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Abstract: Emerging microfluidic technology has introduced new precision controls over reaction
conditions. Owing to the small amount of reagents, microfluidics significantly lowers the cost of
carrying a single reaction. Moreover, in two-phase systems, each part of a dispersed fluid can be
treated as an independent chemical reactor with a volume from femtoliters to microliters, increasing
the throughput. In this work, we propose a microfluidic device that provides continuous recirculation
of droplets in a closed loop, maintaining low consumption of oil phase, no cross-contamination,
stabilized temperature, a constant condition of gas exchange, dynamic feedback control on droplet
volume, and a real-time optical characterization of bacterial growth in a droplet. The channels
(tubing) and junction cubes are made of Teflon fluorinated ethylene propylene (FEP) to ensure
non-wetting conditions and to prevent the formation of biofilm, which is particularly crucial for
biological experiments. We show the design and operation of a novel microfluidic loop with the
circular motion of microdroplet reactors monitored with optical sensors and precision temperature
controls. We have employed the proposed system for long term monitoring of bacterial growth
during the antibiotic chloramphenicol treatment. The proposed system can find applications in a
broad field of biomedical diagnostics and therapy.
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1. Introduction

Since its emergence in the early 1980s, microfluidics has expanded rapidly as a multidisciplinary
area of scientific and technical research, covering the fluid dynamics at the microscale and its various
applications in biology, chemistry, and medical diagnostics [1,2]. The small volumes of fluids contained
in droplets are large enough to be fully functional chemical reactors [3,4], making the chemical
processes unaffected by downscaling [5].

The robust development of biochemical and clinical applications [6–8] of microfluidic technology
prompts the development of novel microdevices that make the microfluidic systems even more
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versatile. Current microfluidic devices should not only operate on small amounts of reagents, but also
be portable, precise, cost-effective, programmable, and offer new capabilities to carry out a variety
of laboratory operations, either subsequently or simultaneously (in parallel) [2,9]. This approach is
widely used in modular microfluidic systems, such as swappable fluidic modules [10–13], a Lego-like
modular microfluidic platforms [13–15], and 3-D modular microfluidic devices [16–18]. They are all
designed for biological and chemical applications.

Microfluidic techniques are a powerful tool and are currently used for cell studies. They enable
high-throughput analysis and precise manipulation of reagents in the vicinity of cells [19].
Manipulation of droplets is possible due to high-quality droplet generations, their merging, analysis,
mixing, and sorting [4,20–22]. Both mammalian cells as a single cell analysis [23] and bacteria as
cell cultures [4] are currently studied in droplet microfluidics. Using microfluidic devices, simple
monodisperse droplet generation with cells were developed [24,25] through single-cell analysis, as well
as [19,26] selective encapsulation and [27–29] long-term incubation of cells [1,22,30].

Moreover, in the literature, we can find classical microfluidic loops (a microchannel splitting
into two branches, which are combined next) designed to study the chaotic dynamics of flowing
droplets [31,32], as well as a loop reactor assembled to conduct a multistep reaction with the aqueous
phase [33].

We thus present a versatile capillary-based fluidic system, which allows for: (a) closed-loop
droplet recirculation with low consumption of the continuous phase, (b) no cross-contamination
and dynamic feedback control on droplet size, (c) integrated real-time optical characterization of
droplet size and bacterial growth in a single droplet, (d) a minimization of the risk of liquid spillage
to the environment. Unlike other solutions, the examined drops in the presented system move all
the time during the incubation process. The continuous phase is not waste, but it is in continuous
recirculation; this distinguishes the presented solution from others presented in the literature. The only
oil consumption (1 mL for the entire screening) during the experiment occurs when pulling out the
droplets for further analysis. Other solutions presented in the literature suggest a waste of the oil phase
when correlated with flow rate, and are ordered in ~mL per hour [4,22,34]. Moreover, our system
of continuous droplet recirculation sorts out the most challenging cross-contamination problem [35]
between droplets and oil as well as droplets and the surface of the microfluidic device.

2. Materials and Methods

2.1. Reagents

The continuous phase consisted of hydrofluoroether 7500 (HFE-7500) (Semicon, Warsaw, Poland)
with a 3% w/w of 1H, 1H, 2H, 2H-Perfluoroctanol (Sigma-Aldrich, Poznan, Poland), a viscosity of
µo = 1.24 cP (1 cP = 1 mPa·s), and an oxygen solubility larger than 100 mL of gas per 1 L of liquid at
1 bar of air pressure at 35 ◦C [36].

The dispersed phase consisted of fresh Luria-Bertani Broth (LB Broth, Biocorp, Warsaw, Poland)
and the suspended bacterial culture strain Escherichia coli (ATCC 35218). The prepared stock solution
of microorganism contained 30% glycerol (Sigma-Aldrich, Poznan, Poland) and was stored at −80 ◦C.
At the beginning of experiments, cells were streaked on LB agar plates, which were then incubated
overnight at 37 ◦C. After that, an individual colony was used to inoculate fresh LB medium, which was
placed for overnight incubation at 37 ◦C and shaking at 200 rpm. Finally, aliquots were transferred to
fresh LB media and grown until the absorbance at 600 nm reached 0.1. The culture was diluted tenfold
before transferring into droplets.

The antibiotic stock of chloramphenicol (Roth, Warsaw, Poland) was prepared before experiments
using 50% (v/v) aqueous solution of ethanol. The initial concentration of stock was 20 mg/mL. Next,
the solution was sterilized with a syringe filter (Celltreat, Mixed Cellulose Ester (MCE) membrane,
0.22 µm pore size, 30 mm diameter). Before conducting the experiments, we diluted antibiotic stocks
in LB broth to the concentration of 10 µg/mL and transferred the drug solution to the inlet of our
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device. The concentration of the antibiotic was subsequently dosed during the merging of droplets in
Teflon fluorinated ethylene propylene (FEP) tubing.

A solution of 10% (v/v) red (Watchman, Warsaw, Poland) and water was used to observe the
circulation (Video S1) of droplets in a loop.

2.2. Microchip Fabrication

The proposed microfluidic chips were based on the capillary tubing (Teflon FEP tubing, Dolomite,
Royston, UK, internal diameter 0.8 mm, outer diameter 1.6 mm) and three types of components (cubes):
T-junctions, X-junctions, and adapters (Figure 1a). Cubes were 10 mm wide, 10 mm long, and 3 mm
thick and were prepared in a Teflon FEP sheet [12] (Figure 1b). They were entirely matched by drilling
with the applied capillary tubing (Figure 1c). In order to ensure mechanical stability of connections
between the Teflon FEP capillary tubing and connectors, the diameters of milled holes in the connectors
were 0.04 mm smaller than the outer diameter of the tubing.
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diameter of the tubing. In turn, the second through-hole was fit to the optic fiber (FG105LCA, 
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Figure 1. (a) Drilled/milled simple connectors, holding fibers and tubes. (b) Five different connectors:
three T-junctions (1, 3, 4), a cross (X)-junction (5), and an adapter (2). (c) Dimensions of the
T-junction unit. (d) The sensor cube that supports optical fibers connected with a light source and
a photodetector designed for absorbance (optical density) measurements. (e) Dimensions of the
sensor cube. (f) Polycarbonate frame (supporter) for the microfluidic system (support for tubing
shown). (g) Assembled and operating T-junction—we used three tubes and one T-junction unit.
(h) Droplet-on-demand section of the system that enables merging droplets from three T-junctions.
Teflon holders (white drilled cuboids) support fibers to detect the position of a droplet to stop/switch
the flow in the tubing at the appropriate time.

Moreover, to measure the absorbance—or the optical density—in droplets, as well as the lengths of
droplets and the distance between them, we used custom-made cubes of Teflon with two perpendicular
through-holes (Figure 1d,e). The diameter of the through-holes was fit to the outer diameter of the
tubing. In turn, the second through-hole was fit to the optic fiber (FG105LCA, Thorlabs, Newton, NJ,
USA). The optic fibers were used to connect with an external optical photodetector (TSL257 family,
Taos, Plano, TX, USA) and the LED source of light (HMIB-44WY-TR7, Huey Jann Electronics, Taichung,
Taiwan). That component can be freely placed along the tubing, enabling to mount it at different
positions (Figure 1h).
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To immobilize the system and fix the positions of optical sensors, we applied the polycarbonate
frame (supporter) (Figure 1f). The supporter had a 1.6 mm wide square cross-section channel, which
was milled for tubing and had appropriate holes cut for connectors and sensors.

The droplets during the water phase (ink solutions, bacteria medium, LB broth, or
chloramphenicol solutions) were produced and introduced to the loop using the droplet-on-demand
(DOD) section [22,37], and built with cubes and tubings (Figure 1g,h and Figure 2a). We applied
three droplet-on-demand generators (Figure 2a, droplet-on-demand section) to the system that were
equipped with deposition ports for different reagents. Each droplet-on-demand generator had two oil
valves. One controlled the oil phase, which cut the droplet at the T-junction and pushed it further, and
the second allowed a certain amount of the reagent to be dispensed into the system. In the described
experiments, we simultaneously formed three droplets that contained the following: (a) an LB broth,
(b) a bacterial culture, and (c) a chloramphenicol to merge them in varying proportions to a droplet
with a fixed volume. To obtain high precision in the volume of formed droplets, we used feedback
from the camera (uEye UI-3140CP-C-HQ Rev.2, IDS, Mannheim, Germany). It enabled us to stop the
flow when formed droplets met the required volume. This approach allowed us to generate a droplet
of a given length (volume) based on the signal from the image analysis. As a result, the final droplets
were always the same volume, with an accuracy of up to ~0.1%. The so-called unwanted droplets,
which were usually at the beginning of the tests, were removed as a result of the disconnection between
connector cubes with tubings.
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Figure 2. (a) Scheme of the microfluidic system. It consisted of the droplet-on-demand section,
three parts of the capillary tubing connected to each other (forming loop), and pressurized oil containers
with T-junctions. (b) The sequential turning of the two-state valves placed on the connectors to
pressurized containers provided a constant orientation of the motion of droplets inside the loop.
The switching of the valves had been selected in such a way as to ensure the circulation of droplets
following the clockwise direction. Arrows on the channels show the direction of oil flow. X indicates
no flow.
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In order to achieve a continuous circulation of droplets, we divided the loop into three identical
parts, each a 50 cm long loop of tubing, and connected to each other with pressurized containers of the
continuous phase using T-junctions cubes (Figure 2a, Video S1). These three sections were a minimal
division of the system that allowed for continuous circulation of droplets, although the number of
sections were increased for specific requirements. After the introduction of droplets into the loop, we
followed the LabWindows protocol: (a) read the signal from detectors placed before the connector to
each part of the loop, (b) switch the output of the system to the end of the section where droplets flow
in, (c) switch the source of flow to the end of the section from where droplets flow out, (d) open/close
appropriate valves in order to achieve the desired direction of flow of droplets (Figure 2b). The loop
enabled continuous circulations of droplets without changing the flow direction of droplets.

At the beginning of each experiment, the whole system was sterilized with an autoclave.

2.3. Automation

The central part of the control system was the multifunction electronic device (PCIe-6321, National
Instruments (NI), Austin, TX, USA) called a card, which was programmed in LabWindows (National
Instruments). Digital outputs of the card were used to control the fifteen bistable valves (V165,
equipped with Z070D coils, Sirai, Bussero, MI, Italy), according to convention (high voltage, an open
valve; low voltage, a closed valve). Electromagnetic and piezoelectric devices were used as valves. The
analogue inputs of the card were used to monitor the signals from the light-to-voltage sensors (TSL257,
Taos, Plano, TX, USA) and operated at a frequency 10 kHz. This approach allowed us to use the sensors
in the dispersed phase as indicators of droplet flow and detectors of light absorption, but only after
the integration of the intensity (power) of light passing through a droplet. The pressure in the oil
containers was controlled by employing pressure regulators (Bosch Rexroth PR1-RGP, Lohr, Germany)
and monitored with the use of digital manometers (AZ 82100, AZ Instruments, Taichung, Taiwan)
connected with PC via RS-232 standard. The temperature was stabilized within the range of 0.1 ◦C in a
thermostatic Styrofoam box. The whole microfluidic system was immersed in distilled water. The flow
of the continuous phase was driven by a stable pressure difference (phigh − plow = 100 ± 0.01 mbar)
between two containers. The generation of droplets was aided with an edge-detection algorithm
based on the image analysis [38] provided by the digital camera (uEye UI-3140CP-C-HQ Rev.2, IDS,
Mannheim, Germany). The camera tracked the process of droplet generation with a volume accuracy
of ~0.1%. The inaccuracy of the detection of droplet edges was 5 µm.

3. Results and Discussion

3.1. Motion of Fluids in the Loop

The motion of fluids in the microfluidic loop was governed by pressure differences between
containers in the continuous phase that were connected with the main loop using T-junctions,
and two-state (open/close) bistable valves (Figure 2a). The sequential opening and closing of valves
provided a constant orientation of pressure gradients along two segments of the loop. This allowed
for an uninterrupted motion of droplets in the system (Figure 2b). The timing of the valves opening
and closing was controlled by the electronic feedback loop, which was based on the measurements of
droplet position, provided by optical sensors or by the camera. The timing was adjusted dynamically,
and the motion of droplets was unaffected by any changes in the rheology of flow due to the
altered viscosity (an increase of the hydrodynamicresistance of droplets [39]) during the progress of
the reaction.

As described in the Materials and Methods section, the tubing that connected the main loop with
pressure containers was characterized with an ID of 0.8 mm. In comparison to systems that require
long thin capillaries to work properly, our solution lowered the hydrodynamic resistance of the whole
system [4,22]. Therefore, the pressure difference required to induce motion of the fluids was lower than
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typical microfluidic devices and equaled ∆p = 100 mbar, which lowered the technical requirements for
running the microfluidic loop.

The assembled system was also subjected to tests for pressures higher than 100 mbar. The tightness
and leakage of the whole system tested both for air and HFE-7500. To easily visualize the leakage
problem, the entire system was immersed in water. As a result, for both air and oil phase, the described
connections operated efficiently up to a pressure difference of 2.5 bar. The system had to manage
without leakage for at least ten hours to confirm tightness.

3.2. Time Evolution of Droplets

We measured both the volume and distance between ten droplets flowing sequentially (a train
of droplets) in the described loop for 144 h. This translates into 8640 laps of droplets (one lap per
minute). The volume of a droplet was estimated from its shape with the use of the image analysis [38].
The droplets never stopped in the loop, and the whole system was immersed in water, where it was
thermostated and achieved a stable temperature condition at 37 ◦C. The obtained results confirmed
the constant volumes of droplets as well as a fixed distance between them (Figure 3). The stable
mechanical conditions ensured the constant spacing between droplets. Thus, it was not required to
use an additional dispersed phase to separate droplets [40].
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Figure 3. The time evolution of the droplet volume and the distance between droplets circulating in
the microfluidic closed loop. For both parameters, the size of the point corresponded to the standard
deviation, which was calculated from a sample containing ten droplets flowing in a loop. Since no
changes of volume or distance were observed, one can conclude that the motion of droplets in the
microfluidic loop was stable even on large time scales.

3.3. The Bacterial Growth in Closed Loop Circulation

In order to demonstrate the potential of the closed loop circulation for long-term incubation, we
cultured bacteria inside droplets during an experimental series. In real-time we measured the optical
density (OD) of the sample over the period of 336 h (14 days). The experiment was conducted for thirty
droplets (each with a volume of 5 µL) to obtain solid growth curves. To underline the advantages of
presented solutions to bacterial culture, we compared the growth of bacteria breeding in 30 droplets
that flowed back and forth in 1 m long FEP tubing. The detectors were responsible for the measurement
of the optical density and were placed in the middle of tubing, whereas the detectors placed on the
edge of the capillary were responsible for measuring the change of oil flow direction. The outcome
was that the OD averaged over 30 samples (Figure 4).

As shown in previous reports [39,41,42], the droplets of the dispersed phase moved inside the
circular capillary faster than the continuous phase. There was a thin film of oil between a droplet and
the wall of the tubing, so that the droplet had a smaller diameter than the diameter of the tubing [42].
Therefore, a droplet’s surrounding is continuously exchanging in circular cross-section channels.
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This effect was beneficial because the continuous phase was used as a carrier of oxygen or other
substances needed to run the reactions inside droplets [43]. It was shown that the continuous phase of
oxygenated oil amplified bacterial growth in the water phase [44]. In the presented loop-circulation,
droplets had contact with fresh oil, which was continuously changing between containers and tubing.
In contrast, the droplets that flowed back and forth in tubing with the same oil was more oxygen-poor
after each cycle [43]. Therefore, the droplets that flowed in the loop had a better gas exchange between
the water phase and oil phase (Figure 4).
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3.4. Influence of Chloramphenicol on Bacterial Culture

The experiment was also conducted to discover different antibiotic concentrations in order to
determine the effect of its presence on the growth of bacterial culture. We prepared the sequence of
30 droplets, containing chloramphenicol [45] from 0.0 µg/mL to 0.9 µg/mL, with six droplets at each
concentration. The recorded growth curves are presented in Figure 5.Micromachines 2018, 9, x FOR PEER REVIEW  8 of 11 
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Figure 5. The bacterial growth curves for a long-term incubation inside a droplet for different
concentrations of chloramphenicol (CHL).

The bacterial strain belonged to a slow-growing strain. So far, no slow-growing strain had been
continuously recorded under the following breeding conditions: a gas exchange between the medium
in a droplet and oil, as well as excellent mixing in a droplet and stable temperature. The growth curves
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in Figure 5 show: (a) the rapid adaptation of microorganisms to culture conditions (a short lag phase,
almost not observed), (b) the stable exponential phase, (c) the short stationary phase, and (d) the death
phase where the rate depends on the antibiotic concentration just like for the exponential phase.

3.5. Verifying the Lack of Cross-Contamination of Tubing Walls during the Continuous Phase

We also verified whether the long-lasting presence of microorganisms in droplets lead to the
contamination of the inside of capillaries (biofilm formation) or the continuous phase (crossing of the
water-oil interface) with biological material. After the removal of the oil in the continuous phase, it was
mixed with fresh LB broth and incubated for two days. After incubation, the medium was spread on
ten LB agar plates (smear test). In an experiment, no growth of bacteria was observed.

Next, we prepared 30 of 5 µL microdroplets, containing LB growth media, and recirculated them
for two weeks with the use of the same oil as in previous experiments. We did not observe any OD
increase in any of the 30 droplets that were initially free of bacteria. In addition, when repeating the
previous experiments with a different chloramphenicol concentration but the same oil, we reproduced
the results in the limit of statistical error.

With the use of the confocal microscopy, the surface of the microchannel was also checked for
biological contaminants. During the tests, no remaining biofilm were found in the system.

We conclude that no contamination occurred in the presented system. It was proven that oil in
the loop could be reused and adsorption of microorganisms on the tubing wall [46] was absent.

4. Conclusions

We have presented the design of a novel circular microfluidic loop, which enables an
uninterrupted cycling of a dispersed phase using three pressurized continuous phase containers
that support the loop upon the sequential switching of valves. The system is particularly suitable for
chemical, biological, and biotechnological experiments (PCR, microorganisms incubation, etc.) as it
prevents cross-contamination and the formation of biofilms. This is achieved by using hydrophobic
materials in the construction of the loop (Teflon FEP) and enforcing the continuous motion of droplets
without any physical contact of a droplet within the channel walls [47].

Additionally, the design of our system allows for an increase in the throughput (i.e., the number
of droplets circulating in the loop solely by changing the length of the section). The set of three
pressurized containers and system of valves that induce the motion of the fluid remain unchanged.
This feature provides a simple scaling of the system without building up the laboratory equipment
needed for its operation. Therefore, it can be tailored to the specific needs of an experiment. Moreover,
the possibility of changing the length of the loop simplifies the construction of setups that require
changes of the temperature reaction, like PCR reactions. In such a case, the system can be locally heated
by infrared radiation, and the time of heating optimized for the efficiency of the reaction determined
solely by the geometry of the system (this, however, is a work in progress).

The system also provides the real-time monitoring of the reaction’s progress. The loop is a facile
platform for long-term experiments, including monitoring of antibiotic treatment. We have confirmed
in a two-week incubation of bacteria that no contamination occurred to the microfluidic system or the
oil acting as the continuous phase. Therefore, there is no need for replacing the oil after the experiment,
which reduces the cost of a single experiment down to the cost of water reagents of the reaction and
minimizes the risk of spillage of liquids to the environment.

Supplementary Materials: The following are available online at http://www.mdpi.com/2072-666X/9/9/469/s1,
Video S1: The circulation of droplets in a loop.
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