ANNA BLIM, EWA OŁDAK, ANDRZEJ WASIAK, LESZEK JARECKI^{*)}

Instytut Podstawowych Problemów Techniki PAN Pracownia Fizyki Polimerów ul. Świętokrzyska 21, 00-049 Warszawa

Wpływ grzania strefowego na strukturę włókien PET i dynamikę procesu przędzenia ze stanu stopionego

Cz. I. KRYSTALICZNOŚĆ I ORIENTACJA MOLEKULARNA

EFFECTS OF ZONE HEATING ON PET FIBERS STRUCTURES AND DY-NAMICS OF MELT SPINNING PROCESS. PART I. CRYSTALLINITY AND MOLECULAR ORIENTATION

Summary — Effects of heating chamber temperature (T_K) and take-up speed (V_L) on crystallinity degree (X_V) , optical birefringence (Δn) , crystalline orientation (f_c), and amorphous orientation (f_a) of PET fibers obtained in melt spinning with zone heating were investigated. Zone heating has been provided by thermostatic chamber with hot air in the temperature range 100-210 °C. Take-up speed of fibers varied dependently on the type of spinning: conventional or high speed one (>4000 m/min). Crystallinity degree has been determined from density measured using gradient column, crystalline orientation factor was determined from WAXS diffraction patterns while amorphous orientation factor was determined on the basis of birefringence measurements as well as of crystalline orientation factor and crystallinity degree. Measurements have been carried out for small and big V_L values, 2600 or 4800 m/min respectively, at low (135 °C) or high (195 °C) chamber temperature. Lower T_K value is in the middle of the range between glass transition temperature (T_g) and the temperature of maximal crystallization rate (T_{max}). It has been found PET fibers showing high X_V value can be obtained using conventional V_L speed at temp. T_K >135 °C (Figs. 1 and 2) while in case of high speed spinning X_V increase requires high T_K temperature close to $T_{max} \approx 190$ °C (Fig. 2). Molecular orientation is characterized by high values of crystalline orientation factor $f_c \approx 0.9$, independently on spinning conditions. It proves the constant critical level of f_a orientation needed to oriented crystallization occurring. High amorphous orientation of the fibers is obtained during melt spinning with online crystallization induced in technological line (Fig. 1, 8). Zone heating is a factor inducing the crystallization in case of low take-up speeds while at high speed spinning high value of f_a is this factor. Amorphous orientation is higher for low T_K (Fig. 7). High T_K leads to decrease in f_a value because of relaxation. The fibers showing the highest values of birefringence were obtained at high chamber temperature (Fig. 6).

Key words: melt spinning, PET, zone heating, chamber temperature, take-up speed, amorphous orientation, crystalline orientation, oriented crystallization.

ZNACZENIE I MOŻLIWOŚCI KSZTAŁTOWANIA STRUKTURY W PROCESIE PRZĘDZENIA WŁÓKIEN PET

Przędzenie włókien ze stopionego polimeru jest najprostszą z technologicznego punktu widzenia i najbardziej korzystną pod względem ekonomicznym metodą produkcji włókien sztucznych, w której nie występują

^{*)} Autor, do którego należy kierować korespondencję; e-mail: ljarecki@ ippt.gov.pl, tel.: (+48 22) 827-81-82.

złożone reakcje chemiczne oraz kosztowne i uciążliwe dla środowiska procesy wymiany masy [1, 2]. Dlatego też badania zależności pomiędzy warunkami przędzenia a kształtującą się strukturą koncentrują się głównie na tej metodzie.

W ciągu wielu lat włókna syntetyczne produkowano w procesach dwuetapowych, polegających na przędzeniu z cieczy polimerowej, a następnie rozciąganiu surowych włókien w podwyższonej temperaturze w celu nadania im odpowiedniej orientacji molekularnej i krystaliczności. W ostatnich latach nastąpiła istotna zmiana w charakterze prowadzonych prac badawczych oraz projektowaniu procesów technologicznych ze względu na rosnące zainteresowanie materiałami tekstylnymi o zaletach włókien naturalnych, o większym komforcie użytkowania i lekkości. Zapotrzebowanie na włókna wysokiej jakości, otrzymywane niewielkim kosztem, doprowadziło do rozwoju technologii jednoetapowych, dających rezultaty porównywalne z tradycyjnymi technologiami dwuetapowymi. Zatem, w kręgu zainteresowań badaczy znalazły się procesy charakteryzujące się dużą prędkością odbioru [3, 4] oraz modyfikacje procesu dzięki wprowadzeniu grzania strefowego [5-11].

Najszersze zastosowanie w produkcji włókien syntetycznych ma poli(tereftalan etylenu) (PET), charakteryzujący się zrównoważonym zespołem korzystnych właściwości zarówno fizycznych, jak i chemicznych, łatwiejszym kontrolowaniem procesu technologicznego oraz mniejszymi kosztami produkcji. Zainteresowanie laboratoriów badawczych formowaniem włókien z tego polimeru wynika z dużej czułości kształtowania się jego struktury na warunki dynamiczne i termiczne procesu.

Właściwości fizyczne, mechaniczne, a także użytkowe włókien są uzależnione od krystaliczności i orientacji molekularnej [1, 3, 12—20]. Zebrane w pracy [20] obszerne dane pochodzące z różnych publikacji i patentów wskazują, że zasadnicze znaczenie decydujące o dużych wartościach modułu sprężystości i wytrzymałości mechanicznej ma orientacja części amorficznej włókna, tzw. orientacja amorficzna.

Surowe włókna PET otrzymywane tradycyjnie z konwencjonalnymi, małymi szybkościami przędzenia, bez grzania strefowego, są amorficzne. Orientacja molekularna takich włókien jest niewielka, mimo że wykazuje wzrost ze zwiększaniem prędkości odbioru [1, 21—23]. Proces technologiczny wymaga więc dodatkowego rozciągania i wygrzewania włókien, aby nadać im krystaliczność oraz większą orientację amorficzną.

Procesowi przędzenia włókien PET może jednak towarzyszyć krystalizacja stopionego polimeru indukowana naprężeniem rozciągającym (krystalizacja orientowana), wywołana zastosowaniem dużej prędkości odbioru, kształtowaniem odpowiedniego profilu temperatury wzdłuż osi formowania, bądź też połączeniem obu tych czynników. Stosowanie szybkiego przędzenia bez grzania strefowego nie prowadzi jednak do orientacji amorficznej tak dużej, jak w procesie dwuetapowym. W przypadku szybkiego przędzenia, po osiągnięciu maksimum orientacji amorficznej, obserwuje się jej spadek z dalszym zwiększaniem prędkości odbioru [22, 23].

Tak więc idealny, ekonomiczny proces formowania włókien powinien być jednoetapowy, prosty, a w jego wyniku powinny powstawać włókna krystaliczne o dużej orientacji amorficznej. Zatem, kształtowanie krystaliczności i orientacji molekularnej metodą modyfikacji osiowego profilu temperatury (grzanie strefowe) z zastosowaniem różnych prędkości odbioru stanowi ważny kierunek badań laboratoryjnych i technologicznych. Rozwój techniki komputerowej otworzył w ostatnich latach nowe możliwości badania takich procesów metodami modelowania matematycznego i symulacji komputerowej [1, 10, 11, 24—26].

Modyfikacją osiowego profilu temperatury w procesie przędzenia zajmowały się już wcześniej firmy Inventa, Toray i Celanese [27—29]; w firmach tych opracowano jednoetapowy proces otrzymywania krystalicznych włókien PET z prędkością odbioru znacznie mniejszą od prędkości w procesach szybkiego przędzenia. W metodzie takiej polimer, bezpośrednio po wypłynięciu z otworów filiery jest kierowany do komory grzejnej wypełnionej gorącym powietrzem o temperaturze o 10—80 deg niższej od temperatury topnienia, a krystaliczne włókno jest odbierane z prędkością 1300—2600 m/min [27], czyli znacznie poniżej zakresu szybkiego przędzenia.

Zastosowanie komory grzejnej w procesach przędzenia było także przedmiotem badań prowadzonych przez Cuculo i in. [6, 7]. W badanym procesie strumień polimeru, po schłodzeniu poprzecznym nadmuchem powietrza, kierowano do komory z gorącym powietrzem. Badano strukturę tak otrzymywanych włókien w odniesieniu do różnej temperatury komory, w zakresie 10-90 deg powyżej temperatury zeszklenia (T_g) polimeru. Autorzy stwierdzili, że grzanie strefowe prowadzi w badanym zakresie prędkości odbioru 3000-5000 m/min do krystaliczności, bądź znacznego jej wzrostu, oraz do dużej dwójłomności odbieranych włókien. Zaobserwowano wzrost czynnika orientacji amorficznej (f_a) osiągającego wartość 0,5, która w przypadku włókien otrzymywanych w procesie bez grzania wynosiła zaledwie 0,2—0,3. Ponadto wzrostowi orientacji molekularnej i krystaliczności towarzyszyła znaczna poprawa właściwości mechanicznych. Gdy proces prowadzono z prędkością odbioru 4000 m/min i przy użyciu komory o temp. 140 °C, to uzyskiwano ok. 50-proc. wzrost początkowego modułu sprężystości włókien. Towarzyszył temu również wzrost naprężenia zrywającego oraz spadek wydłużenia przy zerwaniu.

Jednakże w pracy [7] nie przeanalizowano wpływu temperatury strefy grzania w odniesieniu do różnych prędkości odbioru na krystaliczność oraz orientację molekularną, amorficzną i krystaliczną. Charakterystyki takie pozwoliłyby na wyjaśnienie roli grzania strefowego w procesach z różną prędkością odbioru przędzenia zarówno konwencjonalnego, jak szybkiego. Znane są też inne modyfikacje procesu przędzenia z fazy stopionej PET, polegające na stosowaniu kąpieli hydrodynamicznej z cieczą o temperaturze przekraczającej T_g o 75—150 °C oraz połączenia kąpieli z powietrzną komorą grzejną [30, 31]. Metodami tymi również uzyskuje się dużą orientację molekularną i krystaliczność włókien w procesach jednoetapowych.

Występowanie silnego wpływu szybkości deformacji i temperatury na charakterystykę reologiczną PET w warunkach procesów orientacji molekularnej i krystalizacji orientowanej potwierdziły badania prowadzone w szerokim zakresie szybkości deformacji orientującej [32]. Stwierdzono, że w temperaturze wyższej od T_g polimeru wzrost szybkości deformacji silnie wpływa na orientację molekularną i zwiększenie szybkości krystalizacji oraz, że wpływ ten zależy w istotny sposób od temperatury procesu.

CEL I ZAKRES PRACY

W procesach przędzenia z zastosowaniem grzania strefowego występuje dodatkowy zakres temperatury krystalizacji, w którym obserwuje się przyspieszenie krystalizacji w warunkach zwiększonego naprężenia rozciągającego. Grzanie strefowe modyfikuje osiowy profil temperatury i wywołane tym zmiany kinetyki oraz zakresu krystalizacji na osi formowania. Krystalizacja z kolei znacznie zwiększając lokalną lepkość polimeru wpływa na dynamikę procesu, tj. na profile naprężenia rozciągającego i prędkości. Zamierzone kształtowanie struktury w tak złożonych warunkach, gdzie dynamika procesu silnie zależy od warunków termicznych i kinematycznych poprzez krystalizację orientowaną i uzależnioną od niej lepkość polimeru, wymaga prowadzenia badań - zarówno doświadczalnych, jak i metodami symulacji komputerowej - w odpowiednio szerokim zakresie temperatury i prędkości odbioru.

Dane literaturowe dotyczące tego zagadnienia są fragmentaryczne i nie wystarczają do określenia wpływu grzania strefowego na kształtowanie się orientacji molekularnej i krystaliczności w tak złożonym procesie w przypadku różnych szybkości formowania. Przeprowadzenie badań w odpowiednio szerokim zakresie temperatury grzania i prędkości odbioru pozwoli na określenie wpływu różnych parametrów formowania na orientację molekularną oraz stopień krystaliczności. Brak jest także danych opisujących znaczenie grzania strefowego na dynamikę procesu. Systematyczna ocena wpływu termicznej modyfikacji procesu na kształtowanie się struktury i na dynamikę ma duże znaczenie w projektowaniu i optymalizacji przemysłowych procesów formowania włókien, a także ich modelowania.

Badania podjęte w tej pracy dotyczą efektów grzania strefowego w przędzeniu ze stopionego PET z zastosowaniem komory grzejnej z gorącym powietrzem o różnej temperaturze w obszarze $>T_{g}$, w szerokim zakresie szybkości przędzenia (od małych prędkości odbioru do typowych prędkości procesów szybkiego przędzenia). Znaczenie podjętych badań wiąże się z możliwością otrzymywania w procesie jednoetapowym włókien krystalicznych o dużej orientacji amorficznej.

W opisanej w niniejszym artykule części pracy podjęliśmy badania zmian krystaliczności oraz orientacji amorficznej i krystalicznej odbieranych włókien.

Dynamika procesu oraz zagadnienia dotyczące kształtowania się osiowych profili temperatury, naprężenia, orientacji molekularnej, krystaliczności i prędkości polimeru przeanalizowaliśmy metodą modelowania komputerowego w drugiej części pracy [33].

CZĘŚĆ DOŚWIADCZALNA

Materiały

Przedmiotem badań były włókna z handlowego PET o ograniczonej liczbie lepkościowej $[\eta] = 0,63 \text{ dl/g}$. Wszystkie przeznaczone do dalszych badań włókna mają gramaturę 167 dtex/72, a titr pojedynczego włókna wynosi 2,32 dtex.

Włókna podzielono na dwie grupy. Pierwsza z nich posłużyła do określenia wpływu temperatury komory (T_K) w dwóch wariantach: z prędkością odbioru 2600 m/min — zakres konwencjonalny oraz z prędkością 4800 m/min — zakres szybkiego przędzenia. W pierwszym wariancie stosowano T_K w przedziale 100— 210 °C, a w drugim — 135—210 °C.

Włókna z drugiej grupy wykorzystano do oceny wpływu prędkości odbioru w zależności od temperatury komory. Również i tu badania prowadzono w dwóch wariantach, mianowicie: $T_K = 135$ °C (ok. 70 deg. $>T_g$) — 2600—4800 m/min) i $T_K = 195$ °C (bliskiej temperaturze maksymalnej szybkości krystalizacji polimeru, $T_{max} \approx 190$ °C [1]) — 2600—5500 m/min.

Otrzymywanie włókien

Włókna były wyprodukowane przez firmę Miroglio w Saluzzo (Włochy) z zastosowaniem komory wypełnionej gorącym powietrzem o temperaturze kontrolowanej z dokładnością do jednego stopnia.

Włókna otrzymywano z różną prędkością odbioru w zakresie 2600—5500 m/min, w różnej temperaturze powietrza w komorze, w zakresie 100—210 °C, tj. powyżej temperatury zeszklenia ($T_g \approx 67$ °C) i poniżej (o ok. 70 °C) termodynamicznej temperatury topnienia kryształów polimeru ($T_m^0 \approx 284$ °C). Jak już wspomniano, zakres stosowanych prędkości odbioru obejmuje procesy z prędkościami konwencjonalnymi (<4000 m/min) oraz szybkie przędzenie.

W zakresie konwencjonalnym włókna formowano z prędkością 2600, 3100 i 3700 m/min, a w zakresie szybkiego przędzenia z prędkością 4500, 4800, 5000 i 5500 m/min.

Metodyka badań

Gęstość włókien i stopień krystaliczności

Stopień krystaliczności włókien wyznaczano metodą gęstościową przy użyciu kolumny gradientowej wypełnionej mieszaniną *n*-heptanu i CCl₄; gradient gęstości w liniowej części kolumny wynosił $1,4 \cdot 10^{-4}$ g/cm³. Zastosowana mieszanina nie wywołuje zmian w strukturze włókien ani nie oddziaływuje z ich powierzchnią. Kolumnę kalibrowano zestawem pływaków szklanych odpowiednich do zakresu gęstości włókien. Próbki włókien przed zanurzeniem w kolumnie poddawano odgazowaniu w ciągu 30 minut za pomocą pompy próżniowej, po czym zalewano je mieszaniną cieczy o składzie takim jak w górnej części kolumny, a następnie przenoszono do kolumny. Pomiary gęstości wykonywano w odniesieniu do 10 próbek każdego włókna i wyznaczano jego gęstość średnią.

Gęstość polimeru określano na podstawie średniej gęstości poszczególnych włókien, po skorygowaniu na zawartość pigmentu tytanowego. Objętościowy stopień krystaliczności (X_V) wyznaczano z gęstości skorygowanej polimeru (ρ) stosując równanie:

$$X_V = \frac{\rho - \rho_a}{\rho_c - \rho_a} \tag{1}$$

gdzie: ρ_a — gęstość polimeru amorficznego = 1,335 g/cm³; ρ_c — gęstość fazy krystalicznej = 1,455 g/cm³ [34].

Orientacja krystaliczna

Orientację molekularną w fazie krystalicznej określa rentgenowski czynnik orientacji osi *c* kryształów (f_c). Szeroko stosowana metoda wyznaczania f_c opiera się na analizie obrazów szerokokątowej dyfrakcji rentgenowskiej (WAXS). Czynnik orientacji krystalicznej we włóknie wyznaczano na podstawie definicji Hermansa [35—37], mianowicie:

$$f_c = \frac{3}{2} < \cos^2 \vartheta > -\frac{1}{2} \tag{2}$$

gdzie: ϑ — kąt pomiędzy osią c kryształu i osią włókna; < > — uśrednienie wartości po rozkładzie orientacji osi c.

Rentgenogramy WAXS badanych włókien PET wykazują silne refleksy dyfrakcyjne pochodzące od płaszczyzn sieciowych (100), (1<u>1</u>0) i (010) należących do pasa krystalograficznego osi *c*. W doświadczalnej procedurze wyznaczania f_c wykorzystuje się metodę Wilchinsky'ego [38], która polega na wyznaczaniu wartości średnich $<\cos^2\vartheta>_{hk0}$ określających orientację płaszczyzn sieciowych (100), (1<u>1</u>0) i (010). Wartości $<\cos^2\vartheta>_{hk0}$ obliczano z analizy azymutalnych rozkładów intensywności tych linii (patrz Apendyks) [39].

Obrazy dyfrakcyjne WAXS otrzymano przy użyciu lampy rentgenowskiej z anodą miedzianą, z linią CuK_{α} promieniowania o długości fali λ = 1,5418 Å wyodrębnioną za pomocą filtra niklowego. Wiązka promieniowania, która padała na próbkę włókien równoległych

kryształów. Rejestrację obrazów WAXS prowadzono za pomocą dwuwymiarowego, pozycyjnie czułego detektora promieniowania IPD-40 brytyjskiej firmy Photek Ltd., umieszczonego w odległości 5 cm od badanej próbki włókien, w płaszczyźnie prostopadłej do osi wiązki promieniowania. Detektor charakteryzuje się rozdzielczością powierzchniową 512×512 pikseli i pozwala na równoczesną rejestrację dwuwymiarowego obrazu dyfrakcyjnego, pod warunkiem, że całkowita intensywność promieniowania padającego na powierzchnię detektora nie przekracza $2,5 \cdot 10^5$ fotonów/s. Odpowiednio do tych ograniczeń dobierano czas ekspozycji, który w przypadku badanych próbek, w zależności od stopnia krystaliczności, wynosił od 8 do 10 min w warunkach napięcia anodowego 34 kV i natężenia prądu 10 mA.

Przyjęte czasy ekspozycji zapewniały rejestrację obrazu z rozkładem impulsów proporcjonalnym do natężenia promieniowania padającego w danej chwili na poszczególne komórki detektora. Umożliwiało to określenie czynników orientacji płaszczyzn sieciowych na podstawie rejestrowanego przez detektor powierzchniowego rozkładu liczby impulsów [40] w tak dobranym zakresie czasu ekspozycji.

Azymutalne rozkłady intensywności linii dyfrakcyjnych [I_{hk0}(α)] poszczególnych płaszczyzn sieciowych (010), (1<u>1</u>0), (100) wyznaczano z analizy zliczeń detektora w funkcji kąta ugięcia (2 θ), w odniesieniu do ustalonych kątów azymutalnych α . Kąt α mierzono od południka rentgenogramu i wybierano co 1 stopień w zakresie od 90—100° (od równika rentgenogramu), a następnie co 2 stopnie aż do zaniku refleksów.

Identyfikacja równikowych linii dyfrakcyjnych na rentgenogramach pozwoliła na przypisanie impulsom rejestrowanym w poszczególnych komórkach detektora odpowiednich wartości kątów 20 [40, 41]. Rozkłady intensywności linii dyfrakcyjnych oraz amorficznego halo w funkcji kąta ugięcia wyodrębniano w odniesieniu do poszczególnych kątów azymutalnych metodą optymalizacji, zakładając występowanie profili gaussowskich.

Profile azymutalne badanych linii odzwierciedlają rozkład orientacji płaszczyzn sieciowych i mogą być użyte do wyznaczenia czynnika orientacji krystalicznej włókien PET [42], co zastosowano w tej pracy. Profile azymutalne określono na podstawie maksimum intensywności wyodrębnionych linii dyfrakcyjnych odnoszących się do poszczególnych kątów azymutalnych α.

Dwójłomność

Dwójłomność optyczna ($\Delta n = n_{\parallel} - n_{\perp}$) określa różnicę współczynników załamania światła odpowiednio pomiędzy promieniem o kierunku drgań wektora elektrycznego równoległym (n_{\parallel}) i prostopadłym (n_{\perp}) do osi włókna. Wartość Δn opisuje anizotropię włókna i charakteryzuje całkowitą orientację łańcuchów w obszarach amorficznych i krystalicznych. Pomiary dwójłomności dostarczają wskazówek dotyczących właściwości włókien, takich jak wytrzymałość na zerwanie, moduł sprężystości, odporność na czynniki zewnętrzne.

Dwójłomność włókien wyznaczano metodą bezpośredniego pomiaru różnicy współczynników załamania światła za pomocą mikroskopu optycznego MB30 produkcji PZO, z przystawką polaryzacyjno-interferencyjną MPI 5 i pryzmatem dwójłomnym Wollastona. Włókna umieszczano w immersji z olejku cedrowego o współczynniku załamania n = 1,515. Zastosowano metodę pomiaru odchylenia prążków interferencyjnych w nierozdwojonym obrazie włókna w polu prążkowym mikroskopu [43]. Dwójłomność wyznaczano jako wartość średnią pomiaru Δn dziesięciu próbek każdego włókna. Przyjęta metoda daje mniejszy błąd, niż metoda wyznaczania Δn na podstawie wartości średniej odchylenia prążka i średniej grubości włókna.

Orientacja amorficzna

Czynnik orientacji fazy amorficznej badanych włókien (f_a) określano na podstawie pomiarów Δn , X_V i f_c stosując wzór Steina [44]:

$$\Delta n = X_V \Delta_c f_c + (1 - X_V) \Delta_a f_a \tag{3}$$

gdzie: Δ_c — dwójłomność własna kryształu, Δ_a — dwójłomność graniczna idealnie zorientowanej fazy amorficznej.

W przypadku PET przyjęto $\Delta_c = 0,220, \Delta_a = 0,275$ [45]. Równanie (3) jest powszechnie stosowane do wyznaczania czynnika orientacji amorficznej w polimerach, mimo że nie uwzględnia efektów kształtu.

WYNIKI I ICH OMÓWIENIE

Gęstość włókien i stopień krystaliczności

Badania gęstości włókien ujawniają silny wpływ grzania strefowego na stopień krystaliczności, zróżnicowany w zależności od prędkości odbioru włókna i temperatury komory. Przedstawione na rys. 1 zależności wskazują, że włókna krystaliczne PET w przypadku zastosowania małych prędkości odbioru (krzywa 1) (zakres konwencjonalny), otrzymuje się w wyniku grzania strefowego o wysokiej temperaturze, a gdy $T_K = 100$ °C i szybkość odbioru jest najmniejsza (2600 m/min), to włókna są amorficzne, czyli tak jak w procesie tradycyjnym z małymi i średnimi szybkościami, bez grzania strefowego. Użycie komory o T_K = 135 °C i prędkości odbioru włókien 2600 m/min powoduje krystalizację polimeru, tak jak ma to miejsce w procesach szybkiego przędzenia, jednakże w warunkach znacznie mniejszej prędkości odbioru.

Rys. 1. Zależność stopnia krystaliczności (X_V) włókien PET od temperatury komory (T_K) w przypadku prędkości odbioru 2600 m/min (krzywa 1) i 4800 m/min (krzywa 2)

Fig. 1. Dependence of PET fibers crystallinity degree (X_V) on chamber temperature (T_K) for take-up speed 2600 m/min (curve 1) or 4800 m/min (curve 2)

W przypadku prędkości odbioru 4800 m/min (krzywa 2) włókna są krystaliczne w całym zakresie T_K (135—210 °C). Brak danych dotyczących włókien przędzionych z tą szybkością w temp. 100 °C wynika z ograniczenia prędkości odbioru w razie niskiej temperatury komory. Modelowanie komputerowe przewiduje wprawdzie odbiór włókien w tej temperaturze, ale w warunkach mniejszej prędkości odbioru [33].

Stopień krystaliczności włókien wzrasta niemal monotonicznie ze wzrostem T_K w przypadku obu prędkości odbioru, z tendencją do nasycenia w obszarze najwyższych wartości T_K w pobliżu temperatury odpowiadającej maksymalnej szybkości krystalizacji (T_{max}). Włókna formowane z prędkością 4800 m/min wykazują wartoś-

Rys. 2. Zależność stopnia krystaliczności (X_V) włókien PET od prędkości odbioru (V_L) w przypadku temperatury komory (T_K) 135 °C (krzywa 1) i 195 °C (krzywa 2); 3 — włókna przędzione bez komory grzejnej [22]

Fig. 2. Dependence of PET fibers crystallinity degree (X_V) on take-up speed (V_L) at chamber temperature (T_K) 135 °C (curve 1) or 195 °C (curve 2); 3 — spinning of fibers without heating chamber [22]

ci X_V nieco większe niż w przypadku prędkości 2600 m/min w zakresie mniejszych wartości T_K . Wynika to z szybszej krystalizacji orientowanej, gdy stosuje się szybkie przędzenie. Największe wartości X_V (wynoszące ok. 35 %) uzyskuje się w obszarze najwyższych wartości T_K .

Rysunek 2 ilustruje zależność $X_V = f(V_L)$ w przypadku $T_K = 135$ °C (krzywa 1) lub 195 °C (krzywa 2). Niższa wartość T_K leży w połowie zakresu pomiędzy T_g a T_{max} , wyższa zaś jest bliska T_{max} . W odniesieniu do obu wartości T_K włókna są krystaliczne w całym zakresie zastosowanych prędkości odbioru.

Krystaliczność włókien otrzymywanych w przypadku T_K = 195 °C wynosi ok. 30 % i, praktycznie biorąc, nie zależy od prędkości odbioru ze względu na szybką krystalizację w całym zakresie prędkości formowania. Prowadzi to do krystaliczności na poziomie "nasycenia" niezależnie od czasu trwania procesu.

Natomiast jeśli T_K = 135 °C, to X_V zależy od prędkości odbioru, z minimum w zakresie V_L 3000—4000 m/min. Minimum to może wynikać ze skracania czasu krystalizacji ze wzrostem prędkości odbioru, kompensowanego silnym przyspieszeniem krystalizacji orientowanej w zakresie większych prędkości odbioru. W zakresie szybkiego przędzenia X_V wzrasta z prędkością odbioru i jest porównywalny ze stopniem krystaliczności w procesach bez stosowania komory (krzywa 3).

W przypadku przędzenia bez komory grzejnej, surowe włókna otrzymywane z małymi i średnimi prędkościami odbioru są zwykle niemal amorficzne, a włókna wyraźnie krystaliczne uzyskuje się powyżej granicy szybkiego przędzenia, tj. ok. 4000 m/min.

Orientacja krystaliczna

Na profilach dyfrakcyjnych w funkcji kąta 2θ (rys. 3) widoczne są trzy wyraźne piki krystaliczne pochodzące od ugięcia na rodzinach płaszczyzn sieciowych (010), (110) i (100).

Wyznaczone na tej podstawie wartości czynnika orientacji krystalicznej badanych włókien są duże i leżą w zakresie 0,84—0,95 niezależnie od warunków formowania (rys. 4 i 5). Udział zorientowanej fazy krystalicznej w dwójłomności badanych włókien jest znaczny wo-

Rys. 4. Zależność czynnika orientacji krystalicznej (f_c) włókien PET od temperatury komory (T_K) w przypadku prędkości odbioru 2600 m/min (puste kółka) i 4800 m/min (wypełnione kółka)

Fig. 4. Dependence of PET fibers crystalline orientation factor (f_c) on chamber temperature (T_K) for take-up speed 2600 m/min (empty circles) or 4800 m/min (full circles)

Rys. 5. Zależność czynnika orientacji krystalicznej (f_c) włókien PET od prędkości odbioru (V_L) w przypadku temperatury komory 135 °C (puste kółka) i 195 °C (wypełnione kółka), × dane Cuculo i in. [7], gdy $T_k = 143$ °C

Fig. 5. Dependence of PET fibers crystalline orientation factor (f_c) on take-up speed (V_L) at chamber temperature of 135 °C (empty circles) or 195 °C (full circles), × — data of Cuculo et. al. [7] at T_K =143 °C

Rys. 3. Liczba impulsów detektora (I) w funkcji kąta ugięcia (2 θ) (kąt azymutalny $\alpha = 90^{\circ}$, czas ekspozycji 9 min) w przypadku włókna PET odbieranego z prędkością 2600 m/min i temperatury komory 195 °C — linia ciągła; linie przerywane — wydzielone metodą optymalizacji profile poszczególnych linii dyfrakcyjnych i amorficznego halo, linia kropkowana — ich superpozycja

Fig. 3. Number of detector pulses (I) as a function of diffraction angle (20) (azimuth angle $\alpha = 90^{\circ}$, exposure time 9 min) for PET fiber taken-up with a speed 2600 m/min at chamber temperature 195 °C — full line. Dashed lines — the profiles of particular diffraction lines and amorphous halo selected using optimization method. Dot line — their superposition

bec dużej orientacji krystalicznej i ich krystaliczności, zwłaszcza w przypadku włókien formowanych z wysokimi wartościami T_{K} , w pobliżu T_{max} .

Dwójłomność

Grzanie strefowe wywiera również silny wpływ na dwójłomność badanych włókien (rys. 6). Stwierdzono, że nawet nieznaczne podwyższenie temperatury w przypadku prędkości odbioru 2600 m/min (krzywa 1) prowadzi do blisko czterokrotnego wzrostu Δn od 0,033 gdy T_K = 100 °C do 0,126 gdy T_K = 135 °C. Silny wzrost dwójłomności występuje tu w zakresie T_K aż do 150 °C; powyżej tej temperatury wzrost Δn jest zahamo-

Rys. 6. Zależność dwójłomności optycznej (Δn) włókien PET od temperatury komory (T_K) w przypadku prędkości odbioru 2600 m/min (krzywa 1) i 4800 m/min (krzywa 2)

Fig. 6. Dependence of PET fibers optical birefringence (Δn) on chamber temperature (T_K) for take-up speed 2600 m/min (curve 1) or 4800 m/min (curve 2)

wany, z tendencją do niewielkiego zmniejszenia w zakresie wysokiej T_K . Spadek ten występuje z zastosowaniem obu omawianych prędkości odbioru i może być spowodowany szybszą relaksacją orientacji molekularnej fazy amorficznej w wysokiej temperaturze.

Zwiększenie prędkości odbioru do 4800 m/min (krzywa 2) powoduje zwiększenie dwójłomności w całym zakresie T_K . Odpowiednia krzywa jest dość płaska, ze słabo zaznaczonym maksimum w pobliżu $T_K = 160$ °C. Maksymalne wartości Δn w przypadku prędkości 2600 m/min wynoszą 0,149 ($T_K = 150$ °C), a w odniesieniu do prędkości 4800 m/min 0,166 ($T_K = 165$ °C).

Zależności Δn od temperatury komory przedstawił również Cuculo i in. [7] z zastosowaniem tylko jednej prędkości odbioru (4000 m/min dolna graniczna wartość szybkiego przędzenia). Uzyskał on maksymalną wartość Δn , gdy T_K wynosiła ok. 140 °C.

Analizując zależność $\Delta n = f(V_L)$ (rys. 7) zaobserwowano, że w przypadku obu zbadanych wartości T_K włókna wykazują wzrost wartości Δn ze zwiększaniem V_L . Jest on szczególnie silny w zakresie V_L >3700

Rys. 7. Zależność dwójłomności optycznej (Δn) włókien PET od prędkości odbioru (V_L) w przypadku temperatury komory 135 °C (krzywa 1) i 195 °C (krzywa 2)

Fig. 7. Dependence of PET fibers optical birefringence (Δn) on take-up speed (V_L) at chamber temperature of 135 °C (curve 1) or 195 °C (curve 2)

m/min. Jednakże w przypadku wysokiej temperatury komory ($T_K = 195$ °C, krzywa 2), po osiągnięciu maksimum następuje spadek Δn w zakresie >4800 m/min. Natomiast w odniesieniu do $T_K = 135$ °C (krzywa 1) nie można otrzymać włókien odbieranych z prędkością >4800 m/min; prawdopodobnie wynika to z zależnego od T_K ograniczenia szybkości formowania, przewidzianego metodą modelowania komputerowego, które zostanie przedstawione w części II pracy.

Maksimum dwójłomności w zależności od V_L obserwowali także inni autorzy w przypadku szybkiego przędzenia włókien PET bez stosowania komory grzejnej [14, 22, 23, 46]. W procesach tych maksimum Δn występowało, gdy stosowano bardzo dużą prędkość odbioru w przedziale 6000—7000 m/min.

Badania przeprowadzone w niniejszej pracy wskazują, że w warunkach grzania strefowego wartości V_L odpowiadające maksymalnej dwójłomności włókien są mniejsze, ale nadal znajdują się w zakresie szybkiego przędzenia. Jak to już wykazaliśmy na rys. 6, największe wartości Δn uzyskuje się, gdy włókna odbierane są z prędkością 4800 m/min, w wysokiej temperaturze komory wynoszącej 165—195 °C. Zbyt wysoka temperatura komory (> T_{max}) prowadzi jednakże do zmniejszenia Δn .

Orientacja amorficzna

Silny wpływ grzania strefowego w odniesieniu do orientacji amorficznej włókien (rys. 8) jest zwłaszcza widoczny w przypadku prędkości odbioru V_L = 2600 m/min (krzywa 1), poniżej granicy szybkiego przędzenia. Podwyższanie temperatury komory z 100 °C do 150 °C prowadzi tu do czterokrotnego wzrostu czynnika $f_{a'}$ odpowiednio od wartości 0,12 do 0,49.

Wyższa wartość T_K nie wywiera już tak dużego wpływu i powoduje zmniejszenie wartości f_a wskutek

Rys. 8. Zależność czynnika orientacji amorficznej (f_a) włókien PET od temperatury komory (T_K) w przypadku prędkości odbioru 2600 m/min (krzywa 1) i 4800 m/min (krzywa 2) Fig. 8. Dependence of PET fibers amorphous orientation factor (f_a) on chamber temperature (T_K) for take-up speed 2600 m/min (curve 1) or 4800 m/min (curve 2)

konkurencyjnego procesu relaksacji orientacji, silniejszego w wyższej temperaturze.

W przypadku szybkiego przędzenia (krzywa 2) czynnik f_a przybiera duże wartości w całym zakresie T_K , jednak są one niewiele większe od maksymalnej wartości f_a otrzymanej w przypadku V_L = 2600 m/min. Także w warunkach V_L = 4800 m/min obserwuje się zmniejszenie orientacji amorficznej w zakresie bardzo wysokiej temperatury komory.

Z opisanych badań wynika, że najbardziej efektywna z punktu widzenia kształtowania się dużej orientacji amorficznej jest temperatura komory wynosząca ok. 150 °C, znajdująca się w połowie zakresu pomiędzy T_g polimeru i T_{max} krystalizacji. Stosowanie wysokiej temperatury komory, w pobliżu T_{max} , jest mniej korzystne ze względu na zwiększoną relaksację orientacji łańcuchów polimeru.

Większe wartości czynnika orientacji amorficznej w przypadku $T_K = 135$ °C — w stosunku do f_a gdy $T_K =$ 195 °C — widoczne są w całym zakresie prędkości odbioru (rys. 9). Jednakże mimo mniejszej orientacji amorficznej w przypadku tej wyższej temperatury (krzywa 2), całkowita orientacja molekularna (wyrażona jako Δn) jest większa, w porównaniu z wartością Δn włókien otrzymanych w niższej temperaturze. Zależność tę obserwuje się w całym zakresie V_L . Większe wartości dwójłomności w przypadku stosowania $T_K =$ 195 °C (mimo mniejszej wartości f_a) wynikają z wyższego stopnia krystaliczności włókien i dużej orientacji krystalicznej, zwłaszcza w zakresie mniejszych prędkości odbioru.

Stwierdzono także, że w obszarze małych wartości V_L , poniżej granicy szybkiego przędzenia, wartość czynnika f_a zwiększa się wraz ze wzrostem V_L , natomiast w zakresie szybkiego przędzenia maleje. W przypadku obu badanych wartości temperatury komory (135 °C i 195 °C) maksimum czynnika f_a występuje w przedziale

Rys. 9. Zależność czynnika orientacji amorficznej (f_a) włókien PET od prędkości odbioru (V_L) w przypadku temperatury komory 135 °C (krzywa 1) i 195 °C (krzywa 2); 3 — $T_k = 143$ °C [7]

Fig. 9. Dependence of PET fibers amorphous orientation factor (f_a) on take-up speed (V_L) at chamber temperature of 135 °C (curve 1) or 195 °C (curve 2); 3 — T_K =143 °C [7]

4500—4800 m/min. Podobny charakter ma zależność $f_a = f(V_I)$ podana przez Cuculo i in. [7] (krzywa 3).

PODSUMOWANIE I WNIOSKI

Krystaliczność

W jednoetapowych procesach przędzenia z zastosowaniem grzania strefowego krystaliczne włókna PET uzyskuje się stosując mniejszą prędkość odbioru, poniżej granicy szybkiego przędzenia (<4000 m/min). Krystaliczne włókna otrzymuje się ponadto, gdy wykorzystuje się komorę grzejną o temp. 135 °C lub wyższej zarówno w procesie z małą, jak i dużą prędkością odbioru. Ze wzrostem temperatury komory stopień krystaliczności włókien (X_V) zwiększa się w obu przypadkach w zakresie do T_{max} = 190 °C. Przyrost X_V wywołany grzaniem strefowym jest silniejszy w zakresie mniejszych konwencjonalnych szybkości formowania. W obszarze szybkiego przędzenia, gdzie krystalizacja stopionego polimeru występuje także w procesach bez komory grzejnej, uzyskanie większej krystaliczności wymaga zastosowania wyższej temperatury komory, w pobliżu T_{max} . Powyżej tej temperatury następuje nasycenie X_V na poziomie ok. 35 % w warunkach obu badanych prędkości odbioru.

Gdy proces prowadzi się w niskiej temperaturze komory, to X_V zależy od szybkości formowania i zwiększa się z prędkością odbioru. Wzrost ten jest skutkiem przyspieszenia krystalizacji orientowanej pod wpływem większych naprężeń rozciągających, mimo skrócenia czasu procesu. Możliwe jest wystąpienie minimum X_V w obszarze pewnej prędkości odbioru, poniżej granicy szybkiego przędzenia, w wyniku równoważenia efektu wywołanego skróceniem czasu krystalizacji przez efekt wynikający ze zwiększenia szybkości krystalizacji orientowanej. W przypadku $T_K = 195$ °C, w pobliżu T_{max} , prędkość odbioru nie wpływa na stopień krystaliczności włókien, która osiąga niemal stałą wartość nasycenia w badanym zakresie prędkości.

Wartości X_V wyznaczone na podstawie równania (1) mogą być nieznacznie zawyżone, co wynika z założenia stałej gęstości fazy amorficznej (ρ_a), niezależnej od stopnia jej orientacji. Pomiary gęstości amorficznych włókien PET o różnej dwójłomności, wykonane w pracach Shimizu i in. [23], Heuvela i Huismana [47] oraz Bragato i Gianotti [48] wykazały niewielki wzrost wartości ρ_a ze wzrostem orientacji molekularnej. Na podstawie tych prac można przyjąć, że w badanym zakresie orientacji ρ_a wzrasta liniowo z dwójłomnością lub czynnikiem orientacji. Na przykład, w odniesieniu do włókien PET o dwójłomności $\Delta n_a = 0,060$, co odpowiada wartości $f_a \approx$ 0,22, szacowany wzrost gęstości fazy amorficznej wynosi ok. 0,005 g/cm³.

Liniową poprawkę stopnia krystaliczności wyznaczonego z równania (1) uwzględniającą wzrost gęstości orientowanej fazy amorficznej zapisuje się następującym równaniem:

$$\Delta X_V = -(1 - X_V) \frac{\Delta \rho_a}{\rho_c - \rho_a} \tag{4}$$

Poprawka ta ma wartość ujemną w przypadku wzrostu gęstości fazy amorficznej ze zwiększaniem orientacji o wartość $\Delta \rho_a$. Na przykład, gdy $f_a = 0,22$, to zmniejszenie X_V wskutek zwiększenia gęstości fazy amorficznej ze wzrostem orientacji o wartość $\Delta \rho_a \approx 0,005$ g/cm³ [ocenione z równania (4), gdy $X_V = 0,30$] wynosi ok. 0,03, a gdy $f_a = 0,40$ — ok. 0,05.

Informacje na temat wpływu orientacji na gęstość fazy amorficznej mogą mieć znaczenie w przypadku porównywania krystaliczności wyznaczanych metodą rentgenograficzną i dylatometryczną. Gdy rozpatruje się oddziaływanie komory grzejnej na strukturę przędzionych surowych włókien PET, to przeliczanie stopnia krystaliczności wg równania (4) wynikające z stosowania przybliżonego równania (1) nie ma jednakże większego znaczenia jakościowego.

Orientacja molekularna, krystaliczna i amorficzna

Czynnik orientacji krystalicznej (f_c), praktycznie biorąc, nie zależy od zastosowanej temperatury komory oraz prędkości odbioru. Jego wartość (ok. 0,9) wskazuje na dużą orientację osi *c* kryształów otrzymywanych włókien. Niezależność f_c od temperatury komory i prędkości odbioru świadczy o tym, że krystalizacja orientowana stopionego polimeru jest indukowana przez takie samo krytyczne naprężenie rozciągające, niezależnie od warunków formowania.

Czynnik orientacji amorficznej w przypadku prędkości odbioru poniżej zakresu szybkiego przędzenia silnie rośnie ze wzrostem T_K w zakresie mniejszych jej wartości. Prowadząc proces z T_K = 135 °C i prędkością odbioru 2600 m/min, uzyskuje się blisko czterokrotne zwiększenie wartości czynnika f_a , w stosunku do jego wartości w przypadku $T_K = 100$ °C, kiedy to otrzymuje się włókna amorficzne. Tak duże zwiększenie orientacji amorficznej jest związane z występowaniem krystalizacji wywołanej (w warunkach małej szybkości formowania) grzaniem strefowym o odpowiedniej temperaturze. Zastosowanie T_K z przedziału 135—150 °C prowadzi, w warunkach tej prędkości odbioru, do osiągnięcia maksymalnej wartości czynnika orientacji amorficznej, bliskiej wartości f_a uzyskiwanej w przypadku szybkiego przędzenia. Wartość czynnika f_a otrzymana w $T_K = 135$ °C jest niewiele mniejsza od wartości maksymalnej.

Przedstawione wyniki wskazują, że warunkiem utworzenia się dużej orientacji amorficznej jest krystalizacja formowanego strumienia polimeru. Aby uzyskać taką krystalizację w zakresie konwencjonalnych szybkości przędzenia należy zastosować grzanie strefowe o niezbyt wysokiej temperaturze, mieszczącej się w połowie przedziału pomiędzy T_g i T_{max} ; umożliwia to właśnie krystalizację, ale z niezbyt szybką relaksacją orientacji amorficznej. Efekt ten można tłumaczyć tym, że krystalizacja, a zwłaszcza jej wstępna faza, prowadzi do powstawania struktury żelu w wyniku powiązania ze sobą łańcuchów polimeru przez powstające zarodki kryształów. Struktura taka powoduje zwiększenie lepkości formowanego polimeru oraz przedłużenie czasu relaksacji segmentów amorficznych. W tych warunkach powolniejszej relaksacji orientacji amorficznej rozciąganie fazy stopionej polimeru z określoną szybkością prowadzi do osiągnięcia większych wartości f_a odbieranego włókna.

W przypadku szybkiego przędzenia, czynnik f_a przybiera nieco większe wartości i niemal nie zależy od zastosowanej temperatury komory w zakresie $T_K < T_{max}$, z tym jednak, że nie można otrzymać włókien z $T_K <$ 135 °C. Wysoka temperatura komory ($T_K > T_{max}$) powoduje zmniejszenie f_a na wskutek zintensyfikowanego procesu relaksacji orientacji amorficznej w wysokiej temperaturze.

Zależność f_a od prędkości odbioru wykazuje wyraźne maksimum w zakresie szybkiego przędzenia zarówno w przypadku niskiej, jak i wysokiej temperatury komory. Wartość tego maksimum jest większa w warunkach niskiej T_K , ale takiej, która umożliwia krystalizację. Maksimum f_a występuje w zakresie szybkiego przędzenia także w odniesieniu do włókien otrzymywanych w procesach bez grzania strefowego. Można więc przypuszczać, że wystąpienie maksimum f_a — w przypadku procesów z grzaniem strefowym i bez grzania — ma podobny mechanizm.

Orientacje amorficzne włókien otrzymanych z prędkością z zakresu konwencjonalnego i w szybkim przędzeniu, w takiej samej temperaturze komory, są duże i zbliżone do siebie, z nieco większą wartością czynnika f_a w przypadku włókien przędzionych szybko.

Nieznaczne zawyżenie wartości X_V , wynikające z pominięcia wpływu orientacji na ρ_a , powoduje również niewielkie zaniżenie wartości czynnika orientacji amorficznej włókien krystalicznych, wyznaczanego z równania (3). Liniowa poprawka czynnika f_a uwzględniająca wzrost gęstości fazy amorficznej z orientacją molekularną jest dodatnia i wyraża się równaniem:

$$\Delta f_a = \left[\left(\Delta_c / \Delta_a \right) f_c - f_a \right] \frac{\Delta \rho_a}{\rho_c - \rho_a} \tag{5}$$

Na przykład, przyjmując $f_c = 0.9$ otrzymuje się w przypadku $f_a = 0.22$ poprawkę $\Delta f_a \approx 0.02$, a gdy $f_a =$ 0,40 poprawkę $\Delta f_a \approx 0.035$. Z tych obliczeń szacunkowych wynika, że zaniedbanie efektów orientacji w gęstości fazy amorficznej prowadzi do ok. 10-proc. zaniżenia wartości czynnika orientacji amorficznej w odniesieniu do włókien częściowo krystalicznych. Jednakże nie wywiera to istotnego wpływu na charakter wyprowadzonych w tej pracy wniosków dotyczących efektów grzania strefowego w procesach przędzenia włókien z fazy stopionej PET.

Dwójłomność

Zwiększona relaksacja orientacji amorficznej w przypadku wysokiej temperatury komory powoduje mniejszą orientację amorficzną włókien, pomimo, że wykazują one większą dwójłomność niż włókna otrzymane w warunkach niskiej temperatury komory. Ta większa dwójłomność wynika z dużej orientacji krystalicznej i większej krystaliczności w takich warunkach formowania.

Wpływ grzania strefowego na dwójłomność włókien, występujący zwłaszcza silnie w przypadku procesu z mniejszą prędkością odbioru (2600 m/min), jest powodowany dużym wzrostem orientacji amorficznej w zakresie niższych wartości T_K oraz zwiększeniem krystaliczności (w postaci wysokozorientowanej fazy krystalicznej) ze wzrostem temperatury w całym badanym zakresie.

W przypadku przędzenia z prędkością 4800 m/min, włókna charakteryzują się jeszcze większą dwójłomnością w całym zakresie temperatury komory. Maksimum Δn w odniesieniu do obu prędkości formowania występuje w temp. ok. 150 °C; wzrostowi T_K powyżej tej temperatury towarzyszy niewielki spadek dwójłomności. Przyczyną występowania obserwowanego maksimum jest, wobec zwiększania krystaliczności ze wzrostem T_K i stałości orientacji krystalicznej, zintensyfikowana relaksacja orientacji amorficznej w wysokiej temperaturze.

Zależność dwójłomności od prędkości odbioru V_L także wykazuje maksimum (V_L = 4800 m/min) zarówno w przypadku T_K = 135 °C, jak i temperatury bliskiej temperaturze odpowiadającej maksymalnej szybkości krystalizacji polimeru, T_{max} . Wartości Δn są nieco większe w przypadku temperatury wyższej, bliskiej T_{max} . Położenie tego maksimum pokrywa się z położeniem maksimum czynnika f_a i wynika z zachowania się orientacji amorficznej w warunkach dużych prędkości odbioru. Włókna o maksymalnych wartościach Δn otrzymuje się w zakresie szybkiego przędzenia, z zastosowaniem komory grzejnej o wyższej temperaturze, jednak zbytnio nie przekraczającej wartości T_{max} . W takich warunkach dużą dwójłomność osiąga się dzięki dużej krystaliczności oraz znacznej orientacji amorficznej (nieco zmniejszonej wskutek relaksacji w przypadku wyższej temperatury komory). Maksymalną orientację amorficzną włókien otrzymuje się również w procesach szybkiego przędzenia i z zastosowaniem niskiej temperatury komory (40—50 stopni < T_{max}), kiedy to relaksacja orientacji amorficznej przebiega wolniej.

Najsilniejsze efekty grzania strefowego w kształtowaniu krystaliczności i orientacji molekularnej, głównie amorficznej, występują w przędzeniu włókien PET w zakresie konwencjonalnych prędkości odbioru. W tym obszarze szybkości przędzenia temperatura komory, sprzyjająca wystąpieniu krystalizacji i dużej orientacji amorficznej, powinna mieć wartość równą połowie przedziału T_g — T_{max} lub nieznacznie ją przekraczać.

W przypadku szybkiego przędzenia w $T_K < 135$ °C nie otrzymuje się włókien. Takie zjawisko przewiduje właśnie metoda modelowania komputerowego [11], a jej przyczyny przedstawimy w drugiej części niniejszej pracy [33].

APENDYKS

Czynnik orientacji wybranej osi krystalograficznej można wyznaczać z pomiarów rozkładu intensywności (*I*_{hkl}) rentgenowskich linii dyfrakcyjnych ugiętych na odpowiednich płaszczyznach sieciowych (*hkl*), w różnych ustawieniach próbki. W przypadku kryształów PET mamy do czynienia z układem krystalograficznym trójskośnym, czyli nieortogonalnym. W układach nieortogonalnych normalne do płaszczyzn sieciowych nie pokrywają się z kierunkami osi krystalograficznych, dlatego też wyrażenia na czynniki orientacji osi krystalograficznych stają się bardziej złożone.

Ogólne wyrażenia na czynnik orientacji dowolnej osi krystalograficznej we włóknie ma postać układu sześciu równań i wyprowadzone zostało przez Wilchinsky'ego [38]. Równania te wiążą średnie kwadraty kosinusów kąta orientacji pięciu rodzin płaszczyzn sieciowych z sześcioma średnimi kwadratami kosinusów kąta orientacji osi krystalograficznych.

W przypadku krystalicznych włókien PET, rentgenogramy WAXS wykazują silne równikowe refleksy dyfrakcyjne pochodzące od płaszczyzn sieciowych (100), (1<u>1</u>0) i (010), należących do pasa krystalograficznego osi *c*. Gdy przyjmuje się układ współrzędnych związany z kryształem, tak aby jego oś *Oz* pokrywała się z osią *c* kryształu, kosinusy kierunkowe normalnych do tych płaszczyzn względem osi *Oz* znikają. Układ równań Wilchinsky'ego redukuje się wtedy do czterech poniższych równań:

$$\cos^2 \vartheta > 100 = m_{100}^2 < \cos^2 \gamma >$$
 (1)

$$<\cos^{2}\vartheta > _{1\underline{1}0} = m_{1\underline{1}0}^{2} <\cos^{2}\gamma > + n_{1\underline{1}0}^{2} <\cos^{2}\varepsilon > + + 2m_{1\underline{1}0}n_{1\underline{1}0} <\cos\gamma \cdot \cos\varepsilon >$$
(2)

$$<\cos^{2}\vartheta >_{010} = m_{010}^{2} <\cos^{2}\gamma > + n_{010}^{2} <\cos^{2}\varepsilon > + + 2 m_{010}^{2}n_{010} <\cos\gamma \cdot \cos\varepsilon >$$
(3)

$$\langle \cos^2 \vartheta \rangle + \langle \cos^2 \gamma \rangle + \langle \cos^2 \varepsilon \rangle = 1 \tag{4}$$

gdzie: m_{hk0} , n_{hk0} — kosinusy kierunkowe płaszczyzn, niewiadome <cos² ϑ >, <cos² ε >, <cos² ε >, <cos γ · cos ε > charakteryzują orientację związanego z kryształem układu współrzędnych [39], <cos² ϑ > charakteryzuje orientację osi c kryształów i określa czynnik orientacji krystalicznej (f_c).

Poszczególne wartości $\langle \cos^2 \vartheta \rangle_{hk0}$ charakteryzujące orientację wybranych płaszczyzn sieciowych są wyznaczone z azymutalnego rozkładu intensywności linii dyfrakcyjnych (100), (1<u>1</u>0) i (010).

Procedura wyznaczania profili azymutalnych wybranych linii dyfrakcyjnych polega na wyodrębnieniu Wartość średnia opisująca moment $\langle \cos^2 \vartheta \rangle_{hk0}$ rozkładu orientacji odpowiedniej płaszczyzny sieciowej na podstawie momentu $\langle \cos^2 \alpha \rangle_{hk0}$ azymutalnego rozkładu linii dyfrakcyjnej i odpowiadającego jej kąta Bragga, wyraża się równaniem:

$$<\cos^{2}\vartheta>_{hk0}=\cos^{2}\theta_{hk0}\frac{\int_{0}^{\pi}\exp\left(-a_{hk0}^{2}\cos^{2}\alpha\right)\cos^{2}\alpha\sin\alpha d\alpha}{\int_{0}^{\pi}\exp\left(-a_{hk0}^{2}\cos^{2}\alpha\right)\sin\alpha d\alpha}=$$
(10)

 $=\cos^2\theta_{hk0}<\cos^2\alpha>_{hk0}$

Czynnik orientacji krystalicznej (f_c) można opisać za pomocą momentów $\langle \cos^2 \alpha \rangle_{hk0}$ azymutalnych rozkładów linii (010), (1<u>1</u>0) i (100) [po uwzględnieniu równań (1)—(4) oraz (7)] w postaci następującego równania:

$$f_{c} = 1 - \frac{3}{2} \left\{ m_{010} n_{010} \left[\left(1 - 2m_{110}^{2} \right) \cos^{2} \theta_{100} < \cos^{2} \alpha >_{100} + \cos^{2} \theta_{110} < \cos^{2} \alpha >_{110} \right] - m_{110} n_{110} \left[\left(1 - 2m_{010}^{2} \right) \cos^{2} \theta_{100} < \cos^{2} \alpha >_{100} + \cos^{2} \theta_{100} < \cos^{2} \alpha >_{010} \right] \right\} / \left[m_{010} n_{010} \left(1 - m_{110}^{2} \right) - m_{110} n_{110} \left(1 - m_{010}^{2} \right) \right]$$

$$(11)$$

ich profili w funkcji kąta ugięcia (2 θ) w odniesieniu do poszczególnych kątów azymutalnych (α), metodą optymalizacji. Przyjęto profile gaussowskie w postaci:

$$I_{hk0}(2\theta;\alpha) = I_{hk0}^*(\alpha) \exp\left[-b_{hk0}^2(2\theta - 2\theta_{hk0})^2\right]$$
(5)

Profile azymutalne linii wyznaczono na podstawie wartości maksymalnych [$I^*_{hk0}(\alpha)$] profili oznaczonych dla poszczególnych kątów α i aproksymowano je krzywą gaussowską:

$$q_{hk0}(\alpha) = q_{hk0}^* \exp\left(-a_{hk0}^2 \cos^2 \alpha\right) \tag{6}$$

Opisują one rozkład orientacji wybranych płaszczyzn sieciowych i mogą być stosowane do scharakteryzowania orientacji krystalicznej badanych włókien [42].

Funkcja rozkładu orientacji badanych płaszczyzn sieciowych wyraża się równaniem:

$$\Psi_{hk0}(\vartheta,\phi) = \frac{q_{hk0}(\alpha)}{2\pi \int_{0}^{\pi} q_{hk0}(\alpha)\sin\alpha d\alpha}$$
(7)

gdzie: ϑ — kąt orientacji płaszczyzny względem osi włókna odpowiadający kątowi azymutalnemu α na rentgenogramie.

$$\cos\vartheta = \cos\theta \cdot \cos\alpha \tag{8}$$

W przypadku azymutalnego profilu określonego równaniem (6) odpowiadający mu rozkład orientacji płaszczyzn sieciowych przybiera postać [42]:

$$\Psi_{hk0}(\vartheta, \varphi) = \frac{\exp\left[-(a_{hk0}/\cos\theta_{hk0})^2\cos^2\vartheta\right]}{2\pi\int_{0}^{\pi} \exp\left[-(a_{hk0}/\cos\theta_{hk0})^2\cos^2\vartheta\right]\sin\vartheta d\vartheta}$$
(9)

LITERATURA

- 1. Ziabicki A.: "Fundamentals of Fiber Formation", Wiley, Londyn 1976.
- Boryniec A., Skwarski T.: "Technolgia włókien sztucznych", PWN, Warszawa 1969.
- Ziabicki A., Kawai H.: "High-Speed Fiber Spinning", Wiley, Nowy Jork 1985.
- 4. Pat USA 4 134 882 (1979).
- Kawaguchi T. w: "High-Speed Fiber Spinning" (red. Ziabicki A., Kawai H.), Wiley, Nowy Jork 1985, str. 3—19.
- 6. Pat USA 4 909 976 (1990).
- Cuculo J. A., Tucker P. A., Chen G. Y., Lin C. Y., Denton J.: *Int. Polym. Proc.* 1989, 4, 85.
- Cuculo J. A., Tucker P. A., Chen G. Y.: J. Appl. Polym. Sci., Appl. Polym. Symp. 1991, 47, 223.
- Lin C. Y., Tucker P. A., Cuculo J. A.: J. Appl. Polym. Sci. 1992, 46, 531.
- 10. Hayashi S., Katsuya T., Ishihara H., Yasuda H.: Sen-I Gakkaishi 1992, 48, 541.
- 11. Jarecki L., Ziabicki A., Blim A.: Comput. Theoret. Polym. Sci. 2000, 10, 63.
- Samuels R. J.: "The Identification, Interpretation, and Application of Crystalline Polymer Structure", Wiley, Nowy Jork 1974.
- van Krevelen D. W.: "Properties of Polymers, Correlations with Chemical Structure", Elsevier, Amsterdam 1972.
- 14. Vassilatos G., Knox B. H., Frankfort H. R. E.: w [5], str. 383–428.
- Schultz J. M., Fakirov S.: "Solid State Behaviour of Linear Poliesters and Polyamides", Prentice Hall, Englewood Cliffs 1990.

- 16. Heuvel H. M., Lucas L. J., van den Heuvel C. J. M., de Weijer A. P.: *J. Appl. Polym. Sci.* 1992, 45, 1649.
- 17. Huang B., Ito M., Kanamoto T.: Polymer 1994, 35, 1329.
- Kunugi T., Suzuki A.: J. Appl. Polym. Sci. 1996, 62, 713.
- 19. Ziabicki A.: Textile Res. J. 1996, 66, 705.
- 20. Sajkiewicz P., Ziabicki A., Jarecki L.: *Fibres Text. East. Eur.* 1968, **6**, 44.
- 21. Ziabicki A., Kędzierska K.: J. Appl. Polym. Sci. 1962, 6, 11; 1962, 6, 361.
- 22. Ziabicki A., Jarecki L.: w [5], str. 225-269.
- 23. Shimizu J., Okui N., Kikutani N.: w [5], str. 429-486.
- 24. Jarecki L.: *Polimery* 2001, **46**, 335.
- 25. Jarecki L.: Polimery 2001, 46, 420.
- 26. Jarecki L., Ziabicki A.: Polimery 2004, 49, 26.
- 27. Pat. brytyjski 903 427 (1962).
- 28. Pat. jap. 70 1952 (1970).
- 29. Pat. brytyjski 1 487 843 (1980).
- Cuculo J. A., Tucker P. A., Chen G. Y.: J. Appl. Polym. Sci., Appl. Polym. Symp. 1991, 47, 223.
- Lin C. Y., Tucker P. A., Cuculo J. A.: J. Appl. Polym. Sci. 1992, 46, 531.
- 32. Llana P. G., Boyce M. C.: Polymer 1999, 40, 6729.
- 33. Jarecki L., Blim A.: (w przygotowaniu).
- 34. Brandrup J., Immergut E. H.: "Polymer Handbook", Interscience Publ., Nowy Jork 1966.

- Hermans J. J.: "Contribution to the Physics of Cellulose Fibers" (red. Hermans P. H.), Elsevier, Amsterdam 1946.
- 36. Hermans J. J., Hermans P. H., Vermass D., Weidinger A.: *Rec. Trav. Chim. Pays-Bas.* 1946, **65**, 427.
- 37. Stein R. S.: J. Polymer Sci. 1958, 31, 327.
- 38. Wilchinsky J.: J. Appl. Phys. 1959, 30, 729.
- 39. Wasiak A.: Prace IPPT 36/1971.
- Blim A.: "Wpływ temperatury na strukturę i dynamikę formowania włókien poliestrowych", praca doktorska, IPPT PAN, Warszawa 2004.
- 41. Mark J. E.: "Physical Properties of Polymers", American Institute of Physics, Nowy Jork 1996.
- 42. Wasiak A.: Prace IPPT 38/1973.
- Pluta M.: "Mikroskopia fazowo-kontrastowa i interferencyjna", PWN, Warszawa 1965.
- 44. Stein R. S., Norris F. H.: J. Polym. Sci. 1956, 21, 381.
- 45. Dumbleton J. H.: J. Polym. Sci. A2 1968, 6, 795.
- 46. Perez G.: w [5], str. 333-362.
- 47. Heuvel H. M., Huisman R.: w [5], str. 295-331.
- 48. Bragato G., Gianotti G.: Eur. Polym. J. 1983, 19, 803.
- Aleksander L. E.: "X-Ray Diffraction Methods in Polymer Science", Wiley—Interscience, Nowy Jork 1969.

Otrzymano 2 II 2004 r.