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We propose a simple method to evaluate the approximation of separation of variables in molecular dynamics
�MD� and related fields. It is based on a point-by-point evaluation of the difference between the true potential
and the corresponding potential where the separation of variables is applied. The major advantage of such an
approach is the fact that it requires only the analytical form of the potential as provided in most of the MD
codes. We provide two examples of application, namely, a diatomic molecule adsorbing on a flat surface and
an alkane �aliphatic� chain.
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INTRODUCTION

A central question in molecular-dynamics �MD� simula-
tions is the determination of reasonable criteria by which one
can determine a specific set of degrees of freedom �DOF’s�
to employ in the simulation study. Such criteria must identify
the relevant DOF’s which are sufficient to properly charac-
terize the phenomena under investigation. Examples of this
sort are the mapping of an atomistic into a coarse-graining
�CG� model, e.g., for large molecules �see, e.g., �1� and ref-
erences therein� or the choice of “reaction variables” by
which rare events in path sampling or similar schemes can be
described �see, e.g., �2–5��. Usually the choice of a set of
variables is guided by the chemical or physical intuition and
does not always allow for a systematic control of the under-
lying approximations. In this context it would be useful to
provide some criteria by which the quality of the choice re-
garding the optimal set of DOF’s �or reaction variables� can
be taken under control. In particular, for complex systems,
given the analytic form of the potentials, important informa-
tion is represented by the knowledge of how separable are
the two DOF’s; this, provided that the variables are not
linked to each other by other constraints not contained in the
potential, expresses the degree of independence of the
DOF’s. This information is very important because if they
are independent their evolution occurs on two orthogonal
spaces, and thus one can consider one specific DOF while
the other can be neglected without altering the evolution of
the system in the space of interest. Instead, if the DOF’s are
interconnected in a nontrivial way the dimensionality reduc-
tion is highly questionable. In this work we make a simple
step in the direction of providing a criterion of evaluation
regarding the approximation of separation of two DOF’s.
The quality of the approximation can be quantified a priori
via an algorithm which requires only knowledge of the ana-
lytical form for the potential of interaction. Moreover, it does
not require, a posteriori, any additional check. Finally, we
provide two examples of a numerical application where the
idea above is employed, namely, the interaction of a rigid
diatomic molecule with a flat surface and the CG modeling
of an alkane �aliphatic� chain.

I. THE BASIC IDEA

For simplicity let us consider a potential of the form U
=U�x ,y�; later on the extension to more variables will be
discussed. Given the analytical form of U, if the two vari-
ables are exactly separable, under the approximation that
they are not linked to each other by further constraints, then
one has U�x ,y�=U1�x�+U2�y�. This means that for any arbi-
trary fixed point x0 ,y0, it would be possible to write

U�x,y� = U1�x� + U2�y� = U�x,y0� + U�x0,y� − U�x0,y0� .

�1�

This represents the ideal case of separation of variables; a
reasonable criterion to estimate the validity of the approxi-
mation of separation of variables �ASV� for a generic poten-
tial would be that of measuring its deviation from the ideal
case of Eq. �1�. Here we propose to introduce a simple mea-
sure � as the difference of the true potential and its corre-
sponding expression when the separation is introduced in the
fashion of Eq. �1�. Given a potential V�x ,y�, which is not
exactly separable as U�x ,y�, then �x0,y0

�x ,y�=V�x ,y�
− �V�x ,y0�+V�x0 ,y�−V�x0 ,y0��, ∀ x ,y , �x0 ,y0.

This is a point-by-point evaluation of how much the ASV
for V resemble the true potential V�x ,y� �where no separation
is performed�. The advantage of a point-by-point evaluation
lies in the fact that there may exist regions where the ap-
proximation works well and others where it does not. In this
context, � can be used to define different spatial regions; one
where the true potential must be used and another where the
variables are separated, and thus the one of less interest may
be disregarded, without altering the dynamical �statistical�
evolution of the system in the space of the variable of inter-
est. By dynamical �statistical� evolution here we mean that
trajectories generated by the true potential that are infinitesi-
mally close should not diverge when the ASV is applied.
While the meaning and derivation of � are rather obvious,
the treatment of its dependence on the fixed point x0 ,y0 is
not. The less the ASV is valid, the stronger this dependence
becomes. The treatment of this problem represents the main
part of this work; in fact we show that the proposed proce-
dure for choosing the fixed point can actually be used to
complete the criterion based on �. Finally, it is important to
settle a scale of values which quantifies the validity of the*dellsite@mpip-mainz.mpg.de
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ASV for a given problem. This means to determine what
value of � one should use as a reference for estimating
whether the approximation is reasonable or whether it causes
the evolution of the system to deviate greatly from the one
determined by the true potential. This question does not have
a unique answer; rather one may fix a value for each specific
problem. However, in general in MD, one deals with ener-
gies of the order of a few kT �with k being the Boltzmann
constant and T the temperature of the system� and thus one
may define a quality factor Q�x ,y�=��x ,y� /kT.

If Q is larger than the typical thermal fluctuations of the
system, then the use of the approximation of separation of
variables would necessarily lead to the wrong dynamical
evolution, as this would mean that x and y are strongly cor-
related and do not evolve in an orthogonal space. Other cri-
teria can be fixed by specific aspects of the problem one is
interested in. For example, if one explores the conforma-
tional space of a molecule which is characterized by an en-
ergy barrier �b that separates two relevant conformational
states, � in this case may be compared with �b �if known�. In
the next section we provide a numerical example of the ap-
plication of Q to a test system.

II. A SIMPLE GUIDING EXAMPLE: A RIGID DIATOMIC
MOLECULE INTERACTING WITH A SURFACE

Figure 1 pictorially illustrates the system we want to treat.
It consists of a diatomic molecule of equivalent atoms which
interacts with a uniform rigid surface via a potential

U�za,zb� = ��2

5
�� �

za
�10

+ � �

zb
�10	 − �� �

za
�4

+ � �

zb
�4	
 .

�2�

The question we want to address is whether there exists a
region za ,zb where the molecule can be treated as an “effec-
tive” pointlike particle whose interaction point is located at
the center of mass �as indicated by Fig. 1�. If one indicates
the distance of the center of mass from the surface with r and
the rotation around it by the variable �, the terms of the
problems above reduce to the question: is it possible to fac-
torize r and �?

With this purpose, let us first map the variables za ,zb onto
the variables r ,�:

za = r + d sin���, zb = r − d sin��� , �3�

and thus, substituting the expression of Eq. �3� into Eq. �2�,
one writes the potential as

U�r,�� = ��2

5
�� �

r + d sin����
10

+ � �

r − d sin����
10	


− ���� �

r + d sin����
4

+ � �

r − d sin����
4	
 . �4�

� goes from 0 to � /2 �due to the symmetry of the system�
and d is the length of the interatomic axis, which is fixed.
The form of the potential of Eq. �2� and the values used here
for the various parameters were taken �as a guide� from an
atomistic model used in a previous work where a classical
force field was employed to study the adsorption of mol-
ecules on surfaces �6�. By using Q�r ,�� one can determine
the minimum distance r from the surface for which the sepa-
ration is reasonable, and thus for distances larger that this,
one can disregard the molecular rotation and represent the
molecule �with respect to the surface� solely as one effective
interaction site located at the center of mass. Information of
this kind is crucial, for example, in emerging adaptive reso-
lution methods, as one can define in this way regions of
different resolution among which the molecule freely dif-
fuses �see, e.g., �1� and reference, therein�. For this specific
case, one can define a high-resolution region close to the
surface where the specific chemical resolution of the atoms is
required and thus � plays an important role, and a region far
from the surface, determined by Q�r ,�� where the single-
atom resolution is not relevant and thus a CG model can be
used, neglecting the dynamics associated with �. This can be
done within a single simulation scheme as for example done
in the AdResS scheme �1�, where the region of higher reso-
lution and that of lower resolution are interfaced via a tran-
sition region where the force acting �in this case� between the
molecule and the surface is obtained via an interpolation
between the atomistic force and the one coming from the CG
potential. The two forces are combined via space-dependent
switching functions which allow a smooth transition between
the higher- and lower-resolution regions, and vice versa. The
choice of such a simple system was of course made on pur-
pose since the physics governing the interaction of such a
molecule with the rigid surface can be easily deduced from
the form of the potential and thus compared with the results
given by Q�r ,��. In fact one expects that, as r becomes
smaller, � starts to play an important role because when its
value approaches � /2 then zb approaches small values and
thus the interaction of the closer atom with the surface be-
comes dominant and the center of mass can no longer be
used as the only effective interaction site. This prediction is
in agreement with the results obtained by analyzing Q as
shown in Fig. 2. In fact as r approaches the value of
1.2–1.0 nm the potential where the separation is applied
overestimates the true potential of the relevant quantity �be-
tween 2kT and 6kT� and, as expected, this overestimation
increases as � increases. This, together with the results of

θ

θ

r

zz
r

θ r

ab

r θ

(I) (II)

FIG. 1. Schematic representation of the system considered. In
�I� the mapping from �za ,zb� to �r ,�� is shown pictorially. If � and
r are separable one can represent the interaction of the diatomic
molecule with the surface as an effective center-of-mass–surface
interaction and disregard the evolution with respect to �, as shown
in II.
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Fig. 2, indicates that indeed one may treat the molecule as an
effective pointlike interaction site for r�1.2 �if one chooses,
for example, 2kT as the threshold for the potential discrep-
ancy� without altering in a relevant way the dynamics of the
adsorption process. As the molecule comes closer than this
value the hypothesis of separation of � and r is no longer
valid. This conclusion was confirmed also by a study of the
dependence of Q on the fixed point ��0 ,r0�, which is dis-
cussed in the next section.

A. Dependence of Q on the fixed point
as a complementary criterion

So far we have illustrated the use of Q disregarding the
effects of the dependence on the fixed point �x0 ,y0� �or
�r0 ,�0� for the specific example shown�. In this section we
will treat the case where this aspect is accounted for, and
show that the study of such a dependence is necessary to
complete the procedure of evaluation of the ASV. The natural
way to investigate the dependence of Q on the fixed point
�x0 ,y0� is to monitor the variation of Q upon a variation of x0
and y0. This means that we define

�x0
=

�Q�x0,y0,x,y�
�x0

, �y0
=

�Q�x0,y0,x,y�
�y0

�5�

and calculate them over a certain range of fixed points
�x0 ,y0� and on a certain �x ,y� domain. In general, if the
ASV is reasonable the dependence of Q on the fixed point
�x0 ,y0� is negligible by construction. In fact one would
have �x0

= �1 /kT���V�x0 ,y0� /�x0−�V�x0 ,y� /�x0�; where
�V�x0 ,y0� /�x0��V�x0� /�x0 and �V�x0 ,y� /�x0��V�x0� /�x0
because x and y are not strongly correlated and the same
holds for �y0

. However, when the ASV is questionable, Q

will strongly depend on the fixed point. This, at first glance,
appears as a negative aspect of the algorithm proposed; how-
ever, here we suggest that actually it can be turned into a
complementary criterion to identify regions of the �x ,y�
space where the validity of the ASV is critical. To do so, one
can study �x0

and �y0
as functions of x0 and y0 using x and y

as the parameters to vary. This will help to identify sepa-
rately a subspace of x0 and a subspace of y0 �which we define
as “critical” and name D0� where Q varies by a considerable
amount. This subspace is actually an optimal candidates it-
self to be a region of the space �x ,y� of high correlation. In
fact a large value of the variation of Q, for example, with
respect to x0 simply means that, as one moves a little away
from y=y0, V�x0 ,y� strongly deviates from V�x0 ,y0� with an
infinitesimal change of x0. This is equivalent to saying that in
the neighboring of the point �x0 ,y0� the variables x and y are
strongly correlated. In this sense the analysis of �x0

and �y0
provides two different inputs: �1� It defines regions where the
choice of the fixed point for Q is delicate and those where it
is not; �2� it defines a region of the �x ,y� space where the
ASV is likely to not hold, compared with other �x ,y� regions.
This is complementary to the sort of information given by
Fig. 2, where there was no a priori choice of the �x ,y� re-
gion. Now, in fact, having defined the critical set of �x0 ,y0�
via the analysis of �x0

and �y0
, one can go back to the study

of Q, restricting the analysis to the critical region only. This
means using D0 as the �x ,y� region and choosing a fixed
point outside it where the dependence of Q on the fixed point
is negligible �or is the minimal possible given the character-
istic of the system�. This part of the procedure is rather im-
portant; in fact, in addition to minimizing the fixed point
dependence, it takes care also of the fact that the critical
region may be small and a fixed point taken from D0 may be
too close to some of the �x ,y� points, so that V�x0 ,y0�,
V�x ,y�, V�x ,y0�, and V�x0 ,y� are numerically very close and
thus Q is small because the analysis is too local. For the
specific example of the molecule at the surface, according to
Fig. 3, the critical region identified by �r0

is r	1.4 nm �by
construction r cannot be less than �=0.5 nm� and the one
identified by ��0

is � /4	�	� /2 �see Fig. 4�. In fact Fig. 3
shows, for different values of � and �0, a trend according to
which for r0	1.4 nm the dependence of Q on r0 becomes
relevant. Similarly, in Fig. 4, it is shown that the critical
region is � /4	�	 /�2. Thus, if one performs the analysis
of Q in the region of r	1.4 nm and � /3	�	� /2 choosing
as a fixed point r0=2.0 nm, �0=� /6 as given in Fig. 2, it
clearly emerges that for r	1.2 nm the ASV is not valid. This
shows how the complementarity of Q and �r0

,��0
can deter-

mine the validity of the ASV in a reasonable �robust� way.

B. Extension to higher dimensions

This criterion can be in principle straightforwardly ex-
tended to more dimensions although the computational costs
would necessarily increase. This can be achieved either by
considering correlation of more variables at the same time,
or by looking at two variables at a time with the others fro-
zen. In the first case, obviously, as the number of correlated
variables under investigation increases, the computational

θ(rad)

Q

1.41.21.00.80.6

0
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-2
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-4

r=1.0

r=1.1

r=1.2

r=1.5

r=1.8

r=3.0

FIG. 2. �Color online� Quality factor Q studied as a function of
the angle � with r varying parametrically from 3.0 to 1.0 nm. The
fixed point used in this example is �0=� /6 and r0=2.0 nm. Here
�=0.5 nm, l=0.5 nm, and �=10kT. The negative value of Q indi-
cates that the potential term where the separation is applied overes-
timates the true potential. As the distance of the center of mass from
the surface decreases, the dependence on � becomes stronger, and
approximately for r	1.2 nm the ASV starts to be questionable
since the error induced can be larger than 2kT.
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feasibility decreases, because � is calculated in a higher-
dimensional space. The advantage in this case is that �
would give a “direct” measure of the deviation. In the second
case, suppose the potential is of the form U�x ,y ,z ,…�; then
one may concentrate on two variables at a time and see how
the separation can be performed. Let us consider as an ex-
ample the case of U=U�x ,y ,z�. � in this case would be
written as ��x ,y ,z0�=U�x ,y ,z0�− �U�x ,y0 ,z0�+U�x0 ,y ,z0�
−U�x0 ,y0 ,z0��, if one is interested in how separated are x and
y, under the implicit hypothesis that z can be separated from
the others. In the same fashion one could analyze ��x0 ,y ,z�,
if one were interested in how separated are y and z, under the
implicit hypothesis that x can be separated from the others,
or ��x ,y0 ,z�, if the interest is in the separation of x and z. Of

course in the case of a strong three-variable correlation �
would strongly depend on the fixed point. As shown before,
such a dependence can actually be used as a further comple-
mentary criterion to that given by � or Q to identify regions
where the correlations between variables play a crucial role.
In order to provide a practical example of the case in which
more than two variables are involved, in the next section we
study the case of an alkane chain and use the ASV method to
comment on the validity of two mapping procedures to pass
from an atomistic to a CG description.

III. BEYOND TWO VARIABLES: THE CASE
OF THE ALKANE CHAIN

The starting point of CG schemes for intramolecular in-
teractions for polymers is the choice of a mapping strategy
by which first a reduced set of relevant variables are identi-
fied and then are substituted for the larger set of atomistic
variables �e.g., �r ,� ,
� where r, for example, is the distance
between two atomic groups, and � and 
 some angles
formed by three or four atomic groups�, defining �in the sim-
plest case� spheres containing chemical groups that become
the “new” particles of the polymer. Next, from an all-atom
simulation of a single chain in vacuo, the corresponding dis-
tributions of the CG variables are determined, and under the
approximation that they are decoupled, one can write �see,
e.g., �7��

P�r,�,�,T� = P�r,T�P��,T�P��,T� , �6�

and by Boltzmann inversion at the given temperature T one
can write

U�r,�,�� = U�r� + U��� + U��� . �7�

This means that, instead of using the whole information cor-
responding to thousands of particles, one creates a sort of
superatom approach which can still reproduce the major fea-
tures of the full atomistic model but at a much lower com-
putational cost. However, one has the disadvantage that, so
far, there exists no systematic approach to control the under-
lying ASV implied by the CG potential derived from Eq. �7�.
The example shown in the next section is an attempt to �at
least� partially bridge this gap.

Coarse-grained models for the alkane chain

To establish how to use the ASV criterion in polymers, we
have studied in detail two different mapping schemes �MSs�
for the alkane chain �AC� �see Fig. 5�. They are indicated as
the 1:2 and 1:3 MSs. In both cases by convention the right
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FIG. 3. �Color online� Variation of Q with respect to r0 ��r0
� for

some example values of �0 and �. The symmetric curves represent
the two extreme cases of values for �0 and � while in between are
reported two more examples. The message of this plot is that there
is a general trend according to which the dependence of Q on x0

becomes crucial for, approximately, r0	1.4 nm. The vertical
dashed line indicates that the region r0	1.4 nm should be consid-
ered as the critical region for the variable r.

critical region
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FIG. 4. �Color online� Variation of Q with respect to �0 ���0
� for

some example values of r0 and r. For values of r0 and r outside the
critical region defined by Fig. 3, the dependence of Q on �0 is
negligible; however, for values within the critical region of r, r0

	1.4, the dependence becomes stronger and identifies the critical
region of the variable �. The vertical dashed line indicates that the
region below �0�� /4 is the critical one.

FIG. 5. Chemical structure of the alkane chain in which each
vertex of the backbone represent a carbon atom.
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number denotes the number of carbon atoms which will be
replaced by a spherical bead �left number�. For instance, in
Fig. 6, �a� corresponds to the 1:2 MS which is represented by
a bead �circle in gray� and �b� corresponds to a 1:3 MS, that
is, three carbon groups are replaced by one spherical bead.

Although in Fig. 6 we use the same CG variables for both
mapping schemes, it is necessary to remark that each map-
ping scheme depends on different explicit �atomistic� vari-
ables. The CG variables are defined as �i� the distance be-
tween close beads R�1� and R�2� and �ii� the angle � between

vectors R� �1� and R� �2�. The problem we want to address is
quantification of how realistic is the hypothesis of separation

of variables, i.e., how independent R�1� and R�2�, R�1� and �,
and R�2� and � are of each other. To this end we apply the
scheme proposed in the previous sections. The underlying
atomistic potential and the procedure of coordinate transfor-
mation from the atomistic to the CG variables are reported in
Appendix A.

IV. APPLICATION OF THE ASV METHOD
TO THE ALKANE CHAIN: RESULTS

As stated before we are interested in the separability of
the CG variables R�1�, R�2�, and �. The way we will proceed
�as in the previous example� is first by considering the ato-
mistic potential expressed in terms of the CG variables, and
then by analyzing the case of dependence of two CG vari-
ables at a time with the other fixed at a parametric value.
This will provide direct information about the coupling of
two variables but not directly the coupling to the third one.
However, later we will show also results of a study where the
variable kept fixed in Q is varied parametrically and by this
we will provide �at least� qualitative insight into the three-
variable dependence. The procedure we follow for the “two
variables at a time” analysis is the same shown for the ex-
ample of the diatomic molecule, that is, �i� first choose an
arbitrary fixed point; �ii� calculate the quality factor Q; �iii�
study the dependence on the fixed point by calculating the
corresponding �’s; �iv� identify the critical region; �v� chose
a fixed point outside this region �the optimal choice would be
where �=0; however, as explained later, this is a rather ideal
situation�; �vi� calculate Q once again using the fixed point
of �v� and analyze Q in the critical region. Unlike the case of
the diatomic molecule, in this case there are two more as-
pects to account for. �a� Some regions are not considered
because they lie outside the domain in which the CG value
are defined �e.g., an angle �=0 is obviously a bad configu-

(a)

(b)

FIG. 6. �Color online� CG structure of the backbone for an AC
and the underlying atomistic �carbon group� structure. Each carbon
group �e.g., CH2 or CH3� is represented by a large dark �blue� circle
close to a letter. �a� shows the MS where there are two carbon
groups per bead �1:2�, and �b� three per bead �1:3�. The “atomistic”
variables �i, ∀i=1,2 ,3 ,4 ,5, and the CG variables R�1�, R�2�, and �
are also shown.
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2.522.492.462.432.402.372.342.31

30

20

10

0

-10

-20

-30

-40

-50

-60

R̄(1) = 2.45, Ω = 153◦, and Ω0 = 162◦
R̄(1) = 2.50, Ω = 144◦, and Ω0 = 162◦
R̄(1) = 2.60, Ω = 108◦, and Ω0 = 171◦
R̄(1) = 2.60, Ω = 149◦, and Ω0 = 169◦

(b)(a)

FIG. 7. �Color online� �a� Quality factor Q1=Q�R̄�1��=�R0
�2�,�0

�R̄�1�� /kT for the mapping 1:2 with R̄�1�=2.4 Å as a parametric value and
the fixed points equal to R0

�2�=2.4 Å and �0=140°. In order to determine �a� we first chose an arbitrary fixed point �R0
�2� ,�0� and then

analyzed Q and its dependence on the fixed point as shown in �b�. Next, according to the procedure shown for the example of a diatomic
molecule, we can identify two critical regions which are given ∀ R0

�2�� �2.425,2.525� and ∀ �0
�2�� �145° ,180° �. Accordingly, we have then

chosen the fixed point of �a� outside the critical region. In �a�, the light gray region shows the vicinity of the fixed point �R0
�2� ,�0� where the

CG potential is decoupled �by definition� and thus of no interest in this context. The real interest is in the critical regions determined by the
plot shown in �b� ���0

, not reported, shows a behavior similar to that of �b��. Here the potential is no longer decoupled and the variables are
highly correlated. Note also that the white regions are those where the CG variables are not defined and thus Q is not calculated. The same
applies for all the following figures.
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ration because it implies that two carbon groups overlap or a
bending which would chemically break the chain �see Ap-
pendix A for the extension of the domain of definition in
terms of the “atomistic” variables �i��. �b� In this case the
analysis of the fixed point dependence can still define the
critical region as before, but the optimal choice of the final
fixed point is not as straightforward as that of the previous
example, e.g., �=0. In fact in this case � is not likely to be
zero; thus we have to extend the previously used criterion.
The way we proceed in this case is the following. �1� If � has
a region where it varies slowly and then a region where its
variation increases rapidly �as for example in Fig. 9 below�,
we define the first region as the one where we choose the
final fixed point �possibly the point corresponding to the
minimum value of �, that is, the minimum dependence on
the fixed point� or we sample a few different fixed points
chosen in such a way that they span the entire domain. Next
we determine Q as the average over them. This optimizes the
dependency of Q on the fixed point in the sense that the
quantitative results are as independent as possible from it. �2�
If � is constant but is characterized by a high value or it
increases rapidly over the whole domain �as in Figs. 9–12�,

then the whole domain is critical, which means that the ASV
does not hold. However, to quantify the error introduced by
the ASV one still needs to calculate Q and thus needs to
choose a fixed point. In this case we proceed by choosing
several fixed points all over the domain and for each sepa-
rately we calculate the Q. For the final Q we take the average
�plus fluctuations� of the values obtained for each study as
we do for the slowly varying case �although in this case one
needs a larger sample of fixed points�. Although no longer
rigorous, this is a practical way to solve the problem. In fact,
if the ASV does not hold well, then the procedure still gives
a precise message, i.e., it tells us that on average the error
introduced by the ASV is larger than the accuracy we re-
quire. Of course if instead it holds well �i.e., the error intro-
duced by the ASV is below the required accuracy�, then one
has to sample several fixed points; however, in this case one
can prove only that the ASV is acceptable on average, that is,
there may still exist a few conformations where the ASV
does not hold well. In this case also, the method would in
any case provide strong indications about the general validity
of the approximation.
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FIG. 8. �Color online� �a� Quality Q2=Q�R̄�2��=�R0
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�R̄�2�� /kT for the mapping 1:2 with R̄�2�=2.35 Å as a parametric value and the
fixed points equal to R0

�1�=2.5 Å and �0=162°. The procedure used is the same as in the previous figure. Note that the value of the derivative
shown in �b� is almost constant for each parametric curve �the same behavior holds for ��0

, not reported�. This means that there exists no
real definition of the noncritical region and in this case one can proceed by using several fixed points in the domain and averaging the quality
factor resulting from each study.

δ R
(2

)
0

(Ω̄
)

critical region

R
(2)
0 (Å)
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�2���̄� /kT for the mapping 1:2 with �̄=162° as a parametric value and the
fixed points equal to R0

�1�=2.6 Å and R0
�2�=2.4 Å. The procedure for analyzing �b� ��R0

�1�, not reported, displays a similar behavior to that
reported in �b�� is the same as described in the previous figures.
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A. Results for the 1:2 MS

Figures 7–9 report examples of Q, studied for different
parametric values of the CG variable, which in turn is fixed.
The general message is that indeed in each plot for the 1:2
MS there are extended regions where the error in the poten-
tial when the ASV is applied is between 6kT and 9kT, which
is somewhat larger than the expected thermal fluctuations.
This means that indeed the ASV would not be a reasonable
approximation. As underlined before, this conclusion is inde-
pendent of the parametric dependence of the fixed CG vari-
able as well as of the fixed point dependence. In fact it sim-
ply says that there exists a range of conformations for the
alkane chain where the ASV would lead to the wrong poten-
tial energy �with respect to the full atomistic one� which
cannot be neglected by introducing standard thermal fluctua-
tions.

B. Results for the 1:3 MS

Figures 10–12 show the calculation of Q for the 1:3 MS.
In comparison to the 1:2 MS, there is an improvement since
the maximum value of Q is between 6kT and 7kT. This leads

us to conclude that the ASV is a better approximation for the
1:3 MS than for the 1:2 MS; this somehow is expected be-
cause the coarser the system becomes the closer it is to a
freely jointed chain. However, implicitly, this suggest that
the 1:3 MS is a better CG model than the 1:2 �see also the
analysis of the average values of Q reported in the next sec-
tion�. Methodologically, the relevant aspect of Figs. 10–12 is
that a noncritical region cannot be identified by the analysis
of � and thus one has to proceed as suggested before by
sampling several fixed points and use a statistical definition
of Q. However, the message is rather clear: in this case also
the error introduced by the ASV would be of the order of
�6–7�kT and thus still not negligible, and once again this is
independent of the parametric value of the fixed CG variable
and of the fixed point.

C. Average of Q in fixed point and CG
variable parametric space

Finally, in order to show in practice how to deal with the
situation where a noncritical region cannot be defined, we
report in Tables I and II the values of Q averaged over sev-
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�R̄�1�� /kT of the mapping 1:3 with R̄�1�=2.7 Å and �2=126° as parametric
values. The corresponding fixed points are R0

�2�=3.25 Å and �0=176.5°. As for Fig. 8, but in this case due to the rapidly varying dependence
on the fixed point �see �b�� one has to use several fixed points and consider the Q resulting from the average of each study, in order to have
more valid quantitative information. �R0

�1�, not reported, shows a similar behavior.
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�1�=2.7 Å and �0=176.5°. As in the previous figure, there is no noncritical region �see
�b��. ��0

, not reported, shows the same behavior as in �b�. This means that one must explore critical points over the whole domain in order
to estimate Q quantitatively.
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eral fixed points. As can be noticed, as for the case of Q
calculated with one single fixed point, the 1:2 MS is charac-
terized by values much above the expected standard thermal
fluctuations. For example, the value of 16.04.60 tells us
that on average the error introduced is 16kT with a maximum
of even 20.6kT and a minimum of 11.4kT, i.e., it gives a
clear message about the validity of the ASV. The same could
be said about the 1:3 MS; however, in this case the error
introduced by the ASV is much lower. Finally, in Table III
we show the average of Q over the parametric values of the
CG variables, which is in turn fixed. This is an indirect indi-
cation of the three-variable dependence. According to Table
III the additional correlations due to the third variable do not
change the situation. The single values of Q vary by an
mount that is not sufficient to change the previous conclu-
sions, that is, the two-variable correlation is dominant with
respect to the three-variable correlation.

V. CONCLUSIONS

We have proposed a systematic procedure to estimate the
validity of the ASV. The advantage of such a method consists
of the fact that only the analytical form of the potential is
required. This means that it allows one to define regions
where the ASV is reasonable a priori without performing
any preliminary MD study for calculating possible correla-
tions among the DOF’s. We have shown its application for a
simple system, namely, the diatomic molecule on a flat sur-
face, and the application to any other system is conceptually
straightforward; this is certainly true for the cases where the
variables in question explicitly appear in the potential. For
polymers, in general, in CG-based studies, the nonbonded

interactions are well represented via simple excluded vol-
ume; this means that the separation of variables is relevant
only for intramolecular interactions �1�. These, in turn, are
usually determined by local interactions �e.g., bond poten-
tials, angular potentials, torsional potentials� involving only
one specific chemical moiety of the polymer at a time. This
means that the parametrization of a large molecule can be, in
a rather practical way, checked piecewise by the method pre-
sented here. We have shown the application of the procedure
for the case of an alkane chain and two different CG map-
ping procedures. In conclusion, this method may represent a
first step toward the development of a more systematic and
practical way to control the problem of reducing the number
of DOF’s in MD simulations.
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APPENDIX A: THE ATOMISTIC POTENTIAL

The atomistic model used in this study involves an inter-
action between atomic sites describes by a bond-bending po-
tential �8,9� of the form

Vbending��i� =
1

2
K��i − �i

0�2 �A1�

TABLE I. Quality factor for 1:2 MS �average in fixed point
space�.

�Q�R̄�1�=2.44 Å� �Q�R̄�2�=2.47 Å� �Q��̄=162° �

9.100.40 16.004.60 6.201.60

TABLE II. Quality factor for 1:3 MS �average in fixed point
space�.

�Q�R̄�1�=2.7 Å� �Q�R̄�2�=3.29 Å� �Q��̄=170° �

3.501.20 7.202.70 2.100.60
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�2���̄� /kT for the mapping 1:3 with �̄=174° and �2=126° as parametric

values. The corresponding fixed points are R0
�1�=2.71 Å and R0

�2�=3.4 Å. As in the other cases for Q1, Q2, and now for Q3 noncritical regions
within the domains of the CG variables cannot be found �see �b�� and thus the same considerations apply as in Figs. 10 and 11. �R0

�1�, not
reported, shows a similar behavior to that reported in �b�.
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with K=115.2 kcal /mol and �i
0=112° for T=450 K. �i is the

angle formed by three consecutive carbon groups, as shown
in Fig. 6. Some DOF’s, such as the torsion angles, are disre-
garded, as we focus on the separation of the variables R�1�,
R�2�, and � which �for symmetry reasons� are independent of
the torsion. In both systems with 1:2 or 1:3 mapping, we
have used a stiff bond length between carbon atoms equal to
l1=1.54 Å. The difference between the two cases studied lies
in the choice of the center for each bead and the number of
carbon groups per bead. For instance, in the first case we
take the center of the distance between two groups
�CH3-CH2� as the center of the bead and in the second
we fix the internal angle formed by three molecules
�CH2-CH3-CH2� and then use the barycenter of this triangle
as the center of the bead. In both cases the angle �1 is kept
fixed at its equilibrium value, that is, �1=108°, while the
other angles are allowed to vary in such a way that �i
=115° 10°, ∀ i=2,3 ,4, as suggested by atomistic simula-
tions �8,9�.

APPENDIX B: THE CG VARIABLE AS FUNCTION
OF THE ATOMISTIC VARIABLES

Once the relevant CG variables are determined one has to
proceed to express the CG variables as a function of the
explicit �atomistic� variables. After that one can apply sys-
tematically the criterion of the ASV and calculate the quality
factor for this particular mapping scheme. Here, for technical
convenience, we proceed first by expressing the atomistic
variables as a function of the new CG variables and then use

the inverse function in order to get the CG variables as a
function of the explicit dependencies. Due to the high com-
plexity of the system we have fixed some atomistic variables
�as reported before� and consider them as possible parametric
variables. This is a useful procedure and a common way to
treat a complex system with a high number of DOF’s where
some variables are more relevant than others. In order to
obtain a set of equations, we analyze the geometrical prop-
erties of the MS and search for suitable relations between the
explicit and CG variables. The geometrical conditions that
we have used to obtain a system of equations involve the
square of the absolute values of R� �1� and R� �2�, which are
expressed as the resultants of the sequence of collinear vec-
tors for each case. For the first MS, now we define r�1=O1B� ,
r�2=BC�, r�3=CO2

� , r�4=DE�, and r�5=EO3
� �see Fig. 6�. So we

have

R� �1� = − �r�1 + r�2 + r�3� ,

R� �2� = r�3 + r�4 + r�5.

Then the squares of the absolute values are given by

�R�1��2 = �r1�2 + �r2�2 + �r3�2 + 2�− r1r2 cos��1�

+ r1r3 cos��2 − �1� − r2r3 cos��2�� ,

�R�2��2 = �r3�2 + �r4�2 + �r5�2 + 2�− r3r4 cos��3�

+ r3r5 cos��4 − �3� − r4r5 cos��4�� . �B1�

Similarly for the second MS, having defined r�1=O1B� , r�2

=BC�, r�3=CD�, r�4=DE�, r�5=EO2
� , r�6=EF�, r�7=FG�, r�8=GH�,

and r�9=HO3
� ,

R� �1� = − �r�1 + r�2 + r�3 + r�4 + r�5� ,

R� �2� = − r�5 + r�6 + r�7 + r�8 + r�9,

once again the squares of the absolute values are obtained:

�R�1��2 = �r1�2 + �r2�2 + �r3�2 + �r4�2 + �r5�2 + 2�− r1r2 cos��1

2
� + r1r3 cos��2 −

�1

2
� − r1r4 cos��3 +

�1

2
− �2� + r1r5 cos��2 − �3�

− r2r3 cos��2� + r2r4 cos��2 − �3� − r2r5 cos��1

2
+ �2 − �3� − r3r4 cos��3� + r3r5 cos��3 −

�1

2
� − r4r5 cos��1

2
�	 ,

�R�2��2 = �r5�2 + �r6�2 + �r7�2 + �r8�2 + �r9�2 + 2�− r5r6 cos��1

2
� + r5r7 cos��4 −

�1

2
� − r5r8 cos��5 +

�1

2
− �4� + r5r9 cos��4 − �5�

− r6r7 cos��4� + r6r8 cos��5 − �4� − r6r9 cos��1

2
+ �4 − �5� − r7r8 cos��5� + r7r9 cos��5 −

�1

2
� − r8r9 cos��1

2
�	 . �B2�

TABLE III. Quality factor �average in parametric space�.

MS �Q�R̄�1�� �Q�R̄�2�� �Q��̄�

1:2 8.201.50 15.06.00 5.402.50

1:3 4.902.90 6.503.70 3.001.60
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Although the scalar product of R� �1� ·R� �2� is a valid relation to
obtain �, we noticed that it is not well handled by the con-
ventional inverse procedure because it involves no simple
argument dependencies. Hence we use a particular relation
for each MS as shown below.

�1� Case of Fig. 6�a�. For � we have �=�−DO2O3
̂

+O1O2Ĉ; then using the scalar product of r�3 ·r�4

=−r3r4 cos��3� and since r�4=R� �2�−r�3−r�5, we have that

− r3r4 cos��3� = r�3 · �R� �2� − r�3 − r�5�

= �r3R�2� cos�DO2O3
̂� − r3

2 − r3r5 cos��4 − �5��;

thus by inverting this relation we obtain DO2O3
̂. The remain-

ing angle O1O2Ĉ can be expressed as a function of R�1� and
is equal to

O1O2Ĉ = arccos� �R�1��2 − 4�r1�2�1 − 2 cos��1��
2R�1�r1

� .

�2� Case of Fig. 6�b�. �=2�−DO2F̂−O1O2D̂−O3O2F̂,
and due to the symmetry of the system the last two angles on
the right-hand side of the equation are mathematically simi-
lar. We now show the geometrical procedure to determine the

expression for one of them, namely, O1O2D̂.

�O1DC: O1D2 = O1C2 + CD2 − 2O1CCD cos�O1CD̂� ,

�O1DO2: O1D2 = O1O2
2 + DO2

2

− 2O1O2DO2 cos�O1O2D̂� ,

where the symbol � indicates the triangle under consider-
ation further defined by the letters of its vertices �e.g.,
�O1DC is the triangle whose vertices are the points O1, D,

and C�. Next we solve for O1O2D̂ and, considering that
O1C=DO2, we have

O1O2D̂ =
arccos�O1O2

2 − CD2 + 2O1CCD cos�O1CD̂��
2O1O2O1C

;

by analogy, for the other angle O3O2F̂,

O3O2F̂ =
arccos�O2O3

2 − FG2 + 2GO3FG cos�FGO3
̂��

2O2O3GO3

,

where O1CD̂=�2+O1CB̂ and O3O2F̂=�5+HGO3
̂. Due to the

symmetry we have that O1CB̂=HGO3
̂, this angle can be cal-

culated using the geometrical properties of the triangles and
is equal to

O1CB̂ =
3

8
+

1

2
�5

4
− cos��1��1/2

.

From our notation for CG variables we have

O1O2 = R�1�,

O2O3 = R�2�,

and

CD = FG = l1.

Despite the appearance of a complicated mathematical
procedure, technically those relations are not difficult to ob-
tain and by using standard computational tools as MATH-
EMATICA �10�, one can obtain “numerical” expressions of the
transformation which can be directly plugged into a com-
puter code. The explicit expressions are rather lengthy �but
easy to use the numerical procedure of the ASV� and would
occupy too much space, thus they are not reported here. In
any case the formal procedure reported above is sufficient to
reproduce all the calculations we are performing. We have
tested the correctness of the explicit expressions obtained by
calculating several values of the potential using both the ex-
plicit atomistic coordinates and the corresponding CG values
of R�1�, R�2�, and �. Below the formal relations correspond-
ing to the two MS’s are reported; for the 1:2 MS, we have
the following dependencies with �1 and l1 as parametric val-
ues:

�1 = �̄1,

R�1� = R�1��l̄1, �̄1,�2� → �2 = �2�l̄1, �̄1,R�1�� ,

R�2� = R�2��l̄1, �̄1,�2,�3,�4� → �3 = �3�l̄1, �̄1,R�1�,R�2�,�� ,

� = ��l̄1, �̄1,�2,�3,�4� → �4 = �4�l̄1, �̄1,R�1�,R�2�,�� .

�B3�

For the 1:3 MS, we fixed �1, �2, and l1 as parametric values
and obtain

�1 = �̄1,

�2 = �̄2,

R�1� = R�1��l̄1, �̄1, �̄2,�3� → �3 = �3�l̄1, �̄1, �̄2,R�1�� ,

R�2� = R�2��l̄1, �̄1,�4,�5� → �4 = �4�l̄1, �̄1, �̄2,R�1�,R�2�,�� ,

� = ��l̄1, �̄1, �̄2,�3,�4,�5� → �5 = �5�l̄1, �̄1, �̄2,R�1�,R�2�,�� .

�B4�
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