rectangular room
are as follows: the axial modes featured by one non-
zero modal index, the tangential modes characterized
by two non-zero modal indices and the oblique modes
with all non-zero modal indices.

The frequency response of the room is defined as
the frequency spectrum of the sound pressure signal
p(r, t) received at the observation point r, when the
room is excited by a point source with a flat power
spectrum. As is well known, the power spectral density
is perfectly flat for the impulse excitation, thus the
volume source term in Eq. (1) is assumed to have the
form

q(r′, τ) = Qδ(r′ − r0)δ(τ), (8)

where r0 = (x0, y0, z0) determines the source position
and the parameter Q, which depends on the source
power W , is given by Q =

√
8πρcW (Kinsler et al.,

2000), where ρ is the air density. From a mathematical
point of view, the frequency response is equivalent to
a Fourier transform of p(r, t). Thus, inserting Eq. (8)
into Eq. (1) one can obtain

P (r, ω) = F [p(r, t)] =

∞∫
−∞

p(r, t)e−jωt dt

= Q

∞∫
0

h(r0, r, t)e
−jωt dt

= Qc2
∞∑
m=0

Φm(r0) Φm(r) ejφm(ω)√
(ω2
m − ω2)2 + 4r2mω

2
, (9)

where F is the Fourier transform and the phase φm(ω)
is determined by

φm(ω) = tan−1
(

2rmω

ω2 − ω2
m

)
. (10)

Equation (9) shows that in the low-frequency range
where individual modes are well separated from each
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other, the room response will contain spectral peaks
at frequencies of these modes. A magnitude of these
peaks depends on the damping of energy in modes
represented by the modal damping factors rm, where
a smaller damping leads to more intense peaks. The
factors rm depend on absorbing properties of a room
and in further analysis it is assumed that room walls
are characterized by the absorption coefficients αi,
where i = 1, 2...6. The absorbing properties of a whole
room is described by the mean absorption coefficient
α given by

α =
1

S

6∑
i=1

αiSi, (11)

where S is the surface of all room walls and Si is the
area of the i-th wall. The relation between αi and the
conductance γi is somewhat complex because it is ex-
pressed by (Kuttruff, 2009)

αi = 8γi

[
1 +

γi
1 + γi

− 2γi ln

(
1 +

1

γi

)]
. (12)

Therefore, when αi is given, the calculation of γi re-
quires the use of a numerical procedure.

3. Numerical method and calculation results

In the low-frequency range, spacings between room
modes on the frequency axis are large causing sub-
stantial peaks and dips in the frequency response. In
order to eliminate this acoustical flaw, the frequency
response of a room should be smooth. Of course, this is
not possible considering the range of sound damping
in typical rooms, therefore, the numerical method is
based on finding such room dimensions that will pro-
vide the flattest possible frequency response. The basis
of numerical procedure is a magnitude of P , i.e., the
amplitude spectrum of room response which depends
on the source and receiver positions r0 and r, as shown
by Eq. (9). Consequently, to employ the concept of op-
timum room dimensions one needs to know in advance
exact locations of source and receiving points. In prac-
tice, the source position r0 is usually well recognized,
however, the receiver location r is not precisely defined
because, as a rule, there are several receiving positions
inside the room. Therefore, it is suggested that for de-
sign purposes it is sufficient to consider the amplitude
spectrum of a mean sound pressure representing the
root mean square pressure inside the room volume V
defined by

Pav(ω) =

 1

V

∫
V

P (r, ω)P ∗(r, ω) d3r

1/2

, (13)

where an asterisk indicates the complex conjugate.
Since the integration with respect to r is performed

over the whole room space, the spatial averaging in-
cludes all possible receiving points. After inserting
Eq. (9) into Eq. (13) and using the orthonormal prop-
erty of the functions Φm, the formula for the pressure
Pav can be found as

Pav(ω) = Qc2

[
1

V

∞∑
m=0

Φ2
m(r0)

(ω2
m − ω2)2 + 4r2mω

2

]1/2
. (14)

Utilizing the pressure Pav, the sound pressure level Lav

can be determined as

Lav(ω) = 20 log [Pav(ω)/P0] , (15)

where P0 = 2 · 10−5 Pa is the reference sound pres-
sure. Based on changes in the sound pressure level Lav

within a given low-frequency band, the best-fit curve
Lc is calculated using the quadratic polynomial regres-
sion and this curve is applied to model the desired flat
shape of a pressure level frequency response. The task
of the numerical procedure is to seek such dimension
ratios Sx = Lx/Lz and Sy = Ly/Lz for which the
deviation of Lav(ω) from Lc(ω) defined by

D =

 1

ωu − ωl

ωu∫
ωl

[Lav(ω)− Lc(ω)]
2 dω


1/2

(16)

is minimal, where ωl and ωu are lower and upper lim-
its of the considered frequency band and Lc(ω) =
Aω2 + Bω + C, where the coefficients A, B and C
are determined via the regression method. Note that
these ratios correspond only to a single source location
because at other source locations optimum dimension
ratios may be different.

A block diagram of the numerical procedure is
shown in Fig. 2. At the beginning of the numerical pro-
cedure one should set input data such as: the room vol-
ume V , the position r0 and the power W of the source
and the mean absorption coefficient α. In the numerical
procedure the volume V is assumed to change from 50
to 300 m3 with the step-size of 25 m3. The source posi-
tion coordinates x0, y0 and z0 may vary within the lim-
its: 0≤x0≤Lx/2, 0≤y0≤Ly/2, Lz/2≤z0≤Lz, because
the mode shape function Φm squared represents the
even function with respect to Lx/2, Ly/2 and Lz/2.
The sound source is assumed to have the power W
of 10−4 W. In the calculation method, the mean ab-
sorption coefficient α is especially important because
when α is known, the absorption coefficients αi can be
determined and subsequently, the specific wall conduc-
tances γi can be found. There is only one requirement:
one needs to know in advance the relation between
the absorption coefficients αi. For example, if αi = αj
for i 6= j, the absorbing material on each room wall
provides the same sound damping. The variable pa-
rameters in the numerical procedure are the dimension
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Fig. 2. Numerical procedure for finding optimum dimension
ratios Sx and Sy for assumed input parameters: the room
volume V , the position r0 and the power W of the source

and the mean absorption coefficient α.

ratios Sx and Sy. When Sx and Sy are selected, the un-
known room dimensions are found from the following
equations

Lz =

(
V

SxSy

)1/3

, (17)

Lx = SxLz, Ly = SyLz. (18)

In the numerical procedure it is assumed that the di-
mension ratios Sx and Sy are from the range 1–4 and
they change with the step-size of 0.01. The aim of
calculations is to find such values of Sx and Sy for
which the deviation D is minimal because it ensures

the flattest possible frequency response. The value of
D is computed in a frequency range with the limits
fl = 20 Hz and fu = 200 Hz using the frequency step
∆f of 0.1 Hz. Thus, a numerical version of Eq. (16) is
the following

D =

{
1

N

N∑
n=0

[Lav(fn)− Lc(fn)]
2

}1/2

, (19)

where N = (fu − fl)/∆f and fn = fl + n∆f . The
computer program calculates the frequency response
up to the frequency 250 Hz. This additional 50 Hz al-
lows the residues from modes in the region 200–250 Hz
to influence the frequency response below 200 Hz.

Numerical tests were carried out for rooms with
uniformly distributed wall absorption. Exemplary
computation results are shown in Fig. 3 to illustrate
a typical dependence of Dm/D on the dimension ra-
tios Sx and Sy, where Dm is a minimum value of D
found for the assumed input data: the room volume V ,
the source position r0 and the absorption coefficient α.
According to the notation method used in the litera-
ture, the dimension ratios will be presented in the form
1 :Sy :Sx. Calculations discovered that this minimum
was achieved for Sx and Sy equal to 2.16 and 1.54,
respectively, and it is illustrated by the dot in Fig. 3.
In order to show differences between optimal and not
optimal cases, in Fig. 4 changes in the sound pressure
level Lav corresponded to the frequency responses for
optimum dimension ratios and for the ratios Sx = 1
and Sy = 1 (a cube-shaped room) are depicted. Dashed
lines in this figure correspond to the fit curves Lc de-
termined via the quadratic polynomial regression.

Fig. 3. Dependence of Dm/D on the dimension ra-
tios Sx and Sy for the source position (x0, y0, z0) =
(0.3Lx, 0.3Ly, 0.7Lz), the room volume V of 100 m3 and
the absorption coefficient α of 0.2. The dot indicates the

optimum dimension ratio 1 : 1.54 : 2.16.
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a)

b)

Fig. 4. Frequency dependence of the sound pressure level
Lav for dimension ratios: a) Sx = 2.16, Sy = 1.54 and
b) Sx = 1, Sy = 1, calculated for the following input
data: V = 100 m3, (x0, y0, z0) = (0.3Lx, 0.3Ly, 0.7Lz) and
α = 0.2. Dashed lines indicate the fit curves Lc computed

via the quadratic polynomial regression.

The numerical procedure was performed for sev-
eral positions of the sound source to find its optimal
position for which the deviation D has the global min-
imum Dg. As it turned out, D reaches this minimum
when the source is located at one of the corners of the
room. That is because in these cases a square of the
shape functions in Eq. (14) is constant for the same
kinds of modes, i.e.

Φ2
m(r0) =


1/V for Helmholtz mode,

2/V for axial modes,

4/V for tangential modes,

8/V for oblique modes.

(20)

This regularity is proved by calculation results in Fig. 5
showing variations of the optimum dimension ratios
Sx and Sy and the ratio Dm/Dg versus x0/Lx for the
room volume of 100 m3 when the source point located
at the room diagonal moves from the corner (0, 0, Lz)
to the room center. These data demonstrate that close
to the room corner (x0/Lx ≤ 0.1) the optimum di-
mension ratios do not change. However, if x0/Lx > 0.1,
there are ranges of x0/Lx in which the ratios Sx and Sy
are approximately constant and simultaneous jumps in
value of these ratios are observed when there is a tran-
sition from one to the next range.

a)

b)

Fig. 5. a) Optimum dimension ratios Sx (white circles) and
Sy (black circles) and b) the ratio Dm/Dg, for the source
point moving along the half of the room diagonal defined
as: 0 ≤ x0/Lx ≤ 0.5, 0 ≤ y0/Ly ≤ 0.5, z0/Lz = 1− x0/Lx.
The room volume V and the absorption coefficient α are

set to 100 m3 and 0.2, respectively.

In the further numerical studies, calculations were
carried out for the sound source located at one of the
optimal positions, namely (x0, y0, z0) = (0, 0, Lz), to
find the optimum room dimension ratios which are
the best possible. Figures 6–8 show examples of nu-
merical data that illustrate the mapped distribution
of the ratio Dg/D as a function of Sx and Sy for three
specific cases. Figure 6 shows the case when, for the
ranges of Sx and Sy considered, there exists only one
distinct maximum in the dependence of Dg/D on Sx
and Sy. The dimension ratio 1 : 1.2 : 1.44 correspond-
ing to this maximum describes therefore optimal pro-
portions of room dimensions. Figure 7 shows the case
when there are two dimension ratios which are accept-
able: the optimum dimension ratio 1 : 1.47 : 2.12 (a dot
denoted by 1) and the dimension ratio 1 : 2.55 : 3.44
corresponding to the local minimum of the deviation
D for which the ratio Dg/D is larger than 0.95 (a dot
denoted by 2). The ratios satisfying this condition are
fully usable, and therefore in the rest part of the pa-
per they will be identified as nearly optimal. Figure 8
depicts calculation data where even three dimension
ratios are plausible from practical viewpoint. A dot
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Fig. 6. Dependence ofDg/D on the dimension ratios Sx and
Sy for the optimal source position (x0, y0, z0) = (0, 0, Lz),
the room volume V of 300 m3 and the absorption coefficient
α of 0.2. The dot indicates the optimum dimension ratio

1 : 1.2 : 1.44.

Fig. 7. Dependence ofDg/D on the dimension ratios Sx and
Sy for the optimal source position (x0, y0, z0) = (0, 0, Lz),
the room volume V of 50 m3 and the absorption coefficient
α of 0.2. A dot denoted by 1 indicates the optimum dimen-
sion ratio 1 : 1.47 : 2.12, whereas a dot denoted by 2 corre-
sponds to the nearly optimum dimension ratio 1 : 2.55 : 3.44

(Dg/D = 0.975).

with the number 1 indicates the optimum dimension
ratio 1 : 1.2 : 1.45, whereas dots denoted by 2 and 3
correspond to the nearly optimum dimension ratios
1 : 1.4 : 1.88 and 1 : 1.47 : 2.1. Such order of nearly op-
timum dimension ratios results from the fact that the

Fig. 8. Dependence ofDg/D on the dimension ratios Sx and
Sy for the optimal source position (x0, y0, z0) = (0, 0, Lz),
the room volume V of 150 m3 and the absorption coef-
ficient α of 0.2. A dot denoted by 1 indicates the opti-
mum dimension ratio 1 : 1.2 : 1.45, whereas dots denoted
by 2 and 3 correspond to the nearly optimum dimen-
sion ratios 1 : 1.4 : 1.88 (Dg/D = 0.998) and 1 : 1.47 : 2.1

(Dg/D = 0.964).

value of Dg/D for the first ratio is greater than for the
second one.

In Table 1 the most important calculation results
are collected to illustrate the impact of the room vol-
ume V and the absorption coefficient α on the op-
timum and nearly optimum room dimension ratios.
These data show that for the ranges of V and α as-
sumed in numerical tests there exist only three differ-
ent optimum dimension ratios. To facilitate the iden-
tification of these ratios, they are denoted by yel-
low, green and cyan colors. Since parameters Sy and
Sx slightly change for these ratios, the mean value
1 :Sy :Sx is defined where Sy and Sx represent arith-
metic means of Sy and Sx, respectively. The first di-
mension ratio is indicated by the yellow color. This
ratio is identified as optimal for the smallest room vol-
umes: 50–100 m3 and partially 125 m3, and it is char-
acterized by the mean value 1 : 1.48 : 2.12. The second
ratio, denoted by the green color, is recognized as op-
timal for the room volume 125 and 150 m3 only and it
has the mean value 1 : 1.4 : 1.89. The third ratio is op-
timal for a wide range of room volumes: 150–300 m3,
and 1 : 1.2 : 1.44 is its mean value. As may be noted,
depending on the room volume and the absorption
coefficient, the above mentioned ratios can also rep-
resent nearly optimum dimension ratios. The last two
ratios obtained via the proposed numerical method are
roughly 1 : 2.52 : 3.41 and 1 : 1.45 : 3.54, and they are
only nearly optimum dimension ratios.
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Table 1. Optimum and nearly optimum dimension ratios versus the room volume V and the absorption coefficient α.

V [m3]
Absorption coefficient α

0.1 0.15 0.2 0.25 0.3

1 : 1.44 : 2.10 1 : 1.46 : 2.11 1 : 1.47 : 2.12 1 : 1.49 : 2.14 1 : 1.5 : 2.14

50 1 : 1.20 : 1.45 1 : 2.53 : 3.43 1 : 2.55 : 3.44 1 : 2.55 : 3.43
1 : 2.47 : 3.37

1 : 1.46 : 2.11 1 : 1.47 : 2.12 1 : 1.48 : 2.13 1 : 1.50 : 2.14 1 : 1.51 : 2.14

75 1 : 1.20 : 1.45 1 : 1.42 : 1.93 1 : 1.42 : 1.94

1 : 2.44 : 3.33 1 : 2.52 : 3.42 1 : 2.55 : 3.44

1 : 1.46 : 2.11 1 : 1.47 : 2.12 1 : 1.48 : 2.12 1 : 1.49 : 2.11 1 : 1.50 : 2.11

100 1 : 1.45 : 3.54 1 : 1.41 : 1.92 1 : 1.42 : 1.93 1 : 1.42 : 1.93 1 : 1.42 : 1.93

1 : 1.20 : 1.45

1 : 1.46 : 2.11 1 : 1.46 : 2.10 1 : 1.41 : 1.91 1 : 1.41 : 1.90 1 : 1.41 : 1.90

125 1 : 1.20 : 1.45 1 : 1.41 : 1.92 1 : 1.47 : 2.11 1 : 1.48 : 2.08 1 : 1.49 : 2.07

1 : 1.45 : 3.54 1 : 1.20 : 1.45

1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.40 : 1.87 1 : 1.39 : 1.86

150 1 : 1.45 : 2.10 1 : 1.39 : 1.89 1 : 1.40 : 1.88 1 : 1.20 : 1.46

1 : 1.46 : 2.10 1 : 1.47 : 2.10

175
1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.20 : 1.46

1 : 1.40 : 1.86

200 1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.20 : 1.45 1 : 1.19 : 1.44 1 : 1.20 : 1.45

225 1 : 1.20 : 1.45 1 : 1.19 : 1.44 1 : 1.19 : 1.44 1 : 1.19 : 1.44 1 : 1.19 : 1.44

250 1 : 1.20 : 1.44 1 : 1.19 : 1.44 1 : 1.19 : 1.44 1 : 1.19 : 1.44 1 : 1.19 : 1.43

275 1 : 1.20 : 1.44 1 : 1.20 : 1.44 1 : 1.19 : 1.43 1 : 1.19 : 1.43 1 : 1.19 : 1.43

300 1 : 1.20 : 1.44 1 : 1.20 : 1.44 1 : 1.20 : 1.44 1 : 1.19 : 1.43 1 : 1.19 : 1.43

4. Summary and conclusions

A new method has been presented for determin-
ing optimum dimension ratios for rectangular rooms.
A theoretical model is based on the exact description
of the room impulse response which allowed an easy
prediction of the frequency response of a room. This
response accounts for the source and receiver positions
within the room, therefore, a new metric equivalent to
an average frequency response was introduced. This re-
sponse quantifies the overall sound pressure variation
inside the room and is representative of the evenness
of the frequency response among the different receiv-
ing positions. Based on changes in this response within
the assumed frequency band, a best-fit curve was cal-
culated using the quadratic polynomial regression and
this curve was used to model the desired shape of the
frequency response.

The indicator of room quality was defined as the de-
viation of the actual average frequency response from
a smooth fitted response and the requirement, that this
deviation is minimal, was the criterion for optimum di-
mension ratios. The influence of source position on the
irregularity of the frequency response has been exam-
ined and most smooth responses were obtained when

the source was located at one of the eight corners of
a room. In the final numerical procedure, the optimal
source location was assumed to find the best possible
room dimension ratios and their dependence on the
room volume and the absorption coefficient.

Calculation results have demonstrated that for
small and medium room volumes (V ≤ 150 m3) and
the mean absorption coefficient α from the range 0.1–
0.3 the optimum dimension ratios are 1 : 1.48 : 2.12,
1 : 1.4 : 1.89 and 1 : 1.2 : 1.45 on average. The first result
matches quite well with the ratio 1 : 1.6 : 2.33 recom-
mended by Sepmeyer (1965) whereas the second one
is almost identical to that found by Louden (1971).
The third result is very close to the dimension ratios
1 : 1.186 : 1.439 and 1 : 1.2 : 1.4 obtained by Milner and
Bernhard (1989) and Błaszak (2008). It is worth
noting that the change of one optimum ratio to the
next one is gradual. Thus, the above mentioned op-
timum dimension ratios can also represent the nearly
optimum dimension ratios. This finding is important
from the practical viewpoint because an irregularity of
the frequency response for the nearly optimum dimen-
sion ratio is at most 5% bigger than for the optimum
one, thus, it represents a good alternative for this ra-
tio. For rooms with the volume from 175 to 300 m3,
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only the ratio 1 : 1.2 : 1.44 was found to be the best
one, therefore, it is recommended for room design in
the range of larger room volumes.
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