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 template < class Gp, class B, class D >  
class FnBilinearForm  
{  
    B m_B;  
    D m_D;  
public:  
     FnBilinearForm ( const  B &b, const  D &d ): m_B( b ), m_D( d ) { }  
    ~FnBilinearForm () {  }  
     const  matrix& operator()( Gp * gp, const  mvector  &xi, const  matrix &J );  
};  
 
template< class FEi , class B, class D >  
const  matrix& FnBilinearForm <FEi,B,D >::operator()( Gp * gp, const  mvector  &xi, const  matrix &J )  
{  
    return m_value.dTrBDB ( m_B( gp, xi, J ), mD( gp, xi, J ) );  
};  
  

  
template <class T>  
class TElemFunctor  
{  
public:  
  TElemFunctor ( const  DTvec  &dv): m_dofs ( dv){ }  
  virtual TElemFunctor * Clone() const  = 0;  
  const  T& GetValue () const  { return m_value ; }  
 
  virtual const  T& operator ()  (  const  CFEInstance  &ielem   ) = 0;  
protected:  
    T m_value ;  
};  

  

Classical programming of finite elements contains usual class, which duty is 

not only to approximate some physical field of interest (displacements, 

accelerations or temperature), but also definition of matrices necessary for 

particular analysis. It often leads to sophisticated class hierarchy of finite 

elements. In our approach matrices necessary for FE analysis are in 

separate classes. Hierarchy of these classes can be developed almost 

separately from declaration of the finite element class. Also finite elements 

hierarchy is much smaller, because each class represents one kind of matrix 

computed in FE analysis. In our opinion the functor is best suited object for 

this kind of approach. The functor represents one subroutine and it can 

also be invoked as function. The study presents application of functor 

oriented programming to finite element analysis. Functor represents one 

subroutine and also it can be invoked as function: 

functor ( FiniteElement ) .  
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