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Abstract: Damage identification based on modal parameters is an important approach in structural
health monitoring (SHM). Generally, traditional objective functions used for damage identification
minimize the mismatch between measured modal parameters and the parameters obtained from
the finite element (FE) model. However, during the optimization process, the repetitive calculation
of structural modes is usually time-consuming and inefficient, especially for large-scale structures.
In this paper, an improved objective function is proposed based on certain characteristics of the
peaks of the frequency response function (FRF). Traditional objective functions contain terms that
quantify modal shapes and/or natural frequencies. Here, it is proposed to replace them by the FRF of
the FE model, which allows the repeated full modal analysis to be avoided and thus increases the
computational efficiency. Moreover, the efficiency is further enhanced by employing the substructural
virtual distortion method (SVDM), which allows the frequency response of the FE model of the
damaged structure to be quickly computed without the costly re-analysis of the entire damaged
structure. Finally, the effectiveness of the proposed method is verified using an eight-story frame
structure model under several damage cases. The damage location and extent of each substructure
can be identified accurately with 5% white Gaussian noise, and the optimization efficiency is greatly
improved compared with the method using a traditional objective function.

Keywords: structural health monitoring (SHM); damage identification; substructure; virtual
distortion method (VDM); frequency response

1. Introduction

Structural damage identification plays an important role in SHM, which provides a reliable
theoretical foundation for monitoring, early warning and safety assessment of large-scale structures [1].
In recent years, many effective methods for SHM [2–7] and structural damage identification [8–13]
have been presented. However, it is still difficult to identify the extent of structural damage accurately,
and one of the reasons is a limited number of measurement points in large-scale structures.

Damage identification using structural modal parameters is an important approach for SHM.
The basic idea is that the damage location and extent can be determined by minimizing the
difference between the damaged and undamaged state of the structure. With the rapid development
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of experimental modal analysis techniques, it is relatively easy to obtain accurate structural
modal parameters, which further promotes the study of damage identification based on modal
parameters. The structural modal parameters most often used for damage identification are: natural
frequency [14,15], mode shape [16], modal curvature [17], modal strain energy [18], etc. Kim et al. [19]
presented a methodology for nondestructive localization and estimation of the size of damage using
few natural frequencies or mode shapes. Huynh et al. [20] performed a structural identification of a
real caisson breakwater by using in situ vibration measurement and a simplified analytical model and
investigated the feasibility of the wave force inference. Wang et al. [21] identified structural damage in
a FE model of Hong Kong Tsing Ma Bridge using modal sensitivity analysis. Guo and Li [22] proposed
an identification method based on the equivalent damage index of modal strain energy. The accurate
expression of modal strain energy before and after damage was deduced, which allowed the location
and extent of structural damage to be accurately identified. Kaveh and Maniat [23] proposed a damage
detection method based on Magnetic Charged System Search (MCSS) and Particle Swarm Optimization
(PSO) using structural frequencies and mode shapes, and illustrated it by identifying the damage
in a numerical five-story shear building. Cui et al. [24] defined a novel damage detection method
based on strain modes; the validity of the proposed method was verified under different damage cases.
Liang et al. [25] proposed a novel frequency-based co-integration technique for damage detection of
bridges. The validity and robustness were illustrated and verified through a numerical simulation
and experimentally using a real cable-stayed bridge under the influence of changing environmental
temperature. Kriging surrogate models provide explicit functions to represent the relationships
between the inputs and outputs of a linear or nonlinear system, which is a desirable advantage for
response estimation and parameter identification in structural design and model updating problems.
Qin et al. [26] applied the kriging model and PSO algorithm for the dynamic model updating of bridge
structures using the higher vibration modes under large-amplitude initial conditions. Gao et al. [27]
proposed a simple method for crack number identification based on a kriging surrogate model.
Guo et al. [28] proposed a new damage identification method by constructing the initial kriging
surrogate model to represent the relationship between the dynamic response and the structural
damage parameters, which can improve the efficiency of damage identification. Hou et al. [29]
proposed a damage identification method that used additional virtual masses to generate a large
amount of structural modal information and applied Bayesian theory to localize and quantify the
damage. Damage identification based on structural modal parameters has strong robustness to noise;
thus, it requires less information about the initial state of structures and less accurate information
about the excitation, which makes it more feasible in practical applications. Analysis based on the
assumption of random response or free response, commonly used in practical engineering, can be
adopted. However, damage identification often requires a large number of iterative optimization
searches which involve structural re-analysis including the repetitive assembly of the system parameter
matrix and the calculation of structural modes. Obviously, it is time-consuming and inefficient in
implementation to large-scale civil engineering structures.

The VDM is a method for fast structural re-analysis. Its basic idea is that the response of a
damaged structure can be modeled as a linear superposition of the original response of the undamaged
structure (under the same external load) and the response to certain virtual distortions that are related
to the damage [30]. Therefore, if the original response under external load is known, the response of
the damaged structure can be quickly computed by applying virtual distortions. It is not necessary to
rebuild the structural model and analyze anew the entire structure. Świercz et al. [31] reported on an
application of the VDM in frequency domain analysis, and the effectiveness of the frequency-domain
identification is demonstrated in numerical examples. Zhang et al. [32] calculated the response of a
damaged structure in time domain by using the VDM, and then identified the damage and a moving
mass excitation of the structure. Substructural analysis methods [33–38] provide an effective way
to reduce the number of considered structural parameters in damage identification of large-scale
structures. Zhang and Jankowski [39] divided a structure into several substructures, and proposed



Appl. Sci. 2019, 9, 971 3 of 17

a SVDM to quickly construct the FRF of the damaged structure for identification of substructural
damages. Here, a new computationally-efficient objective function is developed based on the SVDM
for substructural damage identification using structural modal parameters.

This paper is structured as follows: Firstly, traditional objective functions are introduced and
briefly discussed; secondly, the improved objective function is proposed using certain characteristics
of the peaks of the FRF. Finally, the accuracy and efficiency of the proposed method are verified by a
numerical model of an eight-story frame structure.

2. A Traditional Objective Function in Damage Identification

The objective function is a vital factor for structural damage identification, as it determines
the accuracy and computational efficiency of identification. A commonly used traditional objective
function can be introduced as follows.

According to the structural characteristics, the structure is divided into n substructures. The
damage factor of the substructures, which is to be identified, is denoted by µ. Here, µ = [µ1, µ2, · · · , µn],
where µi is the damage factor of the i-th substructure, which represents the ratio of the stiffness of the
damaged i-th substructure to its initial stiffness. The vector ϕi(µ) and the scalar ωi(µ) are respectively
the i-th mode shape and the i-th natural frequency of the FE model corresponding to the damage factor
µ. Let µ be the actual damage factor of the real damaged structure. Besides, let ϕi and ωi respectively
be the i-th measured mode shape and i-th natural frequency of the real damaged structure. For the
purpose of identification of the actual damage factor, natural frequencies and mode shapes are often
employed, and the objective function is generally established as shown in Equations (1) and (2):

f (µ) = αϕ

nϕ

∑
i=1

(1−MAC(ϕi(µ),ϕi)) + αω

nω

∑
i=1

(
ωi(µ)−ωi

ωi

)2
(1)

MAC(ϕi(µ),ϕi) =

(
ϕT

i ϕi(µ)
)(

ϕT
i (µ)ϕi

)(
ϕT

i (µ)ϕi(µ)
)(

ϕT
i ϕi
) (2)

where nϕ is the number of measured structural mode shapes and nω is the number of measured
natural frequencies, while αϕ and αω are respectively the numerical weights used for the mode shape
and natural frequency error terms. Note that the mode shape vector ϕi(µ) may be complex, and the
superscript T denotes the matrix transpose/adjoint.

During the optimization process using Equation (1), the mode shape ϕi(µ) and the natural
frequency ωi(µ) are usually computed repeatedly by solving the eigen equation of the mass and
stiffness matrix of the modified FE model, which is time-consuming especially for large-scale civil
engineering structures.

3. An Improved Objective Function Based on SVDM

In this paper, the traditional objective function is improved by noticing and exploiting certain
characteristics of the peaks of the FRF, which itself is efficiently computed based on the SVDM in the
frequency domain. As shown in Equation (1), the structural modes of the actual damaged structure
and its FE model are used in the traditional objective function. If the structure is large-scale, the
repetitive calculation of structural modes in the FE model of the damaged structure is time-consuming
and inefficient. In view of this, it is improved by replacing the mode shape and the frequency parts of
the theoretical FE model with the frequency response. So, the measured structural modes of the actual
damaged structure are still taken as the basic information in the improved objective function, and the
FRF in the improved part is related to the theoretical FE model only.

Firstly, the computational efficiency of the objective function is improved by exploiting the fact
that the amplitude of the frequency response reaches its local maxima at the natural frequencies of
the structure. Then, the SVDM is used to improve the efficiency of calculating the FRF of the FE
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model. Finally, the selection of some key parameters is discussed in order to ensure the accuracy of
damage identification.

3.1. The Improved Objective Function

The traditional objective function is improved by using the fact that the amplitude of the frequency
response reaches its local maxima at the natural frequencies. Given the vector µ of the damage factors,
let hαq(µ, ω) denote the frequency response of the α-th degree of freedom (DOF) under the excitation
q(t). It can be expressed as Equation (3):

hαq(µ, ω) = ∑
i

ϕαi(µ)ϕ
T
i (µ)Bq

ki(µ)−ω2mi(µ) + jωci(µ)
(3)

where vector ϕαi(µ) is the α-th DOF of the i-th mode shape; ki(µ), mi(µ), ci(µ) are respectively the i-th
mode generalized stiffness, mass and damping; and Bq is the load position matrix of excitation q(t).

Denote the contribution of the i-th mode to the frequency response by h(i)αq (µ, ω) =
ϕαi(µ)ϕ

T
i (µ)Bq

ki(µ)−ω2mi(µ)+jωci(µ)
;

the process of summation of these modal contributions to the overall frequency response is illustrated
in Figure 1.
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When the frequency ω is equal to the i-th damped frequency ωdi(µ), i.e., ω = ωdi(µ) (where

ωdi(µ) = ωi(µ)
√

1− ξ2
i , ξi =

ci
2
√

kimi
), the amplitude of the frequency response hαq(µ, ω) reaches its

local maximum value, and if the damping ratio ξi is small, then ωdi(µ) ≈ ωi(µ). Therefore, when
ω = ωi(µ), the frequency response hαq(µ, ω) has two following characteristics:

(1) Involving the mode shape ϕi(µ):

Consider the special case ω = ωi(µ) and note that hαq(µ, ωi(µ)) ≈ h(i)αq (µ, ωi(µ)), that is, at the
i-th natural frequency the frequency response is dominated by the contribution of the i-th mode. Thus,
Equation (3) can be approximated and expressed as Equation (4). It can be seen from Equation (4)
that the structural i-th mode shape ϕi(µ) is approximately proportional to Hq(µ, ωi(µ)), where

Hq =
[

h1q h2q · · · hnαq

]T
, i.e., ϕi(µ) ∝ Hq(µ, ωi(µ)). When µ→ µ , then ωi(µ)→ ωi , and

Hq(µ, ωi)→ Hq(µ, ωi) ∝ ϕi . So if µ→ µ , then ϕi(µ) ∝ Hq(µ, ωi), and ϕi(µ) in Equation (1) can be
substituted by the frequency response Hq(µ, ωi).

hαq(µ, ωi(µ)) ≈
(

ϕT
i (µ)Bq

ki(µ)−ω2
i (µ)mi(µ) + jωi(µ)ci(µ)

)
ϕαi(µ) (4)
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(2) Involving the natural frequency:

It can be seen from Figure 2 that
∣∣hαq(µ, ω)

∣∣ reaches its local maximum value at ω = ωi(µ), and
so −

∣∣hαq(µ, ω)
∣∣ attains the local minimum value at ω = ωi. Therefore, when the modeled damage

factors converge to the actual damage factors, µ→ µ , then the modeled natural frequency converges
to the measured natural frequency, ωi(µ)→ ωi , and −

∣∣hαq(µ, ωi)
∣∣→ min. In the traditional objective

function, the frequency error term
(

ωi(µ)−ωi
ωi

)2
also reaches its minimum value when µ→ µ . Therefore,

the objective function can be modified by replacing
(

ωi(µ)−ωi
ωi

)2
with −

∣∣hαq(µ, ωi)
∣∣2.
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According to these two characteristics, an improved objective function of Equation (5) is proposed.
It is obtained by replacing the mode shape and frequency parts of the theoretical FE model with the
frequency response, as discussed above.

f (µ) = αϕ

nϕ

∑
i=1

(
1−MAC

(
Hq(µ, ωi),ϕi

))
− αω

nω

∑
i=1

ns

∑
α=1

∣∣hαq(µ, ωi)
∣∣2 (5)

The frequency response hαq(µ, ωi) in Equation (5) can be quickly computed using the SVDM,
which is described in the next section.

3.2. Substructural Virtual Distortion Method (SVDM) in Frequency Domain

The SVDM [39] can be used to quickly compute the frequency response of the FE model of the
damaged structure, without the numerically costly process of the re-analysis of the entire structure.
During the optimization, it is applied to calculate the frequency response of the damaged structure
(as defined by the modified damage factors) with a high computational efficiency.

Zhang and Jankowski [39] studied the SVDM in detail and deduced the respective formulas. The
FRF of the FE model of the damaged structure is equivalently modeled as a superposition of the FRF
of the undamaged structure and the frequency responses to certain virtual distortions that model the
substructural damages. The frequency response hαq(µ, ωi) can be computed as shown in Equations (6)
and (7):

hαq(µ, ωi) = hL
αq(ωi) + ∑

i,j
Dαij(ωi)γ

0
ij(ωi) (6)

(1− µi)γ
L
ij(ω) = γ0

ij(ω)− (1− µi)×∑
k,l

Dγγ
ijkl(ω)γ0

kl(ω) (7)

where Dαij(ω) is the frequency response of the undamaged structure at the αth sensor to the unit
impulse distortion ψijδ(t); Dγγ

ijkl(ω) is the j-th actual virtual distortion coefficient of the i-th substructure

of the undamaged structure to the unit impulse distortion ψklδ(t); γL
ij(ω) and γ0

ij(ω) are the actual
distortion coefficient and virtual distortion coefficient of the undamaged structure, respectively [39].
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In Equations (6) and (7), hL
αq(ω) Dαij(ω) and Dγγ

ijkl(ω) represent the characteristics of the original
undamaged structure, and they can be computed in advance under the unit impulse excitation using
the theoretical FE model. Therefore, the frequency response hαq(ω) of the damaged structure can
be computed quickly by first solving Equation (7) for γ0

ij(ω) and then substituting the result into
Equation (6). Note that the size of Equation (7) is related to the total number of the damage factors
(substructures) instead of the total number of all structural DOFs. In this way, the time-consuming
structural re-analysis in the traditional approach is avoided.

During the optimization procedure for the purpose of damage identification, the main numerical
effort is to calculate hαq(µ, ωi) for given damage factors, i.e., to solve Equation (7). Therefore, the
number of damage factors to be identified and the number of the considered virtual distortions have a
large influence on computational efficiency. In order to reduce the number of virtual distortions, only
the crucial virtual distortions are considered. They are selected by analyzing the correlation between
the actual distortions and the structural frequency response [39].

3.3. Selection of Key Parameters in Improved Objective Function

The calculation of the frequency response hαq(µ, ωi) in the improved objective function depends
on the damping ratio and excitation. The weight of the frequency and mode shape terms of
the theoretical FE model in the improved objective function will affect the accuracy of damage
identification, and the gradient of the improved objective function will be helpful to increase the
optimization efficiency. So, in order to ensure the efficiency of the improved objective function and the
accuracy of damage identification results, the selection of these key parameters is very important. The
selection principles of these parameters are introduced and discussed as below.

3.3.1. Selection of the Damping Ratio

The frequency response is used to replace the mode shape and natural frequency terms in the
traditional objective function of Equation (1). The frequency response depends on the assumed
damping ratio of the modeled structure, so that the selection of the damping ratio has a certain impact
on the optimization process. When the damping ratio of the model is zero, the extreme point of
hαq(µ, ω) is exactly in the position of ωi. However, an obvious steep peak will occur in the curve of
hαq(µ, ω) at the position of ωi, which is not conducive to optimization. On the other hand, when the
damping ratio is large, the curve at the extreme point will be relatively gentle, but the peak value may
not be in the position of ωi, and it might be affected by other modes. After calculating and comparing
the damping ratio of each mode, it has been decided to use the typical value of 0.01.

3.3.2. Selection of Excitation

The frequency response hαq(µ, ω) represents the response to the excitation q(t), so that the
characteristics of hαq(µ, ω) are closely related to the excitation. Since the excitation q(t) is applied
numerically in the FE model, it can be freely selected. In order to obtain a frequency response that
contains more accurate modal information, different excitations can be applied for each natural
frequency to be identified. Here, the excitation qi(t) = ϕiδ(t) is chosen for the i-th frequency ωi to
be identified, where ϕi is the i-th mode shape of the theoretical undamaged FE model. The objective
function of Equation (5) can be further improved as shown in Equation (8).

f (µ) = αϕ

nϕ

∑
i=1

(1−MAC(Hi(µ, ωi),ϕi))− αω

nω

∑
i=1

ns

∑
α=1
|hαi(µ, ωi)|2 (8)

where Hi and hαi represent the structural frequency response obtained by the theoretical FE model
under excitation qi(t).
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3.3.3. Selection of the Weights of the Frequency and Mode Shape Terms

The objective function of Equation (8) includes two parts: the part βϕ(µ) related to the mode
shape and the part βω(µ) related to the natural frequencies, which is as shown in Equation (9). The
theoretical range of the mode shape part (1−MAC(Hi(µ, ωi),ϕi)) is the interval [0,1]. The minimum
value of the h2

αi(µ, ωi) part is zero, while the maximum value is related to the factors such as excitation,
structural characteristics and damping. Therefore, the magnitude of the two parts of Equation (9) may
vary greatly. In order to ensure their balanced influence on the objective function, the modal shape
weight αϕ and the frequency weight αω should be taken reasonably. The trial estimation method is
adopted to determine the weights: Firstly, one substructure is selected, indexed by j, as if only the
j-th substructure was damaged, and a damage factor µj ∈ [0.3, 1] is assumed. Then the mode shape
part βϕ(µ) and the frequency part βω(µ) of the objective function can be calculated by Equation (9).
Denote the maximum values of βϕ(µ) and βω(µ) by βϕ,max and βω,max, respectively. Finally, the weight
coefficients are calculated as αϕ = 1/βϕ,max, αω = 1/βω,max, which is to ensure that the numerical
ranges of the two parts are as close as possible.

βϕ(µ) =
nϕ

∑
i=1

(1−MAC(Hi(µ, ωi),ϕi))

βω(µ) =
nω

∑
i=1

ns
∑

α=1
|hαi(µ, ωi)|2

(9)

3.3.4. The Gradient of the Improved Objective Function

The gradient of the objective function might be used to increase the efficiency of optimization.
In Equation (8), the first derivative of the FRF hαi(µ, ωi) with respect to the damage factor can be
obtained by differentiation of Equations (6) and (7). Then the gradient expression of the objective
function is as shown in Equation (10):

d f (µ)
dµs

= αϕ

nϕ

∑
i=1
‖1− Ai,s

Bi
− Ai·Bi,s

B2
i
‖ − αω

nv

∑
l=1

ns

∑
α=1

2hαi(µ, ωi)
dhαi(µ, ωl)

dµs
(10)

where Ai, Bi, Ai,s, and Bi,s can be calculated by Equation (11).

Ai =
ns
∑

α=1
hαi(µ, ωi)ϕαi

Bi =

√
ns
∑

α=1
h2

αi(µ, ωi) ×
ns
∑

α=1
ϕ2

αi

Ai,s =
ns
∑

α=1

dhαi(µ,ωi)
dµs

ϕαi

Bi,s =
ns
∑

α=1
hαi(µ, ωi)

dhαi(µ,ωi)
dµs

×
ns
∑

α=1
ϕ2

αi/Bi

(11)

For the calculation of the gradient of the objective function, it is crucial to find the first derivative
of the FRF with respect to the damage factor, i.e., dhαi(µ,ωi)

dµs
. The first derivative is applied to both sides

of Equation (6), and Equation (12) is obtained.

dhαi(ω)

dµs
= ∑

i,j
Dαij(ω)

dγ0
ij(ω)

dµs
(12)
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The first derivative with respect to the damage factor is then applied to both sides of Equation (7),
which yields Equation (13).

(1− δis)γ
L
ij(ω) =

dγ0
ij(ω)

dµs
− (1− δis)×∑

k,l
Dijkl(ω)

dγ0
kl(ω

)
dµs

(13)

where i, k, s = 1, 2, · · · , nd; and δis is Kronecker’s delta:

δis =

{
1 i = s

0 i 6= s
(14)

Equation (13) is a linear equation that can be solved to obtain the first derivative
dγ0

ij(ω)

dµs
of the

substructural virtual distortion with respect to the damage factor. Then, the first derivative dhαi(µ,ωi)
dµs

of

the FRF with respect to the damage factor can be obtained by substituting
dγ0

ij(ω)

dµs
into Equation (12).

In this way, the entire gradient of the objective function can be successively obtained.

3.3.5. Optimization Efficiency

When the traditional objective function is used, the computational efficiency is related to the
total number of DOFs of the entire structure. For the improved objective function proposed here, the
computational efficiency is related to the number of damage factors to be identified and the number
of considered virtual distortions. For large-scale structures with many DOFs, the number of damage
factors to be identified is far less than the number of substructural DOFs, so that the optimization
efficiency using the improved objective function is relatively high.

This paper mainly focuses on the derivation of the improved objective function and on the
verification of the related enhancement of the optimization efficiency. The form of the proposed
objective function is independent of the algorithm used to minimize it. Therefore, many optimization
methods in MATLAB and other computational software such as fmincon, patternsearch or Genetic
Algorithm (GA), can be adopted for optimization. In fact, any optimization method can be used to
compare the optimization efficiency using the traditional formulation and the proposed improved
objective function. The fmincon optimization toolbox in MATLAB is used to find the minimum of a
constrained nonlinear multivariable function in this paper.

4. Numerical Simulation

4.1. The Structural FE Model

The accuracy of the proposed method is verified by a FE model of an eight-story steel frame
structure, as shown in Figure 3. The structural height of each story is 3 m, with a total of five spans,
and each span is 5 m. The material density is 7850 kg/m3, and the elastic modulus is 210 GPa.
The cross-sectional area of the beam and column is 0.01 m2, and the section moment of inertia is
8.33 × 10−5 m4. Each beam and column of the structure is a unit, and the structural FE model has
144 DOFs in total. Rayleigh damping is adopted for the structure; the first two orders of damping ratio
are both 0.01. The FE model is established using MATLAB.

As shown in Figure 3, six columns and five beams of each story are treated as a substructure, and
the substructures are denoted by S1–S8 and counted from the bottom. Considering that only a small
part of the structure is usually damaged, two of the eight substructures are assumed to be damaged
in this paper. It is assumed that the substructures S2 and S5 are damaged with the damage factors
of 0.6 and 0.7, respectively. In order to verify the validity of the proposed method, all eight damage
factors are optimized for identification. If the identified damage factor of the substructure is less than 1,



Appl. Sci. 2019, 9, 971 9 of 17

the damage of the substructure can be recognized; if the damage factor is equal to 1, the substructure
is undamaged.Appl. Sci. 2019, 9, x FOR PEER REVIEW 10 of 19 

 

Figure 3. An eight-story steel frame structure model. 

4.2. Substructure Response 

Acceleration sensors aଵ~aସ  are arranged on the beams of substructures S1, S3, S5, and S7, 
respectively, to measure the horizontal acceleration of the structure. The sampling frequency is 200 
Hz with a total sampling time of 0.7s. Given the initial state of the randomly damaged structure, the 
free response of the structure is calculated by the Newmark integration method with the influence of 
5% Gaussian noise. The response of sensors aଵ~aସ is shown in Figure 4. 

 

Figure 4. The simulated structural response of sensors aଵ~aସ. 
4.3. Structural Mode Shapes and Frequencies 

The first six mode shapes and frequencies of the theoretical undamaged structural model are 
shown in Figure 5 and Table 1 respectively. The first six modes of the damaged structure are 
identified by the eigen realization algorithm (ERA) using the structural free response in Figure 4. 
Comparing the frequency identified by the ERA of the damaged structure (column “Identified” in 
Table 1) with the frequency calculated by the FE model of damaged structure (“Damaged model” in 
Table 1), the results are very close, indicating that the recognition result is robust to noise. In fact, the 
error of the high-order mode shape identified is relatively larger, so the first six natural frequencies 
and the first three mode shapes identified are selected as the basis for damage identification in this 
numerical simulation. The discussion about the number of modes used can be found in Section 4.7, 
together with an example damage identification performed using fewer modes in order to verify the 
influence of the number of modes on the accuracy of damage identification results. 

a1

a2

a3

a4

s1

s3
s2

s4

s5
s6
s7
s8

Figure 3. An eight-story steel frame structure model.

4.2. Substructure Response

Acceleration sensors a1∼ a4 are arranged on the beams of substructures S1, S3, S5, and S7,
respectively, to measure the horizontal acceleration of the structure. The sampling frequency is
200 Hz with a total sampling time of 0.7 s. Given the initial state of the randomly damaged structure,
the free response of the structure is calculated by the Newmark integration method with the influence
of 5% Gaussian noise. The response of sensors a1∼ a4 is shown in Figure 4.
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Figure 4. The simulated structural response of sensors a1∼ a4.

4.3. Structural Mode Shapes and Frequencies

The first six mode shapes and frequencies of the theoretical undamaged structural model are
shown in Figure 5 and Table 1 respectively. The first six modes of the damaged structure are identified
by the eigen realization algorithm (ERA) using the structural free response in Figure 4. Comparing
the frequency identified by the ERA of the damaged structure (column “Identified” in Table 1) with
the frequency calculated by the FE model of damaged structure (“Damaged model” in Table 1), the
results are very close, indicating that the recognition result is robust to noise. In fact, the error of
the high-order mode shape identified is relatively larger, so the first six natural frequencies and the
first three mode shapes identified are selected as the basis for damage identification in this numerical
simulation. The discussion about the number of modes used can be found in Section 4.7, together with
an example damage identification performed using fewer modes in order to verify the influence of the
number of modes on the accuracy of damage identification results.



Appl. Sci. 2019, 9, 971 10 of 17

Appl. Sci. 2019, 9, x FOR PEER REVIEW 11 of 19 

 

Figure 5. The first six mode shapes of the theoretical undamaged model. 

Table 1. The first six frequencies of structure in different cases (Hz). 

Order Identified Damaged Model Undamaged Model 
1 1.972 1.961 2.133 
2 6.141 6.142 6.568 
3 11.254 11.257 11.472 
4 16.091 16.095 16.963 
5 22.007 22.006 23.052 
6 27.330 27.339 29.484 

4.4. Selection of the Main Virtual Distortions 

In the process of damage identification, the main virtual distortion of each substructure is 
analyzed and selected at first [39]. Using the FE model of the undamaged structure, the stiffness 
matrix of each substructure is assembled, and its eigenvalue decomposition is carried out. Then the 
positive eigenvalues, i.e., the number of virtual distortions are shown in Table 2, which is 261 virtual 
distortions in total. If all virtual distortions are used, a 261 × 261 linear system of equations should be 
calculated to determine one virtual distortion when solving Equation (7). In order to reduce the 
computational cost, the correlation between the virtual distortions of each substructure and the 
distortion of the undamaged structure is analyzed. Finally, the correlations are sorted from large to 
small and cumulatively summed, and those virtual distortions are retained and further considered 
in computations, for which the accumulated correlation is below 99%. The main virtual distortions 
for the first six natural frequencies identified are shown in Table 2. 

Table 2. The number of main virtual distortions corresponding to the first six frequencies of each 
substructure. 

Number All ω1 ω2 ω3 ω4 ω5 ω6 
1 18 2 1 0 2 3 3 
2 35 8 8 7 3 6 7 
3 34 7 10 5 8 7 3 
4 35 6 7 7 7 6 7 
5 34 6 7 8 6 8 7 
6 35 5 6 5 7 7 3 
7 34 8 9 4 9 10 17 
8 36 6 5 6 7 7 7 

Total 261 48 53 42 49 54 54 

Figure 5. The first six mode shapes of the theoretical undamaged model.

Table 1. The first six frequencies of structure in different cases (Hz).

Order Identified Damaged Model Undamaged Model

1 1.972 1.961 2.133
2 6.141 6.142 6.568
3 11.254 11.257 11.472
4 16.091 16.095 16.963
5 22.007 22.006 23.052
6 27.330 27.339 29.484

4.4. Selection of the Main Virtual Distortions

In the process of damage identification, the main virtual distortion of each substructure is analyzed
and selected at first [39]. Using the FE model of the undamaged structure, the stiffness matrix of
each substructure is assembled, and its eigenvalue decomposition is carried out. Then the positive
eigenvalues, i.e., the number of virtual distortions are shown in Table 2, which is 261 virtual distortions
in total. If all virtual distortions are used, a 261× 261 linear system of equations should be calculated to
determine one virtual distortion when solving Equation (7). In order to reduce the computational cost,
the correlation between the virtual distortions of each substructure and the distortion of the undamaged
structure is analyzed. Finally, the correlations are sorted from large to small and cumulatively summed,
and those virtual distortions are retained and further considered in computations, for which the
accumulated correlation is below 99%. The main virtual distortions for the first six natural frequencies
identified are shown in Table 2.

Table 2. The number of main virtual distortions corresponding to the first six frequencies of
each substructure.

Number All ω1 ω2 ω3 ω4 ω5 ω6

1 18 2 1 0 2 3 3
2 35 8 8 7 3 6 7
3 34 7 10 5 8 7 3
4 35 6 7 7 7 6 7
5 34 6 7 8 6 8 7
6 35 5 6 5 7 7 3
7 34 8 9 4 9 10 17
8 36 6 5 6 7 7 7

Total 261 48 53 42 49 54 54



Appl. Sci. 2019, 9, 971 11 of 17

The number of selected virtual distortions is about 20% of the total number under each frequency,
which effectively reduces the computational complexity of solving the linear Equation (7). It has an
even more significant advantage in the application to large complex structures.

4.5. Fast Calculation of Structural Frequency Response

Firstly, the FRF hL
αq(ω) of the undamaged structure is calculated according to the theoretical FE

model. And the FRF hL
αq(ωl) of the first six frequencies of the damaged structure corresponding to the

position of four measuring points is calculated respectively, where the amplitude of excitation used
here is related to each mode shape of the undamaged structural model as explained in Section 3.3.2.
Then, the virtual distortion of the associated substructure can be calculated by Equation (7). Finally, the
FRF hαq(µ, ωl) of the damaged structure can be obtained by Equation (6). The calculation process of
hαq(µ, ω1) of the damaged structure corresponding to the 1st natural frequency is taken as an example
to describe the above process introduced.

Given the damage factor µ, the 1st mode shape ϕ1 of the theoretical undamaged model
is applied as a pulse excitation to the undamaged structure, and the frequency responses
γL

ij(ω1), Dγγ
ijkl(ω1), hL

αq(ω1), Dαij(ω1) in Equations (6) and (7) can be calculated. Then, the virtual

distortion γ0
ij(ω1) of the substructure can be obtained by solving Equation (7), where the number of

main virtual distortions is 48, i.e., the dimensions of the linear equations are 48 × 48. Finally, the FRF
hαq(µ, ω1) of the damaged structure with damage factor µ is quickly calculated by Equation (6).

When the real damage factor is given, the amplitudes obtained by SVDM at the four
measuring points of the damaged structure are [0.0743 0.3537 0.5538 0.6676]× 10−3; the amplitudes
obtained by the structural modes at the four measuring points of the damaged FE model are
[0.0769 0.3666 0.5743 0.6926]× 10−3. The results obtained by the two methods are very close, which
shows the accuracy of the structural frequency response constructed by SVDM.

4.6. Damage Identification Based on the Proposed Method

The basic damage scenario described above is that the substructures S2 and S5 are damaged with
the damage factors 0.6 and 0.7. The respective damage identification results are presented as damage
case 1. Additionally, in order to verify the applicability of the proposed method, damage identification
under further multiple damage cases is carried out and discussed in the following.

4.6.1. Damage Case 1

In the optimization process, the initial value of the damage factor (usually µ0 = [1, 1, · · · , 1], i.e.,
the undamaged state) is first selected. After calculating the value range of the objective function
of mode shape and frequency respectively, the weight coefficients of mode shape and frequency in
optimization are estimated: αϕ = 2.3208× 105, αω = 129.8002. Then, the damage factor is updated
iteratively using the fmincon optimization toolbox in MATLAB until the objective function reaches
its minimum value. The gradient of the objective function, as derived in Section 3.3.4, is included
for faster or more reliable computations. The identification results of damage factors are shown in
Figure 6 and Table 3. It can be seen from Table 3 that the results identified using the improved and
traditional objective function are both close to the theoretical values, and the error is less than 0.03,
which meets the requirements of damage identification. The improved objective function proposed
contains the measured modes of actual damaged structures and the FRF constructed by the theoretical
FE model using the SVDM. The damage identification method based on the frequencies and mode
shapes has been validated in numerical and experimental investigation and the references are given in
the introduction. The SVDM utilized in the improved method has also been verified by experimental
research in Reference [39]. In the simulation, the accuracy of the improved method is proved to be
consistent with the traditional method by the theoretical research, so the effectiveness of the improved
method is verified and confirmed.
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Table 3. Comparison of damage identification results using the improved objective function and
traditional objective function.

No Theory The Improved Method The Traditional Method

1 1.0000 0.9999 0.9996
2 0.6000 0.6084 0.5897
3 1.0000 0.9999 1.0000
4 1.0000 0.9998 0.9997
5 0.7000 0.6846 0.7087
6 1.0000 0.9998 1.0000
7 1.0000 0.9997 1.0000
8 1.0000 0.9896 0.9963

Moreover, the computational efficiency is discussed. In the numerical simulation, there are
144 DOFs of the FE model. When the traditional objective function is adopted, all DOFs should be
calculated to obtain the structural modes, so the computational cost is of the order of O(1443). However,
the number of damage factors to be identified is eight, and the number of main virtual distortions
is about 50. So the computational cost based on the improved objective function is of the order of
O(6 × 503), which shows that the proposed method using an improved objective function is more
efficient. In practical calculation, the time of optimization is about 0.83 s by using the improved
objective function, while by using the traditional objective function the time of optimization is about
2.73 s. As a result, the computational efficiency is increased approximately three times using the
method proposed in this numerical simulation.

4.6.2. Damage Case 2

In damage case 1, two large damages are considered, and the results are relatively accurate.
In damage case 2, multiple smaller damages are considered, and the damage identification results
are shown in Table 4. It can be seen from Table 4 that the results identified using the improved and
traditional objective function are very close, which verifies the accuracy of the proposed method.
Besides, they are both close to the theoretical values and the error is less than 0.03, which meets the
requirements of damage identification. Therefore, the accuracy and validity of the proposed method
are verified also in the case of multiple smaller damages.
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Table 4. Damage identification results with multiple smaller damages.

No Theory The Improved Method The Traditional Method

1 1.0000 0.9999 1.0000
2 0.9000 0.8836 0.8926
3 1.0000 0.9767 0.9933
4 0.9000 0.9042 0.8897
5 0.9400 0.9376 0.9339
6 1.0000 0.9999 0.9952
7 0.9600 0.9754 0.9752
8 1.0000 1.0000 0.9998

4.6.3. Damage Case 3

In damage case 3, a single smaller damage is considered. The damage identification results are
shown in Table 5. It can be seen from Table 5 that the results identified using the improved and
traditional objective function are very close, which verifies the accuracy of the proposed method.
Besides, they are both close to the theoretical values and the error is less than 0.03, which meets the
requirements of damage identification. Therefore, the accuracy and validity of the proposed method
are verified also in the case of a single smaller damage.

Table 5. Damage identification results with a single smaller damage.

No Theory The Improved Method The Traditional Method

1 1.0000 1.0000 1.0000
2 1.0000 0.9999 1.0000
3 1.0000 1.0000 1.0000
4 1.0000 1.0000 1.0000
5 1.0000 0.9998 1.0000
6 1.0000 1.0000 1.0000
7 0.9600 0.9633 0.9653
8 1.0000 0.9911 0.9900

4.6.4. Damage Case 4

In damage case 4, the damage of a single beam or column is studied. The beams and columns in
the model are numbered for ease of illustration. For columns, they are numbered from left to right and
then from bottom to top. A total of 48 columns are numbered 1–48. Then the beams are consecutively
numbered in accordance with the same rule. There are 40 beams numbered 49–88.

The damage of a single beam or column is studied under four separate damage cases, which are
shown in Table 6: The 10th column with a damage factor of 0.5 and 0.8; and the 55th beam with a
damage factor of 0.5 and 0.8. The 10th column and the 55th beam belong to the 2nd substructure, as
shown in Figure 7. Under the above four damage cases, the numerical simulation is carried out and
the damage of eight substructures is identified. The damage factors of other substructures are close to
the theoretical value of 1, so only the results of the second substructure are listed in Table 6.

Table 6. Damage identification results of 2nd substructure with single column/beam damage.

Damage Case 10th Column with
Damage Factor 0.5

10th Column with
Damage Factor 0.8

55th Beam with
Damage Factor 0.5

55th Beam with
Damage Factor 0.8

The improved method 0.9205 0.9802 0.9642 0.9908
The traditional method 0.9246 0.9824 0.9538 0.9875
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Figure 7. The location of 10th column and the 55th beam.

As shown in Table 6, when the damage factor of the 10th column is 0.5, it can be detected that the
2nd substructure has been damaged. However, it is difficult to detect the structural damage when the
damage factor is smaller than 0.8. Compared with columns, the contribution of beams to structural
lateral stiffness is smaller, so the damage is more difficult to detect under the same damage factor.

When the damage factor of the 10th column is 0.5, it can be detected that the 2nd substructure has
been damaged. In order to further identify damage, each of the beams and columns is treated as a
separate substructure. Therefore, there are 11 substructures and 11 damage factors to be identified
in the second floor. The damage identification results are shown in Table 7. From Table 7, it can be
roughly judged that a column has been damaged, but it is almost impossible to identify which column
has been damaged. It is because the identification used the structural frequency and mode shape,
which conveys global information about the structure and are insensitive to local damage. If local
damage is to be identified, a method suitable for local damage identification should be used. Such a
method has been proposed by the author and it can be found in Reference [29] that is referenced in
the introduction.

Table 7. Damage identification results with 11 damage factors of 2nd floor.

No Theory The Improved Method The Traditional Method

Column

7 1.0000 0.7586 0.9992
8 1.0000 0.7669 0.9988
9 1.0000 0.8834 0.9980

10 0.5000 0.9319 0.9964
11 1.0000 0.9388 0.8254
12 1.0000 0.9564 0.5761

Beam

54 1.0000 0.9909 0.9982
55 1.0000 0.9931 0.9999
56 1.0000 0.9960 0.9998
57 1.0000 0.9967 0.9998
58 1.0000 0.9970 0.9999

When the eleven substructures of the second floor are to be identified using the first three mode
shapes and first six natural frequencies, the time of optimization is about 0.43 s using the improved
objective function, while it is about 20.96 s using the traditional objective function. The number of the
damage factors (optimization parameters) is increased by three, which is from 8 to 11. When using the
traditional objective function, the total time of optimization is accordingly increased to a significant
degree. However, when using the improved objective function, the column or beam substructure is
much simpler than the previous floor substructure, so the number of the selected virtual distortions is
reduced by the SVDM from about 50 to about 12, and the time is reduced from 0.83 s to 0.43 s. This
illustrates the high efficiency of the proposed method.
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4.7. The Discussion about the Number of Modes Used

In this paper, the first six frequencies and first three mode shapes are adopted to identify the
damage. The influence of the number of the considered modes on the damage identification results has
been verified by performing identification based on fewer natural frequencies and mode shapes. The
maximum differences between the identified damage factor and the theoretical value using different
numbers of modes and the improved and traditional method are shown in Tables 8 and 9, respectively.

Table 8. Maximum difference between the identified damage factor and the theoretical value in the
improved method using different modes.

The First Three Mode
Shapes Used

The First Two Mode
Shapes Used

The First Mode
Shape Used

The First Six
Frequencies Used 0.0154 0.0184 0.0365

The First Three
Frequencies Used 0.0320 0.0383 0.2147

Table 9. Maximum difference between the identified damage factor and the theoretical value in the
traditional method using different modes.

The First Three Mode
Shapes Used

The First Two Mode
Shapes Used

The First Mode
Shape Used

The First Six
Frequencies Used 0.0103 0.0162 0.0421

The First Three
Frequencies Used 0.0172 0.0206 0.1755

It can be seen from Tables 8 and 9 that the identification errors obviously increase when the
number of the considered modes decreases. Especially, if only the first mode shape was used, there
would be an obvious misjudgment, which indicates the information is insufficient.

In practice, modal information is obtained from measurements always with a certain error. The
error of higher mode shapes and frequencies is larger, so the first six frequencies and the first three
mode shapes are selected in this paper. In order to ensure the accuracy of damage identification, there
must be enough modal information. From the numerical simulation results in Tables 8 and 9, one can
infer that the selection of the first six frequencies and the first three mode shapes is sufficient, which
indicates that the selection in this paper is reasonable.

5. Conclusions

In order to avoid repeated calculation of structural modes and to improve the optimization
efficiency, an improved objective function for damage identification based on the SVDM is proposed.
A numerical model of an eight-story frame structure is used to verify the effectiveness of the proposed
method. The main conclusions are as follows:

1. Considering the characteristic that the amplitude of the frequency response attains a local
maximum at the position of structural natural frequencies, an improved objective function
is developed which avoids the repeated calculation of structural modes in the optimization
procedure and improves the computational efficiency.

2. Utilizing the fast structural re-analysis approach of the SVDM, frequency response in the
improved objective function can be computed quickly, and the gradient expression of the objective
function can be derived which further improves the optimization efficiency.
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3. The optimization efficiency using the traditional objective function is related to the number of
DOFs of the entire structure, while the optimization efficiency based on the improved objective
function is related to the number of damage factors to be identified and the number of selected
virtual distortions.
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