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ABSTRACT: The application of coarse-grained (CG) models in
biology is essential to access large length and time scales required for
the description of many biological processes. The ELNEDIN protein
model is based on the well-known MARTINI CG force-field and
incorporates additionally harmonic bonds of a certain spring constant
within a defined cutoff distance between pairs of residues, in order to
preserve the native structure of the protein. In this case, the use of
unbreakable harmonic bonds hinders the study of unfolding and folding
processes. To overcome this barrier we have replaced the harmonic
bonds with Lennard−Jones interactions based on the contact map of the native protein structure as is done in Go̅-like models.
This model exhibits very good agreement with all-atom simulations and the ELNEDIN. Moreover, it can capture the structural
motion linked to particular catalytic activity in the Man5B protein, in agreement with all-atom simulations. In addition, our
model is based on the van der Waals radii, instead of a cutoff distance, which results in a smaller contact map. In conclusion, we
anticipate that our model will provide further possibilities for studying biological systems based on the MARTINI CG force-field
by using advanced-sampling methods, such as parallel tempering and metadynamics.

1. INTRODUCTION
Computer simulations of proteins have contributed significantly
to a better understanding of their structure and function by
employing models that span a range of time and spatial scales.
However, a higher spatial resolution of a model comes at the
expense of higher computational cost, in this way restricting
significantly the time scales accessible to simulation. To
overcome this barrier, coarse-grained (CG) models for proteins
have been developed in order to enable larger time and length
scales in a simulation. In particular, CG models attempt to
reduce the degrees of freedom of all-atom (AA) models by
substituting a group of atoms with a single interaction site
without loss of significant information that lies originally within
the AA modeling of a system. A well-established CG model in
the literature is the MARTINI force-field, which provides well-
parametrized and transferable interaction potentials for
proteins, as well as for a number of different molecules, for
example, polymers, lipids, DNA, and others.1−6 Advanced
computational techniques that aim to couple AA and CG
models, such as multiple resolution schemes for water
molecules have employed this CG model due to its accuracy
in reproducing atomistic results.7 The success of MARTINI
force-field is not only due to its capabilities to reformulate the
AA force-field for a number of different molecules but also due
to the intrinsic speed-up compared to AA simulations. For
example, a time-scale speed-up factor of 4 has been estimated
based on the diffusion dynamics of MARTINI water molecules
compared to the atomistic single point charge model (SPC)
water8 or the case of peptide aggregation-rate of lipids into a

bilayer.9 Moreover, one may expect the whole dynamics of this
CG model to become faster, due to the smaller number of
particles in the CG model and the use of “softer” (CG)
potentials than in the case of AA models. This results eventually
in a quicker exploration of the phase space of the system and
the possibility of using larger time steps in simulations for the
integration of the equations of motion. Obviously, it is very
difficult to quantify the speed-up in terms of a single conversion
factor and generalize it for other systems, due to the multitude
of length and energy scales involved in biological systems.7,10

In the case of proteins, the elastic network (EN) approach
has been incorporated into the MARTINI force-field, in order
to preserve the native structure of the protein.11 To this end,
the latest implementation of the EN strategy in the MARTINI
force-field for proteins is the so-called ELNEDIN protein
model.12 In particular, ELNEDIN preserves the structure of a
protein by adding harmonic bonds with a certain spring
constant between Cα-atoms based on a cutoff criterion.
However, the use of harmonic bonds prohibits studies of
systems involving protein unfolding, which may restrict the
possible applications of the MARTINI force-field for biological
systems involving proteins. Moreover, including the harmonic
bonds for nearest neighbor residues may increase significantly
the number of interactions in the model (see Figure 1). In
addition, there is no physically motivated criterion that
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identifies the important contacts in the native structure of the
protein.
Here, we have substituted the EN approach in the

ELNEDIN protein model with Go̅-like contact maps, which
are mainly based on atomic overlaps.13−18 In the Go̅-like
approach, some CG beads located at the positions of the Cα-
atoms interact with a potential, which is often a Lennard−Jones
(LJ). The selection of the Cα-atom pairs is based on the contact
map, which is constructed from the native structure of the
protein. In the MARTINI force-field, interactions are generally
taken between groups of CG particles divided as polar (P),
intermediately polar (N), apolar (C), and charged (Q). The
first three types of interactions are represented by LJ potentials,
whereas the last one is described by a Coulomb potential. The
Go̅-like interactions here are implemented as an additional set
of LJ pairs. The main advantage of using such an approach is
the ability to break the bonds based on the native contacts, as
the harmonic bonds are replaced with LJ interactions. In this
way, the model may allow for efficient sampling of unfolded
states based on a statistical analysis of independent trajectories
or advanced-sampling simulation protocols,19 such as replica
exchange,20 metadynamics,21 etc. Moreover, the Go̅-like
approach has been very successful in studying stretching and
folding of proteins.19,22 In the past, a few attempts have been
carried out to explore large conformation changes in proteins
based on the MARTINI force-field, for example, the study of
the conformational flexibility of leucine binding protein and the
gating mechanism of trans-membrane helices.23,24 In this case,
each single protein component is based on the ELNEDIN
approach. As a result, no change at the level of the native
structure for each single protein domain was possible, and only
transitions due to the rearrangement of domains were allowed
to take place. To this end, large conformations transitions
occurring in protein folding and stretching cannot be studied by
the ELNEDIN model due to the presence of harmonic bonds
between amino acids in the EN, while further modifications of
the structure-based patterns could provide possibilities of
improving the sampling of unfolded states in a Go̅-like
approach.25 Moreover, the additional LJ bonds are not added
simply based on a cutoff criterion as in the EN approach, but
according to the contact map based on the size of heavy atoms.
As a result, the number of Go̅ bonds are almost half of what is

required in the ELNEDIN model leading to a smaller number
of interactions in the CG model. In addition, there is a number
of different approaches to the contact map based on structural
and chemical criteria, which could offer further improvement to
the identification of the important contacts to be included in
the model, as has been shown recently for a specific contact
map.13,26

This paper presents the implementation of two contact maps
in the MARTINI force-field in place of the EN approach. We
have also explored the possibility of replacing the harmonic
bonds in the EN approach with Go̅-type LJ interactions.
Moreover, we compare our simulation method with simulations
based on ELNEDIN and AA modeling for several proteins,
while discussing advantages and disadvantages of the method,
as well as future directions. We anticipate that our work will
provide further opportunities to tackle complex protein systems
and processes by using the MARTINI force-field; in particular,
in contexts involving large conformational transformations,
such as during stretching, folding, and thermal unfolding.

2. METHODS
We used three different simulation methods in our investigation
on the following proteins with PDB id: 1AOH (cohesin), 1TIT
(titin), 1UBQ (ubiquitin), and 3W0K (Man5B). The sequential
lengths of these proteins are 143, 89, 76, and 330 residues,
respectively. The first three of these proteins have been often
used in stretching studies,28−31 while Man5B exhibits enzymatic
activity that can be understood in terms of the equilibrium
fluctuation.18,31 The first method is the AA simulations, the
second is based on the ELNEDIN protein model, and the third
method is our approach involving two different choices of the
contact map. To determine the contact map one considers each
residue as a cluster of spheres. In this case, the radii of the
spheres are equal to the van der Waals radii enhanced by a
factor of about 25%. The first contact map takes into account
the overlap of such spheres (OV),14,32 while the second
combines the OV with a variant of the contact of structure units
(CSU).33 The CSU approach takes into account the chemical
properties of the atoms in contact. We denote the second
contact map as OV+rCSU,13 where the basic criterion in the
rCSU is that two residues form a contact when the number of
attractive atomic contacts between residues overcome the

Figure 1. Snapshots showing the AA representation of the protein 1UBQ (left panel) and its CG representation in the ELNEDIN and GoMARTINI
models as indicated. Water molecules are not shown for the sake of clarity. In the CG representations the rightmost column illustrates only the
protein backbone and the network of bonds that preserve the structure of the protein for the sake of clarity, while the middle snapshots include also
the side chains (yellow color). The red lines indicate the harmonic bonds and the LJ bonds in the ELNEDIN and in the GoMARTINI models,
respectively. One can observe the broader distribution of contacts based on the contact map in the GoMARTINI approach. Moreover, we have 150
LJ-bonds in the case of GoMARTINI, while in the case of ELNEDIN, there are 272 harmonic bonds. The smaller number of bonds in the case of
GoMARTINI can be also recognized visually. Snapshots have been produced with the VMD software.27
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repulsive ones (see Supporting Information (SI) for details on
the OV and rCSU contact maps). We have also explored the
possibility of using EN “contacts” as implemented in
ELNEDIN and substituting the harmonic bonds by LJ
interactions. Henceforth, we will refer to our approach based
on the first two contact maps simply as “GoMARTINI” and
indicate clearly the different contact maps used here as OV and
OV+rCSU, respectively. In the case of Man5B, we compare our
results on the principal component analysis (PCA) of the
single-site positional fluctuation with AA-simulation results
from the literature.31 All simulations were carried out with the
4.6.5 version of the GROMACS package.34−37 In the following,
we provide details on the studied systems and the simulation
protocols used.
All-Atom Simulations. Before starting our simulations, we

checked the PDB protein structures for consistency and missing
residues. Indeed, we found fully missing residues of the chain in
the case of the Man5B protein in the PDB structure file, which
we handled by using the MODELER software.38−40 Other
minor issues, regarding only partially missing side-chain atoms,
were found in 1AOH, which have been already fixed in a
previous study.41 After these checks, we proceeded with the AA
simulations following customary protocols in this field. In
particular, we used the CHARMM2742 force-field and the
TIP3P water model43 to simulate for each case a single protein
in water. Initially, we solvated each protein in a cubic simulation
box with a distance of 1.2 nm between the box edge and the
protein. This distance is large enough to guarantee the
minimum image convention and more than sufficient for any
cutoff scheme used in our simulations. In the next step, we
check the amount of total charge on the protein and we
subsequently add the necessary ions in order to neutralize the
charge of the protein. Later, we performed minimization of the
systems by carefully monitoring the potential energy and the
maximum force in the system. This minimization procedure
guarantees that we have a reasonable initial configuration for
equilibration and production runs. The procedure toward
system equilibrium was implemented in two steps. In the first
step, we ran Molecular Dynamics (MD) simulations in the
canonical ensemble (NVT) using a velocity rescaling thermo-
stat44 for 200 ps to stabilize the temperature of the system at
300 K. In the second step, we ran simulations for 400 ps in the
isothermal−isobaric ensemble (NPT) to stabilize the pressure
of the system at 1 bar using the Parrinello-Raman barostat45

monitoring, also, the density. The same thermodynamic
conditions were chosen for the ELNEDIN and GoMARTINI
models. Electrostatic interactions in the AA MD simulations
were included using the Particle Mesh Ewald (PME)
method,46,47 whereas in the ELNEDIN and GoMARTINI
methods, it was computed by using a reaction field method48,49

with a relative dielectric constant (ϵ = 15). After these initial
equilibration steps we carried out 100 ns production runs for
each case, monitoring carefully all the necessary thermody-
namic parameters of the systems. Our results are based on the
analysis of these production runs.
ELNEDIN Simulations. The ELNEDIN protein model and

version 2.2 of the MARTINI force-field were used to simulate
the four proteins.4,12 In the case of ELNEDIN, the backbone
beads (BB) are placed at the positions of the Cα-atoms, instead
of the center of mass of the N, Cα, Cβ, and O atoms of the
atomistic backbone that was originally implemented in the
MARTINI force-field for proteins.3 In the ELNEDIN model,
the side chains are present in the model as additional CG beads

according to the parametrization of the MARTINI force-field.
The same definition of CG side chains is followed in the case of
the GoMARTINI model. Due to this change, small
modifications on the bonded interactions and the structural
mapping of aromatic residues only were introduced in the
ELNEDIN model of the MARTINI force-field, while the
nonbonded interactions were not modified.12 The EN
scaffolding component in the ELNEDIN model was
implemented by applying harmonic bonds of a certain strength
between CG BB located at the Cα-atoms being within a cutoff
distance. In the ELNEDIN model, both the spring constant of
the harmonic bond potential and the cutoff are optimized being
the same for each pair of CG BB.12 Values for the spring
constant between 500 and 1000 kJ mol−1 nm−2 and cutoff
distances between 0.8 and 1.0 nm provide adequate quantitative
agreement with AA simulations.12 In our case, we have used the
benchmark values of 0.9 nm for the cutoff and 500 kJ mol−1

nm−2 for the harmonic constant.
The equations of motion for each bead were integrated by

using the velocity Verlet algorithm with a fixed integration time
step during the simulation. We assume the same time scale as in
the AA simulations in our study, since the conversion factor
which reflects the speed up for proteins has not yet been
determined. While the time step in AA simulations is of the
order of 1 fs, CG simulations enable the use of a larger time
step. The simulation box for each protein reached the following
dimensions: Lx = 7.3 nm, Ly = 7.3 nm, and Lz = 7.9 nm. The
periodic boundary conditions were used to avoid the problem
of the finite size effects. Initially, a trivial minimization was
performed in vacuum for 100 ps with a time step of 1 fs and
position restraints (1000 kJ mol−1 nm−2) applied to all Cα

atoms. Later, each protein was solvated with a minimum of 1.2
nm between any bead and the box edge and additional energy
minimization with the same parameters took place. Our
systems were further relaxed by using 2 ns long MD simulations
with a time step of 20 fs in the presence of position restraints.
At the end, we ran 200 ns MD runs without the restraints. For
our MD simulations, we used here also the modified velocity
rescaling thermostat44 acting on each single CG bead and the
Parrinello−Rahman barostat45 in the same thermodynamic
conditions as in the AA simulations. Our analysis is based on
the last 100 ns of the simulated trajectories consisting of 2000
samples.12

GoMARTINI Simulations. In the GoMARTINI model we
have replaced the harmonic bonds with LJ potential
interactions between CG BB according to the contact map of
the native protein structure as is done in Go̅ models.16,22 The
LJ potential reads

ε
σ σ

= −⎜ ⎟ ⎜ ⎟
⎡
⎣⎢
⎛
⎝

⎞
⎠

⎛
⎝

⎞
⎠

⎤
⎦⎥U

r r
4 ij

ij ij
LJ

12 6

(1)

There are different flavors of contact maps26,50 and arising
differences can be found in the total number of contacts. In the
present study we have chosen at first the simplest approach
based on the atomic overlap criterion (OV).16,22 In this case,
the parameter σij of the LJ potential is determined by the
following relationship valid for LJ potential, σij = d/21/6, with d
being the Cα−Cα distance between a pair of residues that form
a contact. Because of the presence of the MARTINI force-field,
nonbonded interactions are also described by the LJ potentials,
but, in this case, the parameter εij varies in the range of 2.0−5.6
kj mol−1 according to the MARTINI CG bead groups (P, N,
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and C). In Go̅-like models this parameter is usually set to a
larger value, which typically represents the strength of hydrogen
bonds (HB) and other contributions, such as ionic bridges and
other kinds of specific interactions (e.g., hydrophobic).51 In the
GoMARTINI, the parameter εij is expressed in units of ε, where
ε = 6.276 kj mol−1. This value has been estimated previously
from AA simulations,18 and it corresponds to the typical energy
scale of hydrogen bonds in proteins. Hence, the parameter λ in
the native contact energy, εij = λ ε, is a tunable parameter of the
GoMARTINI model. The parameter λ is simply a number
indicating the strength of the LJ potential, and an optimum
value for εij can be found in order to match quantitatively the
GoMARTINI to the AA model. Thus, the LJ bonds behave in
the same way that the harmonic bonds act in the EN approach
implemented in the ELNEDIN,11 except that they are
breakable. In this study, we have also implemented in the
GoMARTINI model the OV+rCSU contact map, which
includes additional contacts (about 8−10% of the total number
of contacts obtained from OV) and has shown a better
agreement with experimental data.13 Similarly to that of the
ELNEDIN, the same simulation protocol was followed here for
the GoMARTINI simulations.
Pulling Simulations. We carried out pulling simulations

based on the GoMARTINI model, as is typically done using
Go̅-like models.19 In our case, however, pulling of the protein
took place in the presence of explicit solvent. In the case of the
standard MARTINI water, four atomistic water molecules are
mapped onto a CG water bead. In pulling simulations, the
protein is pulled along the end-to-end vector connecting the
Cα-atoms from N- and C-terminus and the reaction coordinate
is the displacement of the pulling spring. Moreover, additional
beads have been attached to those Cα-atoms with the spring
constant being 37.6 kj mol−1 nm−2, which is a typical value of

the AFM cantilever stiffness in protein stretching studies. Each
system was pulled over the course of 300 000 ps with a velocity
of 10−5 nm/ps. Although this value is still far from the
experimental values of cantilever velocities (∼10−9 nm/
ps28−30), it represents a significant computational improvement
to access more realistic time-scales compared to AA
simulations,52 where in the latter case a large speed (∼10−2
nm/ps) is typically used to compromise on the computational
demand even in high-performance computing facilities. In
experiments, multiple proteins are linked sequentially, and one
can observe a number of corresponding peaks, which signal the
full unfolding of one protein module. Because of the space
resolution, intermediate unfolding states are not detected in
AFM experiments. However, in the case of the Go̅-like model
usually one can access these intermediate states with a better
resolution and assign to each of them a force peak. The largest
of these force peaks, Fmax, defines the characteristic unfolding
force.

Folding Simulations. We studied the folding process of
two small peptides well documented in the literature, an α-helix
comprising residues 70−83 of the protein HPr (PDB: 1HDN
with 85 residues in total) and a β-hairpin (residues 41−56 of
the protein G with PDB 1GB1 and 56 residues in total).53

Folding simulations required the preparation of initial
configurations without the presence of any native contacts
(unfolded structures). Native contacts are present in the
structure when the actual distance between two BB is smaller
than 1.5σij or 1.3d where d is the distance between Cα atoms in
the native structure.19 The coordinates of unfolded structures
were obtained by heating up the protein CG structure at 500 K
without water. In this way, we could produce a number of
independent unfolded structures, which served as intitial
configurations for 50 independent simulation trajectories of

Figure 2. RMSD and RMSF based on the GoMARTINI model in the case of three proteins (1AOH, 1TIT, and 1UBQ) for two values of λ = 1.0 and
1.50, and two different contact maps (OV and OV+rCSU), as indicated. The comparison with the ELNEDIN and AA models is also illustrated in
each graph. The corresponding time-scale in the AA results is given by τ = 1 ps. Comparison with ELNEDIN and GoMARTINI simulations were
done by assuming the same time scale.
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100 ns at 300 K in the presence of water following the
protocols described above for the GoMARTINI simulations.
Our results are based on the analysis of these trajectories.
Principal Component Analysis. MD trajectories involve

high dimensional data, and therefore, it is difficult to identify
data patterns that correspond to correlated motions important
for biological processes. The PCA is a simple method that
succeeds in emphasizing the essential dynamics of a protein by
rendering data easy to explore and visualize.18,54−56 This is
achieved by reducing the number of dimensions, without much
loss of information. The PCA involves the calculation of the
covariance matrix and its eigenvectors and eigenvalues. The
eigenvector with the largest eigenvalue is the “principal
component” of the data set, and usually eigenvectors are
sorted according to the eigenvalues from highest to lowest
corresponding, also, to the order of significance. If we ignore
components, then we may lose some information on the
original data set, but the loss is small given that the
corresponding eigenvalue is also small. The final step of the
PCA involves the choice of the relevant eigenvectors put in a
matrix form and multiplication with the original data in order to
obtain the new data set in terms of the vectors that we have
chosen. In our case, the PCA was used for the single-site
fluctuations of the backbone atoms/beads of the Man5B
protein, which exhibits enzymatic activity that manifests itself in
a characteristic motion of a part of the protein between residues
200 and 220, which is very nicely captured in AA simulations in
the literature.31 In our study, we compared the ELNEDIN and
GoMARTINI models with the latter PCA data from the AA
simulations.31

3. RESULTS AND DISCUSSION

Root Mean Square Deviation (RMSD) of CG BB and
Cα-Atoms. In our study, we have calculated the RMSD over
the course of the last 100 ns of our 200 ns trajectories for three
proteins (1AOH, 1TIT, and 1UBQ). Our results based on the
GoMARTINI model indicate that the proteins were stable
during the simulations with deviations below 0.2 nm (see
Figure 2), in a very good agreement with the AA simulations.
The GoMARTINI performs generally well for the three
different proteins for both the OV and the OV+rCSU contact
maps and is based on a smaller number of contacts. On the

contrary, ELNEDIN seems to contribute to an increased
backbone stiffness of the protein for the choice of spring
constant and cutoff used in this study. Of course, the values of
the spring constant and the cutoff in the ELNEDIN model can
be tuned in order to fit the AA simulations better.12 However,
we do not aim here at a direct comparison between the
GoMARTINI and ELNEDIN models. Moreover, the use of the
EN-approach for the contact map, in which we substituted the
harmonic bonds with LJ interactions, had delivered results
similar to the ELNEDIN approach with the magnitude of
fluctuations depending on the choice of λ indicating that the
choice of contact map is a very important element in order to
reproduce the AA behavior of proteins (see Supporting
Information). In the GoMARTINI the tunable parameter of
the model is the factor λ in the LJ potential, which is used for
the native contacts for a given choice of the contact map.13 By
scanning a range of values for λ between 0.25 and 2.00, we
found that values of λ around 1.5 give very good results in
agreement with AA simulations, for both the OV and OV
+rCSU contact maps, with the latter exhibiting a slightly better
performance than the OV contact map. Here, it seems that the
optimum value of λ is the same for all proteins studied with
GoMARTINI. Note that a larger value of εij, 50% stronger than
typical HB strength (ϵ), is needed to stabilize the native
structure. One may suggest that this effect may be due to a
larger number of CG beads (2−5 per residue) in the MARTINI
force-field in comparison with Go̅-like models, where a residue
is merely represented by the Cα atom. In the latter model εij
corresponds to the strength of HB and the reduced
temperature of T = 0.3ε/kB with εij = ε being generally
used.13,16,19,22 This also indicates the strong character of the LJ
interactions in the GoMARTINI model and its correspondence
to the EN approach of the ELNEDIN in the limit of harmonic
approximation of the LJ potential.11

Root Mean Square Fluctuations (RMSF) of CG BB and
Cα-Atoms. The RMSF for the CG BB in the GoMARTINI
model is able to capture the characteristic fluctuations at most
of the residues showing very good agreement with the
ELNEDIN and AA simulations (see Figure 2), where for the
RMSF of AA simulations the positions of the Cα-atoms were
considered for our analysis. Moreover, our results for the RMSF
support a value of εij around 1.5ε for the range of discrete

Figure 3. Principal component analysis of the RMSF for the Cα-atoms (AA) or the CG BB (ELNEDIN and GoMARTINI) of the Man5B. We
present results obtained from AA, ELNEDIN, and GoMARTINI models based on the OV+rCSU contact map, as indicated. The AA data were taken
from Figure 4 in ref 31 by using the g3data software.57 The inset shows the fluctuation from the catalytic region between the 200 and 220 amino acid
residues in Man5B. This figure illustrates the excellent agreement of the GoMARTINI model based on the OV+rCSU contact map with AA data for
the choice λ = 1.5. The principal component is illustrated for the case of ELNEDIN and GoMARTINI for each BB, where BB in blue color are part
of the catalytic pocket (200−220). In the GoMARTINI case, fluctuations along the principal component for the catalytic pocket are in line with the
expected behavior observed in all-atom simulations.31 Snapshots in this figure have been produced with the VMD27 and the PRODY software.58,59

Water molecules are not shown for the sake of clarity.
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values used in this study. In the RMSF analysis, it becomes
more apparent that the OV+rCSU contact map may be a better
choice than the OV contact map, again indicating the
importance of choosing the contacts properly.
Principal Component Analysis. AA simulations have

illustrated the key PCA mode involved in the opening and
closing motion of the Man5B catalytic pocket (residues
between 200 and 220 along the protein chain) capturing the
expected motional amplitude of each amino acid in the PCA for
Man5B with and without any substrate.31 A Go̅-like model has
been employed to describe the same system. Although it does
differentiate the strength of the collective motion in the
presence of the substrates, the agreement with AA is not full.18

Our results based on the GoMARTINI model (OV+rCSU
contact map) are in excellent agreement with the AA
simulations for the case without substrate and most importantly
GoMARTINI is able to capture the opening and closing
motion of the Man5B catalytic pocket, which exhibits the same
amplitude in the PCA as in the AA simulations for the optimum
choice of λ = 1.5 (see Figure 3). On the other hand, a choice of
λ = 1.0 leads to higher flexibility for parts of the protein, and,
also, affects the height of the peak in the enzymatic pocket
(residues 200−220 illustrated as inset of Figure 3). Moreover,
we found that the use of OV+rCSU contact map yields better
results than the OV contact map (see Supporting Information).
The PCA analysis of Man5B based on the ELNEDIN protein
model does not capture this characteristic motion of the
enzymatic pocket. Moreover, a visual inspection of the
fluctuations based on the PCA indicates the opening and
closing of the catalytic pocket in the case of the GoMARTINI
approach, in agreement with all-atom simulations.31 On the
contrary, ELNEDIN results in a high stiffness in most parts of
the protein and large fluctuations in a certain part of the protein
structure deviating considerably from the results based on all-
atom simulations.31 Hence, it seems that the information on the
native contacts of the protein, which is the criterion for adding
the LJ bonds in the GoMARTINI model, may be essential in
the case of the Man5B for selecting the pairs of contacts,
instead of adding harmonic bonds based only on a cutoff
criterion.12 The latter conclusion is further corroborated by the
third contact map explored in this study based on the EN
approach and LJ interactions. Indeed, the main conclusion of
our study on different proteins leads to the significance of
choosing “properly” the contact map,31 while we have
confirmed that the OV+rCSU delivers better results for all
cases considered here, in agreement with a previous study,
which explored various Go̅-like models.13 Furthermore, one
should also take into account differences that may arise due to
the different environment of the Cα-atoms in the AA models
and the CG BB.
Pulling Simulations. We conducted pulling simulations by

using the GoMARTINI model for the I27 domain of titin
(1TIT) protein. Figure 4a shows typical stretching curves, in
which two different contact maps (i.e., OV and OV+rCSU) give
rise to a change in Fmax. In particular, we obtain higher peaks in
the case of the OV+rCSU contact map due to the additional
contacts in comparison with the OV contact map. Moreover,
the case with λ = 1.5 displays a subsequent small second peak in
agreement with Go̅-like simulations for this system.19 Also, the
nonbonded MARTINI interactions play a significant role, as
they are actively contributing during the stretching process. To
study this contribution we performed first an ELNEDIN
simulation for 100 ns; then, all harmonic bonds from the EN

were removed and the pulling simulations were finally carried
out. Figure 4a illustrates the background signal due to the
MARTINI force field, which gives essentially no force peaks
and its pattern has a threshold of about 100 pN. In Figure 4b
we present the dependence of Fmax on the pulling speed in the
range of 10−5−10−3 nm/ps, where GoMARTINI force-field
provides a good estimate for Fmax. For the sake of comparison,
AA stretching for this protein gives a high value of Fmax ≈ 2040
pN, mainly due to the large pulling speed. AFM experiments
are typically carried out at very slow speeds compared to AA.
Although our pulling speeds are still larger than experimental
ones, they represent a significant improvement with respect to
AA models allowing for comparison with experiments. Indeed,
an extrapolation of our data for each λ for the cases of OV and
OV+rCSU contact maps shows that the fitting curves approach
well the experimental value for λ = 1.5. Our conclusions are
further corroborated by pulling simulations for the 1AOH and
1UBQ cases (see Supporting Information). Note that these
results correspond to a set of well-resolved experimental
protein structures. For example, we do not expect the same full
agreement for very large proteins. In this case, the methodology
presented will be limited for the case of defected protein
structures with several missing side chains, as it relies on the
determination of native contacts based on the positions of the
heavy atoms. However, if the number of defected amino acids is
not large, one can still rely on basic modeling to reconstruct
them, otherwise this methodology will be unpractical.

Folding Simulations. GoMARTINI allows for the study of
protein folding, whereas the ELNEDIN model is not suitable
for folding studies because of the presence of the harmonic
bonds required to maintain the native structure of the protein.
Moreover, the MARTINI force-field alone cannot stabilize the
structure of a protein without the presence of these harmonic
bonds. Here, we have enhanced our discussion on systems
undergoing large conformational changes by including the

Figure 4. Pulling results with GoMARTINI for the I27 domain of titin
and for two values of λ = 1.0 and 1.50 and two contact maps (OV and
OV+rCSU), as indicated. Panel a illustrates stretching curves with a
pulling velocity 10−5 nm/ps. MARTINI curves were computed by
removing the harmonic bonds of the EN. Panel b shows Fmax as a
function of pulling velocity with v0 = 1 nm/ps. The experimental
(square point) and AA (diamond point) values of Fmax shown in the
panel b are taken from refs 29 and 60, respectively.
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folding of an α-helix and a β-hairpin (see section 2 for
details).53 A summary of our results and snapshot examples of
unfolded, partially folded (50% of native contacts present in the
structure), and folded (native) structures are presented in
Figure 5. In the case of the α-helix, folding did occur for all
independent trajectories, whereas in the case of the β-hairpin
4% of the trajectories did not lead to the native folded structure
within the 100 ns time. In agreement with previous studies,53

we find that folding of the α-helix takes place about 10 times
faster than the folding of the β-hairpin. In particular, folding of
the α-helix is about 1 ns, while in the case of the β-hairpin the
folding time is about 10 ns (Figure 5). However, comparison of
the folding times on absolute terms between our GoMARTINI
simulations and experiments (folding times are of the order of
microseconds) is not currently possible, because the time scale
in simulations has been only roughly known.

4. CONCLUSIONS

The present work has underlined the possibility of using the
protein contact map to substitute the harmonic bonds in the
ELNEDIN protein model with LJ interactions as is done in Go̅
models, in this way enabling the study of unfolding processes or
simply the consideration of unfolded protein states in
advanced-sampling simulations by using the MARTINI force
field. Moreover, our approach makes use of the contact map,
which identifies the key pairs of contacts between residues
required to preserve the native structure of the protein without
any adjustable parameters. Our results are in very good

agreement with the ELNEDIN protein model and the AA
simulations, for which the protein has not undergone any large
conformational changes. Furthermore, the GoMARTINI model
is able to capture the key motion related to a certain catalytic
activity in the case of the protein Man5B, in agreement with AA
simulations. We also find that the use of OV+rCSU as a contact
map constitutes the best choice from the contact maps
considered in our study, while a choice of roughly εij = 1.5ε
for the well depth of the LJ contact potential is well-suited to
guarantee agreement with AA data. In addition, this value has
been shown to approach the experimental values of Fmax in
stretching simulations for the I27 domain of titin at the
experimental speed after extrapolation. Finally, the GoMARTI-
NI model has enabled the study of protein folding confirming
the 10-fold difference in folding time between the α-helix and
the β-hairpin.53 We anticipate that our study may offer new
venues in the CG simulation arena of biological molecules
undergoing large conformational changes based on the
MARTINI force-field.
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Figure 5. Folding of two small peptides, a β-hairpin and an α-helix (see section 2 for details). Plots show the percentage of native contacts present at
a certain time during the folding process for each case, as indicated. A typical folding time for the α-helix is about 1 ns, while for the β-hairpin it is
about 10 ns. Snapshots indicate examples of an unfolding configuration of BB at the beginning of a folding simulation, a partially folded structure,
and a final folded (native) structure for each peptide. The scale of these snapshots is different. The BB and side chain beads are represented by black
and yellow color, respectively. Native contacts during folding are described by solid red lines. Snapshots in this figure have been produced with the
VMD software.27 Water molecules are not shown in the snapshots for the sake of clarity.
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Meneńdez, M.; Sułkowska, J. I.; Cieplak, M.; Carrioń-Vaźquez, M. On
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(37) Pronk, S.; Paĺl, S.; Schulz, R.; Larsson, P.; Bjelkmar, P.;
Apostolov, R.; Shirts, M.; Smith, J.; Kasson, P.; van der Spoel, D.;
Hess, B.; Lindahl, E. GROMACS 4.5: A High-Throughput and Highly
Parallel Open Source Molecular Simulation Toolkit. Bioinformatics
2013, 29, 845−854.
(38) Marti-Renom, M.; Stuart, A.; Fiser, A.; Sańchez, R.; Melo, F.;
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