
Find minimum of ὠ Вὠ ”

Subject to ἕἽ Ἦ

 „ἓ

 ἓ ” ἓ

STRESS CONSTRAINED STRUCTURAL TOPOLOGY OPTIMIZATION WITH
FUNCTOR-ORIENTED FINITE ELEMENT IMPLEMENTATION

Decomposing classical OO classes into functor classes

P. Tauzowski1, B. BƱachowski1, and J. Logo2
1Institute of Fundamental Technological Research, Polish Academy of Sciences
2Budapest University of Technology and Economics, Budapest, Hungary

Topology Optimization Algorithm

é()

OOFiniteElementclass

getTangentMatrix ()

getMassMatrix ()

getResidualVector ()

nodeVector

material
OOFiniteElementclass

getTangentMatrix ()

getMassMatrix ()

nodeVector

material
getResidualVector ()

FE Integration

BilinearForm

Material matrix

 template < class Gp, class B, class D >
class FnBilinearForm
{
 B m_B;
 D m_D;
public:
 FnBilinearForm (const B &b, const D &d): m_B(b), m_D(d) { }
 ~FnBilinearForm () { }
 const matrix& operator()(Gp * gp, const mvector &xi, const matrix &J);
};

template< class FEi , class B, class D >
const matrix& FnBilinearForm <FEi,B,D >::operator()(Gp * gp, const mvector &xi, const matrix &J)
{
 return m_value.dTrBDB (m_B(gp, xi, J), mD(gp, xi, J));
};

template <class T>
class TElemFunctor
{
public:
 TElemFunctor (const DTvec &dv): m_dofs (dv){ }
 virtual TElemFunctor * Clone() const = 0;
 const T& GetValue () const { return m_value ; }

 virtual const T& operator () (const CFEInstance &ielem) = 0;
protected:
 T m_value ;
};

Classical programming of finite elements contains usual class, which duty is

not only to approximate some physical field of interest (displacements,

accelerations or temperature), but also definition of matrices necessary for

particular analysis. It often leads to sophisticated class hierarchy of finite

elements. In our approach matrices necessary for FE analysis are in

separate classes. Hierarchy of these classes can be developed almost

separately from declaration of the finite element class. Also finite elements

hierarchy is much smaller, because each class represents one kind of matrix

computed in FE analysis. In our opinion the functor is best suited object for

this kind of approach. The functor represents one subroutine and it can

also be invoked as function. The study presents application of functor

oriented programming to finite element analysis. Functor represents one

subroutine and also it can be invoked as function:

functor (FiniteElement) .

Convergence
criterion

Initial design

Stop

Elastoplastic finite
element analysis

Low-pass filtering

Design variables
updating

Results smoothing

True

False

Finite
element
discretization

Structural
response

Checkerboard
removal

Plastic zones Topology optimization formulation

Benchmark example

Binary penalization

