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Simulations that couple different molecular models in an adaptive way by changing resolution on the fly

allow us to identify the relevant degrees of freedom of a system. This, in turn, leads to a detailed under-

standing of the essential physics which characterizes a system. While the delicate process of transition

from one model to another is well understood for the adaptivity between classical molecular models the

same cannot be said for the quantum-classical adaptivity. The main reason for this is the difficulty in

describing a continuous transition between two different kinds of physical principles: probabilistic for the

quantum and deterministic for the classical. Here we report the basic principles of an algorithm that allows

for a continuous and smooth transition by employing the path integral description of atoms.
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Introduction.—The identification of the minimum num-
ber of degrees of freedom necessary to properly describe a
physical or chemical process is a key to understanding the
essential underlying physics of a system. In particular there
are numerous cases where the interesting physics or chem-
istry occurs in a small subregion which then requires high
resolution while the rest of the system can be treated at a
coarser level; still the equilibrium between the two regions
must be assured by free flux of particles; otherwise, density
fluctuations are arbitrarily suppressed and thus create
physical artifacts. An illustrative example is that of the
solvation of a molecule in water. Around the solute, a
solvation shell is formed where the hydrogen bonds must
be explicitly described since the bonding network uniquely
characterizes the solvation properties. Away from the very
first solvation shells, bulk water plays the role of a thermo-
dynamic bath and thus can be described with simpler
models (e.g., spheres or continuum [1–3]). However, if a
proper open boundary between the high and low resolution
region is not defined then there would not be a proper
exchange of molecules between the two regions and the
solvation process would be biased by the methodological
artifact of a rigid boundary. Simulation schemes which
allow one to adjust the resolution locally on demand and
at the same time keep the equilibrium with the whole
system are powerful tools for the problems above; in these
approaches the space is partitioned in regions characterized
by different molecular resolutions where molecules can
freely diffuse changing their representation according to
the region where they are instantaneously located. In the
last few years several approaches have been presented and
they are characterized by different levels of theoretical
sophistication and computational complexity [4–9].
However, while the adaptive process can be described in
a reasonable way according to the basic principles of
classical dynamics and thermodynamics, the same cannot
be said when quantummechanics enters into the game. The
practical importance of including quantum mechanics can

be illustrated by the problem of solvation in water dis-
cussed before. The question in this case is how much
quantum mechanics is needed to properly describe the
hydrogen bonding structure of the solvation shells around
the solute keeping the rest at a classical or coarse-grained
level and allowing for particle exchange. The peculiar
quantum nature of the hydrogen leads to a hydrogen bond-
ing network which in a quantum regime is by far more
flexible and deformable than that of a classical description.
At the same time it plays a key role in the direct solute-
water hydrogen bonding with the possibility of proton
exchange that often has the key role in water mediated
processes, above all for biomolecules [10]. Thus under-
standing how to adaptively couple a quantum description
with a coarser classical one is indeed a central problem in
physics. In general, the proper coupling of quantum and
classical mechanics is known to be a non trivial (and open)
problem (see e.g. [11]) and here the adaptive character
adds up as a further major difficulty [12]. In this work
we aim to develop an approach where the idea of coupling
a classical and quantum molecular model in an adaptive
fashion can be made in a way that the ’’probabilistic-
deterministic’’ discontinuity is removed and yet the adap-
tivity takes place in a smooth controlled numerical way.
Path integral-polymer ring representation of atoms and

molecules.—In this work our quantum systems are com-
posed by atoms described within the path integral formal-
ism by now a standard tool in molecular dynamics (see,
e.g., [13]). The important aspect of the path integral ap-
proach for this work is that an atom, which is usually
represented as a sphere in classical force fields, becomes,
within the path integral formalism, a classical ‘‘polymer
ring’’ so that the interaction site is delocalized into the
beads of such a polymer, each bead of the polymer is linked
to its next neighbors along the chain by a harmonic poten-
tial. The elastic constant depends on the temperature, T, of
the system and the number of beads, n, used to represent

each atom, k ¼ mnðKBTÞ2
@
2 , with kB being , as usual, the
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Boltzmann constant, m the mass of the atom, @ Planck’s
constant. Such a delocalization characterizes the quantum
nature of the atom and, given a force field, the nuclear
motion is treated in a quantum mechanical way [14–19]
(see also the supplementary material [20]). It must be
noticed that this is only one way to do path integral and
alternative approaches are available (see, e.g., [21]); how-
ever, for the development of our idea the polymer ring
formalism is what is needed. In fact for the adaptive
process the classical polymer representation of atoms has
far-reaching consequences, because it translates the
quantum-classical adaptive coupling into the coupling of
two effective classical regions characterized by a different
number of (as a matter of fact) ‘‘classical’’ degrees of
freedom, so that a molecule passing from one region to
another acquires or loses only classical degrees of freedom;
thus the whole machinery of classical adaptive methods
would apply straightforwardly. This leads to the relevant
consequence that one can realize the passage from a quan-
tum description to classical one and vice versa within a
rather rigorous conceptual framework by simply employ-
ing the equilibrium conditions of a classical adaptive
scheme. This work represents the numerical proof of the
concept above. It must be noticed that this approach ap-
plies only to problems where it is sufficient that atoms have
quantal nuclear dynamics and not to those problems which
require that also electrons must be explicitly treated [22].
Finally, a general problem that our method cannot cur-
rently solve is that the coupling of a quantum subsystem to
a classical one causes decoherence in the quantum part [25]
(see also the supplementary material [20]).

The adaptive scheme.—Regarding the adaptive scheme
for the classical case, the basic requirement is a controlled
procedure of changing the number of degrees of freedom
based on solid physical principles and consistent with the
thermodynamic equilibrium of the overall system [26–28].
In this respect the AdResS method meets the requirements
above in a (extensively tested) satisfactory way [1,2,29–
31]. For this reason in this work the coupling between the
polymer rings and the classical particles will be done
within the AdResS framework. Below we introduce the
basic features of AdResS relevant for this work. In the
classical AdResS method the atomistic (high resolution)
and the coarse-grained (low resolution) regime are coupled
via a force interpolation (see, e.g., [4,12]): F�� ¼
wðX�ÞwðX�ÞFatom

�� þ ½1� wðX�ÞwðX�Þ�Fcg
��, where �

and � indicates two molecules, Fatom is the force derived
from the atomistic force field and Fcg from the correspond-
ing coarse-grained potential, X is the x coordinate of the
center of mass of the molecule and w is an interpolating
function which smoothly goes from 0 to 1 (or vice versa) in
a transition region (�) where the lower resolution is then
slowly transformed (according to w) in the high resolution
(or vice versa), as illustrated in Fig. 1 (see also the supple-
mentary material [20]). An additional locally acting ther-
mostat is employed to assure the overall thermodynamic

equilibrium. The coarse-grained potential is obtained from
a reference all atom simulation at the given thermody-
namic condition via an iterative inverse Boltzmann proce-
dure employing the molecular center of mass radial
distribution [32]. For the case of the path integral descrip-
tion we have exactly the same procedure as for the classical
case but with the difference that instead of a classical
atomistic representation of the molecule we have a mo-
lecular representation where the atoms are described as
polymer rings in a path integral approach (see Fig. 1). Note
that here the corresponding coarse-grained model implic-
itly contains (in average) ‘‘quantum aspects’’ of the path
integral molecule. However the coarse-grained molecule is
classical in the sense that does not have the beads deloc-
alization of the path integral description and basically can
be seen as an effective, one-site classical force field.
However the idea of changing molecular representation is
in this case amplified by the very extended reduction of
degrees of freedom. A short general discussion about
coupling different levels of molecular representation is
given in the supplementary material [20]. Given the frame-
work reported above the coupling between the path integral
representation and the coarse-grained model occurs via the
interpolation according to w between Fpi acting on the
beads of the rings and the Fcg derived from the coarse-
grained potential acting among the centers of mass of the
molecules. We tested this idea studying a liquid of tetrahe-
dral molecules whose atomistic model was used in the
original development of AdResS [see Fig. 1(b)].
Results of the path integral-coarse-grained adaptive

resolution simulation.—We studied a system of a thousand

molecules at temperature T ¼ T1
ffiffiffiffi

10
p , where T1 is the tem-

perature used in the original work of AdResS and which in
the Lennard-Jones units of this Letter (see the note [33] or
Ref. [29]) is equal to 1. For the testing purpose we have
deliberately chosen the temperature T to be lower than that
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FIG. 1 (color online). Pictorial representation of the adaptive
box and molecular representation. The region on the left, in-
dicated by CG, is the low resolution region (coarse-grained), the
central part is the transition (hybrid) region �, where the switch-
ing function wðxÞ is defined, and the region on the right,
indicated by PI is the high resolution region (full path integral
region).
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employed for the classical simulations in the original
AdResS because it mimics the thermodynamic conditions
of a ‘‘more quantum’’ system. We have used n ¼ 30 num-
ber of beads which is usually used in simulations with
hydrogen particles (see e.g. [17,34,35]) and thus is a robust
test in the view of later possible applications. Figure 2
reports the radial distribution functions (RDF) and the
density distribution of the AdResS simulation of thousand
molecules compared to a full path integral simulation.
They show that indeed this coupling procedure displays
the desired behavior. In particular, in Fig. 2(b), the com-
parison between the bead-bead radial distribution function
obtained with AdResS in the quantum region and that
obtained from a full path integral simulation shows a
remarkable agreement. This is a very relevant results
from both a conceptual and a technical point of view. In

fact the reduction of degrees of freedomwhen the molecule
pass from a quantum to a classical description is from 120
to 3 per molecule (and vice versa for acquiring degrees of
freedom), this means that indeed the physical principles
defining the boundary where the molecule change repre-
sentation, and their numerical implementation, are solid
enough to keep the correct quantum behavior in the quan-
tum region and the overall equilibrium in the rest of the
system. Regarding the density in Fig. 2(c), the deviations
with respect to the reference value (above all in the tran-
sition region) are the same obtained in the classical case
[29]. As for the classical AdResS case, one must be sure
that indeed there is exchange of molecules between the two
regimes. In fact it may occur situations where the two
regimes are in equilibrium because some barriers, artifact
of the method, would hinder the free exchange so that the
molecules are reflected back at the transition region.
Figure 3 shows that this is not the case and the molecules
diffuse between the two regions in a proper way.
Conclusions.—Having proved the validity of the con-

ceptual aspects, it remains to address the question of why
such an approach may be useful for applications and not a
mere conceptual exercise. In part this was discussed before
for the case of water as a solvent and water mediated
process and indeed this is already a rather ample field
[36–40]. However, in general, there is a large amount of
problems in soft condensed matter where relevant proper-
ties are the results of the interconnection between the local
bonding and the larger scale molecular packing. In such
cases classical models may give a satisfactory description
of the large scale packing but are not sufficient for the high
resolution required locally and the path integral description
becomes crucial [41]. For instance, the central question of
diffusion of small additives in polymer matrices. In this
case local cages formed by entangled polymers capture the
additive molecule for a certain amount of time. The knowl-
edge of the physical principles regarding the forming and
rupture of these cages and their average lifetime is essential
to understand the material properties (additives make pol-
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FIG. 2. Results for the adaptive simulation of the liquid of
tetrahedral molecules. Top (a), the molecular center of mass-
center of mass radial distribution function obtained with AdResS
is compared with that obtained from the full path integral
reference system,. Middle (b), the bead-bead radial distribution
function obtained with AdResS in the quantum region compared
with that of the full path integral reference system. Bottom (c),
the particle density in AdResS compared with the reference
system. The density is equal to 0:1��3 in the units reported in
the note [33].

FIG. 3 (color online). Diffusion profile for the molecules mov-
ing from the path integral region to the coarse-grained one and
for molecules moving in the opposite direction. The picture
shows that no barriers, due to possible artifacts of the algorithm,
hinder the diffusion process.
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ymeric systems softer). While the overall conformational
properties of a polymer system can be rather well described
by bead and spring coarse-grained models, the formation
of a local cage (similarly to the case of a molecule solvated
in water) must be done with explicit chemical details.
However, classical atomistic models cannot describe the
full flexibility of the additive-polymer and polymer-
polymer bonds and thus can give only a very partial
description of the cage effects, missing the (most likely)
crucial quantum effects. In this case the scheme proposed
here would be ideal. In general, as for the classical case of
AdResS, the proof of validity of the concept (i.e. this work)
is the most important step towards the realization of the
applicative studies mentioned above, in any case it is need-
less to say that this is only a first step towards the develop-
ment of a generic scheme for adaptive quantum-classical
coupling and serve also as a basis for further work regard-
ing the conceptual aspects.
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