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The nature of neural codes is central to neuroscience. Do neurons encode information through relatively
slow changes in the firing rates of individual spikes (rate code) or by the precise timing of every spike
(temporal code)? Here we compare the loss of information due to correlations for these two possible neural
codes. The essence of Shannon’s definition of information is to combine information with uncertainty:
the higher the uncertainty of a given event, the more information is conveyed by that event. Correlations
can reduce uncertainty or the amount of information, but by how much? In this paper we address this
question by a direct comparison of the information per symbol conveyed by the words coming from a
binary Markov source (temporal code) with the information per symbol coming from the corresponding
Bernoulli source (uncorrelated, rate code). In a previous paper we found that a crucial role in the relation
between information transmission rates (ITRs) and firing rates is played by a parameter s, which is the
sum of transition probabilities from the no-spike state to the spike state and vice versa. We found
that in this case too a crucial role is played by the same parameter s. We calculated the maximal and
minimal bounds of the quotient of ITRs for these sources. Next, making use of the entropy grouping
axiom, we determined the loss of information in a Markov source compared with the information in the
corresponding Bernoulli source for a given word length. Our results show that in the case of correlated
signals the loss of information is relatively small, and thus temporal codes, which are more energetically
efficient, can replace rate codes effectively. These results were confirmed by experiments.
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neural coding.
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1. Introduction

Since the seminal work of Adrian and Zotterman1

it has been recognized that in the nervous system
information is transmitted among spiking neurons
by trains of discrete electrical pulses, called action
potentials or spikes. A second, nondigital, mode of
communication, through gap junctions, is also com-
mon (see, for example, Refs. 2 and 3) but will not be
considered here. It has been shown that firing rates
of spikes change in a consistent manner with inputs.
That has given rise to the notion that information is
encoded in the neuronal firing rate. Recently, Wang
et al.4 presented evidence that in the cerebral cor-
tex various types of neural coding are controlled by
the energy field and energy flow. Other work has
shown that firing rate is directly related to energy
cost,5 namely, energy consumption increases linearly
with spiking frequency.6,7 On the other hand, many
reports show (for example, Ref. 8) that the total
number of spikes varies substantially from trial to
trial during repeated presentations of the same stim-
ulus. This variability has given rise to an alternative
hypothesis, which states that additional information
is contained in the precise timing of the spikes within
the spike train. These two (not mutually exclusive)
views of neural encoding and decoding are broadly
called “rate-based” and “spike-based”.9

The question arises which neural mechanism(s)
could be used to switch from rate to temporal coding
and vice versa. It seems that the most natural is
an application of certain learning mechanisms. This
question can be considered on two levels. First, on
the level of a single neuron and various biological
processes, including ion channel mechanisms gov-
erning spike generation, and second, on the level
of spiking neural networks (SNNs) architecture,10

with mechanisms of learning that allow to opti-
mize information transmission processes. During the
past few years artificial neural networks were devel-
oped, inspired by the structure and function of
the human brain, with applications to learning and
effective classification, pattern recognition, approx-
imation problems, time series forecasting and opti-
mization. Recent advances and the availability of
computational power have increased the develop-
ment of new, increasingly realistic biological models,
and made it possible to develop more suitable
algorithms. Therefore, the development of spiking

neural networks is the most natural and promising
idea to get a new generation of much more efficient
networks.10 This includes analysis of the role of
models and types (e.g. excitatory, inhibitory) of
neurons being adapted, network architecture and
progress in learning methods, which are used to
enhance the effectiveness of information processing.
Efficient single-spiking SNN models were presented
in Ref. 11, and applied to complicated pattern recog-
nition problems, such as epileptic seizure detection.
An extensive parametric analysis with application of
new training algorithms was performed, to identify
heuristic rules and optimum parameter values that
yielded high accuracy (92.5%) in the EEG classifica-
tion problem. In Ref. 12 a new multi-spiking neural
network and a very effective training algorithm were
presented. A novel network architecture and back-
propagation training algorithm with learning mech-
anism, which allows communication via spike trains,
was proposed. This idea demonstrates the training
of a neural network, which exploits an increased
degree of biological feasibility. The classification abil-
ities of this brain-inspired algorithm were evaluated
using three complex problems: the XOR problem,
the Fisher iris problem and the problem of detect-
ing epilepsy and seizures in EEG records. The sim-
ulations have shown their effectiveness compared to
traditional artificial neuronal networks or simplistic
single-spiking SNN neurons. In Ref. 13 a novel idea
was developed, based on the integration of three dif-
ferent computing technologies, namely, neural net-
works, wavelets and chaos theory. These powerful
computational algorithms were applied to epilepsy
diagnosis and seizure detection, being modeled as
effective classification of EEG signals. The spiking
neural networks with their inherent property of brain
dynamics constitute, in fact, a new generation of
neural networks, which could provide explanations
for dynamics in the cerebral cortex. This approach
benefited from understanding cerebellar pathologies.
In Ref. 14 a novel learning algorithm was proposed,
based on an artificial system embedding the salient
neuronal and plastic properties of the cerebellum,
and operating in a closed loop. These closed-loop
simulations reproduced several aspects of cerebellar
pathologies revealed in human and animal experi-
ments. In Ref. 15 a spatiotemporal-based learning
algorithm named cross-correlated delay shift was
proposed as a supervised learning method to learn
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the association between precise patterns considering
axonal and synapse delays with weight modula-
tion. The efficacy of the proposed learning rules
was validated through a real-world example, involv-
ing the detection of interictal spikes in EEG data
from patients with epilepsy. An interesting weight-
free learning algorithm that relies solely on adjust-
ing the spatiotemporal delivery of neuron firings was
proposed in Ref. 16. The idea of training neural net-
works by controlling cell activity, rather than synap-
tic weights, was motivated by techniques such as
optogenetics that are having a significant impact
in neuroscience. The advantage of the algorithm is
that plasticity is altered by controlling cell activ-
ity, and thus it is potentially realizable in living
biological neuronal networks via intracellular stim-
ulation. Another mechanism of learning in which
changes in the synaptic strength depend on the tem-
poral correlations between the timing of the presy-
naptic and postsynaptic action potentials was pro-
posed and exploited in Ref. 17. A biophysical model
is used, in which the microcircuits of two neocor-
tical neurons were coupled through synapses with
spike-timing-dependent plasticity that produced the
mirror function. This result indicates that hyperpo-
larized activated cationic current channelopathy may
affect the mirror function in autism spectrum disor-
der (ASD), through a mechanism mediated by spike-
timing-dependent plasticity. Therefore, the present
model is useful in the study of the physiological
mechanisms behind ASD. Recently, authors have
proposed and developed network models named syn-
fire chains18 and spiking neural P systems.19 Syn-
fire chains address multi-stage signal transmission
in the brain as a connectivity scheme that con-
nects a sequence of neuron groups of roughly the
same size. Spiking neural P systems are character-
ized by the fact that each neuron mimics a bio-
logical cell, and the communication between neu-
rons is based on spikes. In Ref. 20 it was shown
that with spike-timing-dependent plasticity, mod-
ulated by global population activity, long Synfire
chains emerge in sparse random networks. The sparse
network architecture prevents the chains from being
short and cyclic, and shows that the formation of
specific synapses is not essential for chain forma-
tion. A novel communication strategy on request
among neurons in spiking neural P systems was pro-
posed in Ref. 19. It was proven that such systems

are computationally universal, i.e. they are equiv-
alent to Turing machines, as long as two types of
spikes are used. Moreover, in Ref. 21 it was shown
that even simplified communication systems (with a
single type of neuron) on request still have power-
ful computation capabilities. Promising is the recent
application of spiking neural networks for modeling
cerebellar circuit,22 which is the most plastic struc-
ture of the brain, and plays a critical role in adap-
tive motor control by implementing three fundamen-
tal operations: prediction, timing and learning. An
accurate analysis of model parameters, during dif-
ferent phases of the eye blink classical conditioning
learning paradigm, showed that the main effect of
transcranial magnetic stimulation was to alter plas-
ticity at cortical synapses.

In general, learning mechanisms in the field of
artificial neural networks refer to changes of synap-
tic connections, which are driven by the statistics
of the input stimuli (unsupervised learning), or are
based on reward-based learning, where the network
parameters are optimized to achieve, for each stim-
ulus, a desired behavior (supervised learning). Our
results show that in studying the type of information
transmission (rate coding versus temporal coding) in
spiking neural P systems, an important role is played
by the parameter s, which we called the “jumping”
parameter. Taking into account that for experimen-
tally observed typical firing frequencies the param-
eter s is close to 1, our analysis indicates that the
amounts of information transmitted by both corre-
lated and uncorrelated signals are comparable. For
nontypical firing frequencies, as in the case of burst-
ing, which is observed experimentally,23 the value of
s can be far from 1, and in this case the level of corre-
lation of spikes can affect in a visible way the encod-
ing method and the transmission rate being achieved.

In Ref. 24 it was shown that the temporal cor-
relation between spikes determines the information
content in finite-memory neural codes, both within
a spike train and across spike trains produced in
response to repeated presentations of the same stim-
ulus. In Ref. 25, a specific transformation of spike
trains into analog signals was applied to account for
the fact that a spiking neuron is able to learn. It
has been argued that associations of arbitrary spike
trains in a supervised fashion allow the processing of
spatiotemporal information encoded in the precise
timing of spikes.
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In our previous papers we compared directly
information transmission rates (ITRs) with their
corresponding firing rates26,27 in the case of binary
information sources. Our results show that a parame-
ter s (which we called a “jumping parameter”) played
a crucial role in the characterization of neural coding.
We showed out that depending on this parameter
s, temporal coding can be more effective than rate
coding.27

In this paper, we compare transmission rates for
two types of binary information sources: correlated
sources and their corresponding independent sources.
Making use of the entropy grouping axiom,28 we
analyze the relation of information transmitted by
sources described as Markov processes and by those
described as Bernoulli processes. Our results show
that in this case too a crucial role is played by the
parameter s. We found bounds for the quotients
of ITRs for these sources, and also their quotients’
minimal and maximal values. We also determined the
loss of Shannon information in Markov sources versus
the corresponding Bernoulli sources for a given word
length.

The paper is organized as follows. In Sec. 2, we
briefly review the basic concepts of Information The-
ory, Bernoulli and Markov processes. In Sec. 3, we
present the comparison of ITRs of spike trains com-
ing from a Markov source and from the correspond-
ing Bernoulli source. Section 4 contains the final
remarks.

2. Entropy and Information

In Shannon’s theory a communication system is rep-
resented by: an input information source (stimuli
source), a communication channel (neuronal net-
work) and an output information source (output
signal). In mathematical language sources of infor-
mation are modeled as stationary discrete stochas-
tic processes.29 Discrete communication channels are
defined by a system of conditional probabilities link-
ing input and output symbols.28,30 In this paper, we
study two types of output information sources, i.e.
sources represented by Markov processes and by cor-
responding Bernoulli processes.28,31 First, we briefly
recall the basic notation.27

2.1. Entropy

Let ZL be a set of all words (i.e. blocks) of
length L, built of symbols (letters) from some finite

alphabet Z. Each word w can be treated as a mes-
sage sent by information source Z being a stationary
stochastic process. If P (w) denotes the probability
the word w ∈ ZL occurs, then the information in the
Shannon sense carried by this word is

I(w) := −log2P (w). (1)

Thus, the average information of the random variable
WL corresponding to the words of length L is called
the Shannon block entropy, and is given by

H(WL) := −
∑

w∈ZL

P (w)log2 P (w). (2)

Since the word length L can be arbitrary, the block
entropy does not perfectly describe the information
source.28,30

In the special case of a two-letter alphabet Z =
{0, 1} and the length of words L = 1 we introduce
the following notation:

H2(p) := H(W 1) = −p log2 p − (1 − p)log2 (1 − p),

(3)

where P (1) = p, P (0) = 1 − p are the associated
probabilities.

2.2. Information transmission and
firing rates

The appropriate measure for estimation of transmis-
sion efficiency of an information source Z is the infor-
mation transmitted on average by a single symbol,
i.e. ITR.28,30

Let us introduce the notation

ITR(L)(Z) :=
H(WL)

L
, (4)

and in the limiting case

ITR(Z) := lim
L→∞

H(WL)
L

. (5)

This limit exists if and only if the stochastic process
Z is stationary.30

The most commonly used definition of firing rate
refers to the temporal average32–34 and is defined as

FR =
nT

T
, (6)

where nT denotes spike count in a given time window
of length T (typically a few seconds). In practice,
in order to get sensible averages, some reasonable
number of spikes should occur within the time win-
dow.34 Since the messages are treated as trajectories
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of locally stationary stochastic process, the firing rate
as defined by (6) is specific for a given information
source provided T is large enough. Thus, FR · ∆τ

is related to the probability p of spike appearance,
where ∆τ is the time resolution or bin size.

2.3. Information sources

An information source must produce sequences of
symbols, which from a mathematical point of view
can be treated as trajectories of a stationary stochas-
tic process Z = (Zi), i = 1, 2, . . . , where Zi are
random variables31 taking the values from a finite
alphabet.

Spike-train statistics are often modeled as
stochastic point processes.35,36 Specifically, there is
an extensive literature in which the spike interval dis-
tribution is modeled by Poisson point processes, see
e.g. Refs. 37 and 38. Poisson point processes pro-
vide a good approximation to experimental data,
especially when the refractory time scale, or more
generally, any memory time scale in the spike
generating mechanism, is short compared to the
time scales such as the mean interspike interval.
The application of the Poisson processes for mod-
eling spike trains was proposed since the earliest
descriptions,39,40 due to the proportional relation-
ship between the mean and variance of many neural
responses. The Poisson property was observed in a
number of experimental data.41 On the other hand,
it is known that Poisson point processes exhibit
Markov properties.42,43 Moreover, there are three
features of neural responses that have been shown
to contribute to decreasing variability, including the
refractory period,44 bursting45 and temporal corre-
lations in neural responses on longer time scales.46

All of these features can be modeled by including
directly the history (i.e. applying the Markov prop-
erty) dependence in spike-train prediction. Only in
the past three decades have other models started
to come into use to describe spike trains, such as
the inhomogeneous Markov interval models47,48 and
hidden Markov models (HMMs).49,50 In these pro-
cesses, both the current experimental time and the
time from the last spike are taken into account. Thus,
the question of how spike train correlations affect
information transmission is of high importance. Gen-
eralized additive models, based on the Markov inter-
val models approach, was successfully proposed in

Ref. 47. The idea is based on direct estimation of the

part of the model describing the history-dependent
properties of spike generation, under the assump-
tion of a constant rate, followed by an estimation of
the modulatory part describing the response prop-
erties. Radons et al.49 employed HMMs for decod-
ing the identity of visual stimuli from recorded neu-
ral responses. Using this procedure, they were able
to identify the presented visual stimulus with high
accuracy. In Ref. 50, using hidden Markov model, the
neural state transitions were detected for motor cor-
tical prostheses. A technique was developed to auto-
matically differentiate between baseline, plan and
perimovement epochs of neural activity. A four-state
modulated Markov process was used to model spon-
taneous neuronal firings of individual auditory cor-
tical neurons.48 Analytical expressions for the prob-
ability density functions that describe the interspike
interval distribution and autocorrelation function
were derived. The good agreement between experi-
mental and theoretical interspike interval histograms
and the autocorrelation functions allows interpreta-
tion of the system’s parameters of the individual
neurons in terms of slow and delta waves, and high-
frequency oscillations observed in cortical networks.

The most commonly used method of digital-
ization spike trains was proposed in Refs. 38, 51
and 52. It is physically justified since spike trains are
recorded with a finite time resolution ∆τ , so that
in each time slice (bin) a spike is either present or
absent. If the presence of spike is denoted by “1” and
no spike by “0”, then if we look at some time interval
of length T , each possible spike train is equivalent to
T
∆τ binary sequence which can be treated as trajec-
tory of the stochastic process.

In Refs. 53 and 54 it was assumed that random
variables which describe the generation of consecu-
tive bits in the sequence representing spike train are
independent. This means that these random vari-
ables are uncorrelated, i.e. their Pearson correlation
coefficient (PCC) is equal to 0. Thus, assuming that
1 is generated with probability p (a spike is found
in the bin), 0 is generated with probability 1 − p (a
spike is not found), what we have is a Bernoulli pro-
cess.30,31 Clearly, in the case of a Bernoulli process
the distribution of k “ones” between the sequence of
bits of length n does not influence the probability
of such sequences. This probability is simply equal,
for all such sequences, to pk(1− p)n−k, and depends

1950003-5



September 4, 2019 17:27 1950003

A. Pregowska, E. Kaplan & J. Szczepanski

only on the firing rate k
n . Consequently, since the

Shannon information depends only on the probabil-
ity, all such sequences transmit the same amount of
information and we are in the rate code regime.

Following the entropy definition (2), the informa-
tion transmission rates (4) and (5) for the Bernoulli
process B with the probability of bit 1 equal to p are
determined as

ITR(B(p)) = −p log2 p − (1 − p)log2(1 − p). (7)

Note that ITR(B(p)) is equal to H2(p).
Now, let us assume that the generation of bits

of the output signal from an information source is
described by correlated random variables (in the
sense of PCC), and this generation is governed by a
Markov process M. In general, a discrete Markov
process is defined by a set of conditional proba-
bilities pj | i describing changes from state i to the
state j, where i, j = 0, 1, and by initial distribution
probabilities. These changes are called transitions,
and the probabilities associated with them are called
transition probabilities. These probabilities can be
put together into a matrix P, called the transition
matrix, which for the two-states process is of the
form

P :=

[
p0 | 0 p0 | 1

p1 | 0 p1 | 1

]
=

[
1 − p1 | 0 p0 | 1

p1 | 0 1 − p0 | 1

]
. (8)

This is a stochastic matrix, i.e. each of its columns
sums to 1. Here, we assumed that the process is
homogeneous in time. The probability evolution is
governed by the master equation55

[
pn+1(0)

pn+1(1)

]
=

[
1 − p1 | 0 p0 | 1

p1 | 0 1 − p0 | 1

]
·
[
pn(0)

pn(1)

]
, (9)

where n stands for the discrete time, pn(0) and pn(1)
are probabilities of finding states “0” and “1” at time
n, respectively. In the case of Markov processes the
distribution of k “ones” between the sequence of bits
of length n does influence the probability of such
sequences. Consequently, since the Shannon infor-
mation depends only on the probabilities, in general
such sequences transmit different amounts of infor-
mation. Here the patterns in the sequences of bits do
play a role and we are in the temporal code regime.

The stationary solution of (9) is given by

[
peq(0)

peq(1)

]
=




p0 | 1
(p0 | 1 + p1 | 0)

p1 | 0
(p0 | 1 + p1 | 0)


. (10)

The entropy rate (6) of the Markov source with
transition matrix defined by (8) reads30 by definition

ITR(M) = Peq(0)[−p1 | 0 log2 p1 | 0

− (1 − p1 | 0)log2 (1 − p1 | 0)]

+ Peq(1)[−p0 | 1 log2 p0 | 1

− (1 − p0 | 1)log2(1 − p0 | 1)], (11)

or, making use of notation (3), it can be written in
a compact form

ITR(M) = peq(0)H2(p1 | 0) + peq(1)H2(p0 | 1). (12)

For the latter, the use of the probability of state
“1” is, in fact, understood as the firing rate, and is
denoted by p,

p := peq(1) =
p1 | 0

(p0 | 1 + p1 | 0)
. (13)

For the special case when p0 | 1 + p1 | 0 = 1, the
Markov process M becomes uncorrelated, and
reduces to a Bernoulli process with p = p1 | 0.

Under the above notation, we introduced27 the
“jumping” parameter s, which can be interpreted as
the tendency of a transition from one state to the
other state

s := p0 | 1 + p1 | 0. (14)

Note that 0 ≤ s ≤ 2.
Using this notation, in the case of the Markov

processes M, we have

p =
p1 | 0

s
. (15)

For 0 ≤ s ≤ 1, the firing frequency p can take on
values from the interval [0, 1], while for 1 ≤ s ≤ 2 the
values of p are limited to the interval 1− 1

s ≤ p ≤ 1
s .

These limits of the range of p follow from (14), (15)
and the inequality s − 1 ≤ p1|0 ≤ 1.

3. Results

In this section we compare directly the information
transmission rates conveyed by spike trains com-
ing from a Markov information source, as defined
by (12), with ITR of spike trains coming from the
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corresponding Bernoulli information source (7). It is
natural to assume that the Bernoulli process corre-
sponding to a given Markov process is defined by the
stationary probabilities (10) of this Markov process.

Under the notations (7) and (12), we introduce
the following Markov–Bernoulli information quotient
Qs, which is a function of p and depends on param-
eter s:

Qs(p) :=
ITR(Ms(p))
ITR(Bs(p))

. (16)

Applying (12) and (15) we have

Qs(p) :=
(1 − p)H2(ps) + pH2((1 − p)s)

H2(p)
. (17)

Taking into account the range of p, we consider Qs

in the following two cases:

(a) 0 ≤ s ≤ 1, here 0 ≤ p ≤ 1, (18)

(b) 1 ≤ s ≤ 2, here 1 − 1
s
≤ p ≤ 1

s
. (19)

In Fig. 1 we present, for some arbitrary values of s,
typical traces of Qs as a function of p both for lower
values of the jumping parameter 0 ≤ s ≤ 1 [panel
(a)] and for higher values of the jumping parameter
1 ≤ s ≤ 2 [panel (b)]. Observe that Q1(p) = 1 for
each p, due to the fact that for s = 1, the Markov
process reduces to the Bernoulli process. In general,
for s close to 1 the amounts of information carried

by correlated and corresponding uncorrelated signals
are comparable, i.e. the loss of information by cor-
related signals is relatively small. Note that Qs for
every s �= 1 exhibits one maximum only. One can
check the symmetry property, i.e.

Qs

(
1
2
− r

)
= Qs

(
1
2

+ r

)
, (20)

for 0 ≤ r ≤ 1
2
, in the case of 0 ≤ s ≤ 1; (21)

and

for 0 ≤ r ≤ 1
s
− 1

2
, in the case of 1 ≤ s ≤ 2. (22)

Thus, in both cases, the maximum Qmax
s over p of the

quotient Qs for all values of parameter s is achieved
for p = 1

2 and by (17) it is equal to

Qmax
s = Qs

(
1
2

)
= H2

(s

2

)
. (23)

In Fig. 2 we show Qmax
s as a function of s for 0 ≤

s ≤ 2. Here one can see that the minimal values of
the quotient Qs(p) for each s are reached at the end
points of the intervals (18) and (19).

For 0 ≤ s ≤ 1, making use of (17), the bounds
are as follows:

lim
p→0

Qs(p) = s and lim
p→1

Qs(p) = s, (24)

(a) (b)

Fig. 1. The Markov–Bernoulli information quotient Qs as a function of firing rate p for the chosen values of the jumping
parameter s: (a) For parameters 0 ≤ s ≤ 1 according to (18) the range of p is [0, 1] and (b) for parameters 1 ≤ s ≤ 2 due
to (19) the range of p is 1 − 1

s ≤ p ≤ 1
s .
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Fig. 2. The upper bound (23) of Qs, i.e. Qmax
s , and the

limiting factor h(s) =
H2( s

2 )+1
2 in (33), (34) as functions

of the jumping parameter s.

while for 1 ≤ s ≤ 2 the bounds read

lim
p→1− 1

s

Qs(p) =
H2(s−1)

s

H2

(
s−1

s

) ,

and by (20)

lim
p→ 1

s

Qs(p) =
H2(s−1)

s

H2

(
s−1

s

) . (25)

Observe that for s → 1+ we have
H2(s−1)

s

H2( s−1
s )

→ 1.

Also, g(s) :=
H2(s−1)

s

H2( s−1
s )

as a function of s for 1 ≤
s ≤ 2 is shown in Fig. 3.

Notice that for each s

f(s) := 2 − s ≤ g(s). (26)

The basic idea of Shannon Information Theory is
to combine information with uncertainty. The higher
the uncertainty of a given event, the more informa-
tion is transmitted by such an event. The concept of
entropy already addresses this idea.

To determine how far correlation reduces uncer-
tainty, i.e. the amount of Shannon information, we
compare the information per symbol transmitted by
the words coming from a binary Markov source with
the information per symbol coming from the corre-
sponding Bernoulli source.

First we consider words of length 2. We make
use of the grouping axiom of entropy.28 It is known

Fig. 3. The lower bound of Qs namely g(s) =
H2(s−1)

s

H2( s−1
s )

(24) and f(s) = 2 − s (26) as functions of the jumping
parameter 1 ≤ s ≤ 2.

that the entropy function H(Y ) for a discrete ran-
dom variable Y , under the assumptions of conti-
nuity, monotonicity, uncertainty of joint experiment
and grouping axiom, is interpreted as the average
uncertainty associated with the events Y = zi, and is
derived as H(Y )= H(p1, . . . , pK)= −ΣK

j=1pj log2 pj,
where pi is probability of the event Y = zi, i =
1, 2, . . . , K. Let us consider the quotient Qs of the
entropy of Markov source (11), (12) and a corre-
sponding Bernoulli process (7). With the above nota-
tion and by (3) and (8) we have

Qs =
peq(1)H2(p0 | 1) + peq(0)H2(p1 | 0)

H2(peq(1))

=

peq(1)H(p0 | 1, 1 − p0 | 1)

+ peq(0)H(p1 | 0, 1 − p1 | 0)
H(peq(1), 1 − peq(1))

=
peq(1)H(p0 | 1, p1 | 1) + peq(0)H(p1 | 0, p0 | 0)

H(peq(1), peq(0))
.

(27)

Now, we express Qs in the form

Qs =
peq(1)H

(
peq(1)p0 | 1

peq(1) ,
peq(1)p1 | 1

peq(1)

)
H(peq(1), peq(0))

+
peq(0)H

(
peq(0)p1 | 0

peq(0) ,
peq(0)p0 | 0

peq(0)

)
H(peq(1), peq(0))

. (28)
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By adding and subtracting H(peq(1), peq(0)) in the
numerator and making use of the grouping axiom,

Qs =
peq(1)H

(
peq(1)p0 | 1

peq(1) ,
peq(1)p1 | 1

peq(1)

)
H(peq(1), peq(0))

+
peq(0)H

(
peq(0)p1 | 0

peq(0) ,
peq(0)p0 | 0

peq(0)

)
H(peq(1), peq(0))

+
H(peq(1), peq(0)) − H(peq(1), peq(0))

H(peq(1), peq(0))

=

H(peq(1)p0 | 1, peq(1)p1 | 1,

peq(0)p1 | 0, peq(0)p0 | 0)
H(peq(1), peq(0))

− H(peq(1), peq(0))
H(peq(1), peq(0))

=

H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))

−H(peq(1), peq(0))
H(peq(1), peq(0))

, (29)

where p(i, j) denotes the probability of the words
(i, j), i, j = 0, 1.

For 0 ≤ s ≤ 1 applying (23) and (24) to (29) we
have

s≤ H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))
H(peq(1), peq(0))

− 1≤H2

(s

2

)
.

(30)

For 1 ≤ s ≤ 2, applying (23) and (25) to (29) we
have

H2(s−1)
s

H2

(
s−1

s

) ≤ H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))
H(peq(1), peq(0))

− 1

≤ H2

(s

2

)
, (31)

and applying (23) and (26) to (29) we have

2 − s ≤ H(p(1, 0), p(1, 1), p(0, 1), p(0, 0))
H(peq(1), peq(0))

− 1

≤ H2

(s

2

)
. (32)

Let us consider the ITRs for the Markov pro-
cess against the corresponding Bernoulli process for
words of length 2. Making use of (30) and (32), and

using the notation (4), we obtain the following rela-
tions between these information sources:

s + 1
2

ITR(Bs(p)) ≤ ITR(2)(Ms(p))

≤ H2

(
s
2

)
+ 1

2
ITR(Bs(p))

for 0 ≤ s ≤ 1; (33)

and

3 − s

2
ITR(Bs(p)) ≤ ITR(2)(Ms(p))

≤ H2

(
s
2

)
+ 1

2
ITR(Bs(p))

for 1 ≤ s ≤ 2, (34)

where ITR(2)(Ms(p)) denotes the information trans-
mission rate (4) of the Markov process for words
of length 2, and ITR(Bs(p)) = 1

2 ITR(2)(Bs(p)) is
the information transmission rate of the correspond-
ing Bernoulli process. Note that the correlation can
reduce the ITR by as much as half, i.e.

1
2
ITR(Bs(p)) ≤ ITR(2)(Ms(p))

≤ ITR(Bs(p)) for 0 ≤ s ≤ 1, (35)

1
2
ITR(Bs(p)) ≤ ITR(2)(Ms(p))

≤ ITR(Bs(p)) for 1 ≤ s ≤ 2. (36)

Similar considerations for words of length n(n ≥ 2)
led to the more general formulas:[

s

(
1 − 1

n

)
+

1
n

]
ITR(Bs(p))

≤ ITR(n)(Ms(p))

≤
[
H2

(s

2

)(
1 − 1

n

)
+

1
n

]
ITR(Bs(p))

for 0 ≤ s ≤ 1, (37)[
(2 − s)

(
1 − 1

n

)
+

1
n

]
ITR(Bs(p))

≤ ITR(n)(Ms(p))

≤
[
H2

(s

2

)(
1 − 1

n

)
+

1
n

]
ITR(Bs(p))

for 1 ≤ s ≤ 2. (38)
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Note that from (37) and (38) the following upper and
lower bounds follow:

sITR(Bs(p))

≤ ITR(n)(Ms(p))

≤ H2

(
s
2

)
+ 1

2
ITR(Bs(p)) for 0 ≤ s ≤ 1,

(39)

(2 − s)ITR(Bs(p))

≤ ITR(n)(Ms(p))

≤ H2

(
s
2

)
+ 1

2
ITR(Bs(p)) for 1 ≤ s ≤ 2,

(40)

where in Ref. 30 ITR(Bs(p)) = H2(p) and n ≥ 2.
Note that the bounds s and 2− s can be interpreted
as 1 − detP and trP, respectively.

These results show that for the Markov processes
for any word length, the reduction of information due
to correlations is limited by the factor s or 2− s. This
finding supports the hypothesis that under certain
conditions neurons can use temporal codes which are
more energetically efficient compared to the more
reliable rate code. It is interesting that the factors
(bounds) in the above inequalities depend only on
the jumping parameter s. This parameter is simply
the sum of the conditional probabilities of transition
from state to state. On the other hand, experiments
show56 that spiking frequency is in practice limited
typically to 40 spikes within a time period of a few
seconds, and the time resolution of the spikes being
detected is typically in the range of 3ms. Thus, it
is justified to assume that, after digitalization (bin-
ning), the transition probability from the state in
which there is a spike to the state where there is
no spike is large (i.e. close to 1), while the transi-
tion probability from the state of no spike to the
state where there is a spike is small (i.e. close to
0), and consequently the values of s are around 1.
However, our results show that for s close to 1, the
amounts of information carried by correlated (like
temporal codes) and the corresponding uncorrelated
(like rate code) signals are comparable. This suggests
that when a neuronal system decides to use a tempo-
ral code, some trade-off between energetic cost and
transmission reliability must be taken into account.
Experiments confirm that such situations can occur

in the primary auditory cortex,57–59 the visual cor-
tex60 and also in the olfactory61 and the gustatory62

information processing systems.

4. Conclusions

Spiking neurons communicate with each other by
means of small electric currents, transferring infor-
mation via sequences of action potentials called spike
trains, which can be viewed as a string of binary sig-
nals.53,63,64 It is still an open question whether the
information contained in these binary signals is con-
veyed by the firing frequency or by the precise tim-
ing of the spikes. The nature of the code used by
spike trains is closely related to whether the digital-
ized (binned) representation of messages is governed
by uncorrelated stochastic processes (Bernoulli pro-
cesses) or by correlated ones, such as some Markov
processes.

We point out that the correlations we have con-
sidered in this paper refer only to correlations within
a given spike train, and are thus distinct from cor-
relations among spike trains emitted by several dif-
ferent neurons, a topic that has received a great deal
of experimental and theoretical attention (see, for
example, Refs. 65–67).

In this paper we have shown that, when informa-
tion conveyed by spike trains coming from such dif-
ferent sources are compared, a crucial role is played
by the same jumping parameter s, as we found
in Ref. 27. We have found that the correlation-
related loss of information for signals governed by
Markov processes, when compared with the corre-
sponding uncorrelated processes, is determined only
by this parameter s. Experiments confirm that tak-
ing into account the frequency of neuronal signals
and spike detection resolution, this parameter oscil-
lates around 1. Our results show that for s close
to 1, the amounts of information transmitted by cor-
related and corresponding uncorrelated signals are
comparable. Thus temporal codes, which are more
energetically efficient, can be used instead of rate
codes. This was observed in a number of in vivo
recordings of neuronal activity68 and in the studies
mentioned in that reference.
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