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Optimal loading conditions in the design and identification of
structures. Part 1: discrete formulation

Z. Mróz and A. Garstecki

Abstract The paper is concerned with a class of struc-
tural optimization problems for which loading distribu-
tion and orientation are unspecified. The optimal load-
ing conditions correspond to the extremal structural re-
sponse, which can be used in assessment of structural
safety or in generating the maximum structure stiffness or
compliance. In identification problems the optimal load
distribution is selected in order to minimize the distance
norm between model prediction and experimental data.
The sensitivity derivatives and optimality conditions are
derived in the paper using discretized formulations. The
generalized coaxiality conditions of loading and displace-
ment or adjoint displacement vectors generate eigenvalue
problems specifying stationary solutions. The paper is il-
lustrated by examples of optimal loading distribution in
structure design and identification.

Keywords optimization, sensitivity analysis, structural
identification, variable loading conditions

1
Introduction

Problems of optimal loading distribution are faced fre-
quently in engineering practice. For instance, when mul-
tiple loads occur, the worst loading case is selected in
assessing lower bound on the structure failure factor. On
the other hand, when the load can be controlled, it is se-
lected in order to maximize the structure safety. For an
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elastic structure, the extremal loading distribution may
correspond either to the minimum structure compliance
(maximum stiffness) or to the maximum compliance. For
a rigid, perfectly plastic structure, the critical load factor
corresponding to onset of failure may be maximized with
respect to loading distribution. In structural design prob-
lems this factor is usually maximized. However, in techno-
logical problems such as metal forming, the optimal load
distribution should correspond to the lowest load factor
associated with the induced deformation mode. In solving
identification problems, the distance norm between ex-
perimental data and model prediction is minimized with
respect to material parameters but it can be maximized
with respect to load distribution in order to increase the
discrepancy between the model and the actual structure
responses.
The problems of optimal loading control discussed in

the present paper are closely related to the optimal design
of structure supports. Problems of this type were first for-
mulated in terms of structural optimization by Mróz and
Rozvany (1975), who studied the support location pro-
viding maximum stiffness of elastic beams or maximum
limit loads of rigid plastic beams. A little later, papers
by Rozvany and Mróz (1975, 1977) presented generalized
formulation, where the objective function was assumed
to be the cost of supports in beams and columns, respec-
tively. Optimal supporting conditions in frame structures
were discussed by Szela̧g and Mróz (1978) and recently
were generalized by Bojczuk and Mróz (1998) by con-
sideration of support and joint conditions as topological
variables. Optimality conditions for elastic supports were
first derived by Szelàg and Mróz (1979). Åkesson and Ol-
hoff (1988) and Olhoff and Åkesson (1991) studied the
problems of minimal stiffness of optimally located sup-
ports providing maximal eigenfrequencies in beam struc-
tures and maximum values of buckling loads in columns,
respectively.
The problem of optimal load distribution was first

formulated by Mróz and Garstecki (1976) and general
theorems were provided by Mróz (1980). The optimality
conditions derived in these papers ensured the best struc-
tural response. Lombardi and Haftka (1998) presented
the opposite formulation, called antioptimization, where
the aim was to find the worst loading conditions with the
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application to design of composite structures. This idea
was further developed by Cherkaev and Cherkaev (1999a,
1999b) and Cherkaev and Kucuk (1999). Optimal load
distribution in identification of structural models was dis-
cussed by Gangadharan et al. (1999), where elastic energy
was assumed as the distance measure. Lee et al. (1994)
took up the problem of detecting delamination using an-
tioptimization of loading. A general review of optimiza-
tion in identification problems and design of experiments
was provided by Haftka et al. (1998). The application of
genetic algorithms to design for the worst loading condi-
tion was discussed by Venter and Haftka (2000). Maxi-
mization of different distance norms with respect to load-
ing parameters was discussed in this study. Mróz and
Garstecki (1997) proposed simultaneous minimization of
the distance norm with respect to model parameters and
maximization with respect to load parameters. Dems and
Mróz (2001) proposed an enhanced structural model for
damage identification by introducing variable support or
concentrated mass positions in dynamic tests.
In this paper we shall present the uniform formula-

tion of the optimal loading problem with the purpose to
provide application to various design and identification
problems. The previous results will be generalized and the
examples will illustrate the applicability of the derived
optimality conditions.

2
Extremal force action on a structure

2.1
Extrema of potential or complementary energy

Consider a discrete model of a structure rigidly supported
and loaded on its boundary

Ku− f =000 , (1)

where K is the global stiffness matrix, u is the vector of
nodal displacements and f is the vector of nodal forces.
The global potential energy is

Π(u) =
1

2
uTKu− fTu=−

1

2
uTKu , (2)

and the complementary energy is expressed in terms of
the force vector f , namely

Π̃(f) =
1

2
fTDf , (3)

whereD =K−1 is the global compliance matrix and

u=K−1f =Df . (4)

The global structure compliance C can be assumed to
be equivalent to the complementary energy, thus

C = Π̃(f) =
1

2
fTu=

1

2
fTDf , (5)

and the global stiffness S is assumed as equivalent to the
potential energy, so that

S =−C=Π(u, f) =−
1

2
uTKu . (6)

The optimal loading problem can be stated as follows:

maximize global stiffness maxΠ(u, f) =
1

2
uTKu− fTu

subject to fT f −ρ20 ≥ 0 , (7)

or

minimize global compliance minC(f) =
1

2
fTDf

subject to fT f −ρ20 ≥ 0 . (8)

The admissible load vector f is shown in Fig. 1.
The Lagrange function associated with (7) is

ΠL(u, f , η2) =
1

2
uTKu− fTu+

1

2
η2
(
fT f −ρ20

)
, (9)

and its variation

δΠL = δuT (Ku− f)− δfT (u−η2f) = 0 . (10)

As the first term of (10) vanishes, the stationarity condi-
tion is

u= η2f , (11)

where η2 is the positive Lagrange multiplier. The con-
dition (11) provides the coaxiality rule between optimal
load and displacement vectors (Fig. 2(i)). This rule can
also be expressed as the eigenvalue problem

Ku=
1

η2
u , (12)

or

Df = η2f (13)

Fig. 1 Graphical illustration of the constraint fT f ≥ ρ20
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Fig. 2 Four load vectors f (1), f (2), f (3), f (4) satisfying the
stationarity condition (11). (i) Vectors f (1), f (3) provide

minC =maxΠ, vectors f (2), f (4) provide maxC = minΠ, for
prescribed ρ0. (ii) Vectors f

(1), f (3) provide min ρ0, vectors

f (2), f (4) provide max ρ0, for prescribed compliance C0

expressed in terms of nodal displacement or force vectors.
The same optimality condition is obtained when the vari-
ation of (8) is considered, thus

CL = Π̃L
(
f , η2
)
=
1

2
fTDf −

1

2
η2
(
fT f −ρ20

)
, (14)

and

δΠ̃L = δfT
(
Df −η2f

)
= 0 , (15)

provides the optimality condition (13). Let us note that
the force constraint (8)2 provides the Lagrangian multi-
plier, thus

(uTu)
1
2 = ‖u‖= η2ρ0 (16)

and

η2 =
‖u‖

ρ0
. (17)

Alternatively to (7) or (8) the problem can be formu-
lated as:

minimize the load min ρ20 = f
T f

subject to C(f) =
1

2
fTDf ≥ C0 , (18)

or

maximize the load min ρ20 = f
T f

subject to C(f) =
1

2
fTDf ≤ C0 . (19)

Using (18) or (19) we again arrive at optimality con-
ditions (11) and (13). The solution is illustrated in
Fig. 2(ii).

Let us note that (12) or (13) are identical to free vibra-
tion equations with the mass matrixM= 1. Thus, there
is a set of conjugate eigenvalues 1

η21
, 1
η22
, . . ., 1

η2n
. The low-

est value of η1 now corresponds to the lowest structure
compliance.
The problem can easily be generalized by assuming

the constraint (7)2 in the form

fTMf −ρ20 ≥ 0 (20)

and instead of (12) and (13) the resulting eigenvalue
problems are

Ku−
1

η2
M−1u=000 , Df −η2Mf =000 , (21)

where M =MT is the weighting matrix, specifying
the relative significance of particular load components.
This generalized formulation was recently discussed by
Cherkaev and Cherkaev (1999a,b).
Let us note that when the constraint (8)2 is expressed

in terms of the norm of f , thus

‖f‖=−ρ0 ≥ 0 (22)

and the optimality conditions provide the coaxiality rela-
tion

u=Df = η2
f

‖f‖
, (23)

or

Ku

‖Ku‖
=
1

η2
u . (24)

This provides the formulation of the nonlinear eigenvalue
problem for the vector f .

2.2
Load superposed on constant loading

In many practical design problems, or in planning ex-
periments for structural identification, a structure is sub-
jected to a constant (dead) loading and the next load is
superposed on it. The designer’s concern is to find the
best or the worst superposed load configuration, which is
associated with an extremal structural response.
Consider a discrete model of a structure (1). The prob-

lem of optimal load can be formulated similarly to (7) or
(8), but now the constraint takes the form

G(f) = (f − f0)
T (f − f0)−ρ

2
0 = 0 , (25)

where f0 is a vector representing the dead load (Fig. 3).
Then, we have the following Lagrange function and its
variation

ΠL =
1

2
uTKu− fTu+

1

2
η
(
(f − f0)

T (f − f0)−ρ
2
0

)
, (26)

δΠL =
(
uTK− fT

)
δu− δfTu+ηδfT (f − f0) =

δfT (−u+η(f − f0)) = 0 . (27)
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Fig. 3 Load superposed on constant loading f0. (a) Illustration of two optimal solutions. (b) Two coaxial optimal solutions

Hence we arrive again at the stationarity condition in the
form of coaxiality rule

u= η(f − f0) . (28)

Substituting (4) for u in (28) we have

Df = ηf −ηf0 (29)

(D−η111)f =−ηf0 (30)

and an alternative solution to (28) for the optimal load
vector f is

f =−η[D−η111]−1f0 . (31)

Let us note that there are two solutions for η, one cor-
responding to minimal, the other to maximal compliance
(Fig. 3). Substituting (31) into the constraint (25), we ob-
tain the equation specifying η

η2[(D−η111)−1−1]T [(D−η111)−1−1]fT0 f0 = ρ
2
0 . (32)

The constraint (25) can be expressed in the equivalent
form

G(f) =
[
(f − f0)

T (f − f0)
] 1
2 −ρ0 = 0 or

G(f) = ‖f − f0‖−ρ0 = 0 . (33)

Then, we arrive at the following Lagrange function and
stationarity condition

ΠL =
1

2
uTKu− fTu+η(‖f− f0‖−ρ0) , ρ0 > 0 (34)

δΠL =−δfTu+ηδfT
f − f0
‖f − f0‖

= 0 . (35)

The stationarity condition (35) again indicates that
extremal live load f − f0 is coaxial with the total displace-
ment u, namely

u= η
f − f0
‖f − f0‖

. (36)

Here we do not provide a general solution to the prob-
lem of optimal load. However, when we modify the con-
straint (25) by introduction the compliance matrix D as
the weighting matrix

G(f) = (f − f0)
TD(f − f0)−ρ

2
0 = 0 , (37)

then

ΠL =
1

2
uTKu− fTu+

1

2
η
(
(f − f0)

TD(f − f0)−ρ
2
0

)
(38)

δΠL =
(
uTK− fT

)
δu− δfTu+ηδfTD(f − f0) =

δfT (−u+ηD(f − f0)) = 0 (39)

and the optimality condition has the form

u= ηD(f − f0) , orDf = ηD(f − f0) , or u= η(u−u0) .
(40)

Df = ηDf −ηDf0 or Df(1−η) =−ηDf0 (41)

and

f =−
η

1−η
f0 , f − f0 =

1

1−η
f0 , (42)

1

(1−η)2
fT0 Df0 = ρ

2
0 . (43)
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Optimality condition (43) can be expressed by energy

norm
∥∥∥f̃0∥∥∥

1

1−η
=±

ρ0∥∥∥f̃0∥∥∥ , 1−η =±
∥∥∥f̃0∥∥∥
ρ0
,
∥∥∥f̃0∥∥∥= fT0 Df0 (44)

and

η = 1∓

∥∥∥f̃0∥∥∥
ρ0
. (45)

2.3
Linear combination of load sets

The dimension of the considered load vector f was equiva-
lent to the dimensions of the discrete model (1) of a struc-
ture. Usually these dimensions are large, whereas the
number of independent parameters by which the load can
be controlled is much smaller.
Consider a linear combination of specified load sets

f0i , i = 1, 2, . . .,m

f =
m∑
i=1

µif
0
i (46)

and a quadratic constraint

m∑
i=1

µiµi− (µ
0)2 ≥ 0 . (47)

The problem of extremal load combination can be formu-
lated as follows: find the optimal load multipliers µi that
satisfy (47) and provide minimum or maximum compli-
ance C of the structure modeled by (5). The respective
Lagrange function and its variation are

CL
(
µi, η

2
)
=
1

2
fTDf −

1

2
η2

(
m∑
i=1

µiµi−
(
µ0
)2)

(48)

m∑
i=1

(
f0i
T
Df −η2µi

)
δµi−η

(
m∑
i=1

µiµi−
(
µ0
)2)
δη = 0 .

(49)

The Kuhn–Tucker stationarity conditions are

f0i
T
D

m∑
j=1

f0j µj−η
2µi = 0 ∀ i (50a)

m∑
i=1

µiµi−
(
µ0
)2
≥ 0 (50b)

η

(
m∑
i=1

µiµi−
(
µ0
)2)
= 0 . (50c)

The switching condition (50c) provides two solutions.
The first one, η = 0, leads to a trivial solution µi = 0,

therefore the equality sign must appear in (50b). The sta-
tionarity conditions take the form

m∑
j=1

D0ijµj−η
2µi = 0 ∀ i (51a)

m∑
i=1

µiµi−
(
µ0
)2
= 0 (51b)

where

D0ij = f
0
i
T
Df0j . (52)

Note that (51a) is the equation for a linear eigenvalue
problem

(D0−η2111)µµµ=000 . (53)

HereD0 is a linear, positive definite operator represented
by a quadratic matrix with dimensions m×m. Note that
the matrices K and D had larger dimensions namely
n×n, where n represents the number of degrees of free-
dom of the discretized structure. Thus, by definition (52)
we have contracted our problem from dimensions n×n
to m×m. The positive definiteness ofD0 results directly
from (52) since µµµTD0µµµ = fTDf = fTu = 2C > 0 for all
µµµ �=000. Hence the eigenvalue problem (53) has m real so-
lutions and the eigenvectors µµµ are mutually orthogonal.
Figure 4 shows the extremal load vector µµµ(1) as the solu-
tion of the formulated above problem ofminimum compli-
ance C.
In structural identification or in structural design the

problem can be formulated alternatively: find the worst
load combination that provides maximum compliance C
from the set of admissible load combinations that satisfy
the constraint

Fig. 4 Optimal generalized loads µµµ providing extrema of C
(the dimension of vectors µµµ is decisively smaller than the di-
mension of vectors f illustrated in Fig. 2)
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m∑
i=1

µiµi−
(
µ0
)2
≤ 0 . (54)

The constraint (54) can be illustrated by a load vector re-

maining within the circle µ21+µ
2
2 =
(
µ0
)2
shown in Fig. 4

for the case of m = 2. The constant structural compliance
measured by the complementary energy is represented in
the force plane by an ellipse Π̃ = C(f) = const. Figure 4
presents the optimal load vectorsµµµ. The coaxiality occurs
at points of tangency of the constant compliance and con-
stant norm curves. It is seen that there are two extrema,
one for minimum compliance with µ1 and µ2 of the same
sign and the other for maximal compliance with µ1 and
µ2 of the opposite signs. For m independent loads (or load
systems) there are m solutions satisfying the optimality
conditions (51) and the respective load vectors µµµ are mu-
tually orthogonal.
Since µµµ is interpreted as a load vector in the space

Rm, we can introduce a conjugate displacement vector ννν
in the same space Rm, so that there is the equivalence of
the work in the space Rn and in the subspace Rm, namely
fTu= µµµTννν. Hence, we arrive at the definition of the dis-
placement ννν

ννν i =
m∑
j=1

D0ijµj . (55)

Introducing (55) into (51a) we obtain the stationarity
condition in the form of coaxiality rule

ννν i = η
2µµµi i = 1, 2, . . . ,m or ννν = η2µµµ . (56)

It should be noted, however, that when a linear con-
straint on f is imposed, so that

f =
m∑
i=1

µif
0
i and

m∑
i=1

µi ≥ µ
0 (57)

Fig. 5 Optimal µµµ for a linear constraint (no coaxiality be-
tween µµµ and ννν)

(Fig. 5), then minimization of C with respect to µi pro-
vides the Lagrange function CL and its variation

CL
(
µi, η

2
)
=
1

2
fTDf −η2

(
m∑
i=1

µi−µ
0

)
. (58)

Here f0 = [f01, f
0
2, . . ., f

0
m]
T is a specified load system and

µµµ = [µ1, µ2, . . ., µm]
T is a vector of load multipliers that

can vary. The variation of (58) with respect to µi now
equals

δCL =
m∑
i=1

δµi

(
f0i
T
Df −η2

)
= 0 . (59)

Introducing (52) into (59) we arrive at the optimality con-
dition

m∑
j=1

D0ijµj−η
2 = 0 ∀ i and

m∑
i=1

µi = µ
0 (60)

or

D0µµµ−η2111 = 000 and
m∑
i=1

µi = µ
0 . (61)

The optimal vectorµµµ is presented in Fig. 5. In the present
case the coaxiality of the optimal load vector µµµ and the
respective displacement ννν does not occur.

2.4
Optimal displacement control

Consider now the case when the displacement vector u
is specified on a structure boundary, so that the comple-
mentary energy is expressed as follows

C = Π̃(f ,u) =
1

2
fTDf −uT f , (62)

where f is the induced load vector. Assume that the dis-
placement control can be executed in order to deform the
structure at minimal work or stored elastic energy. The
displacement constraint is specified in the form

uTu− ρ̂20 ≥ 0 , (63)

or

‖u‖− ρ̂0 ≥ 0 . (64)

Maximizing the complementary energy with the con-
straint (63), we obtain the optimality conditions

f = λu andKu= λu , (65)

or

f = λ
u

‖u‖
andKu= λ

u

‖u‖
, (66)

where λ is the Lagrangemultiplier specified from the con-
straint condition fT f = λ2ρ̂20, or ‖f‖= λ. It is seen that
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the same coaxiality conditions are obtained and the op-
timal load vector is characterized by a constraint norm.
When the constraint (60) is applied, a nonlinear eigen-
value problem is generated, known in the mathematical
literature as the Steklov problem, cf. Cherkaev, E. and
Cherkaev, A. (1999a,b).

2.5
Extremum conditions of an arbitrary functional

Consider now an arbitrary response functional G =G(u)
whose extremum with respect to f is to be determined.
We have the following formulation

G = g(u)→min
f
, or G = g(u)→max

f
(67)

subject to:Ku− f =000

fT f −ρ20 ≥ 0 . (68)

Introducing the Lagrange multipliers ua and η2, the aug-
mented functional has the form

GL
(
u, f ,ua, η2

)
= g(u)− (ua)T(Ku− f)−

1

2
η2
(
fT f −ρ20

)
(69)

and the stationarity condition can be expressed as follows

δGL = δuT
(
∂g

∂u
−Kua

)
+ δfT

(
ua−η2f

)
= 0 . (70)

Assuming δu and δf as independent vectors, the neces-
sary stationarity conditions are

Kua =
∂g

∂u
= fa(f)

ua = η2f . (71)

The first condition (71) specifies the adjoint problem and
the second provides the coaxiality rule between the ad-
joint displacement and the primary load vectors

ua =Dfa =K−1
∂g

∂u
(72)

and the coaxiality condition can be expressed as a gener-
alized eigenvalue problem

Dfa(f) = η2f , orKu=
1

η2
ua(u) . (73)

As fa depends on u(f) according to (71), the eigenvalue
problemmay in general be linear or nonlinear. It is also an
implicit problem as ua is an implicit function of u gener-
ated by the solution of the boundary problem (71)1.
Consider a special case when g(u) is a quadratic func-

tion, thus

g(u) =
1

2
uTAu , (74)

whereA is a symmetric, positive definite matrix. Then

fa =
∂g

∂u
=Au=ADf (75)

and the corresponding eigenvalue problem (73) becomes
linear and is expressed as follows

DADf = η2f orBf = η2f , B=DAD , (76)

DAu= η2Ku (77)

and

g(u(f)) = ḡ(f) =
1

2
fTBf . (78)

Alternatively, the generalized eigenvalue problem can be
expressed in terms of displacement vector, namely

Ku=
1

η2
(DA)u =

1

η2
Nu , N=DA , (79)

where in general the matrixN is not symmetric.
Specifically, when A= I, g(u) = (1/2)uTu, the eigen-

value problem (76) takes the form

D2f = η2f , ḡ(f) =
1

2
fTD2f (80)

and when A =K=D−1, that is, the elastic energy con-
trol is considered, we obtain

Df = η2f , ḡ(f) =
1

2
fTDf , (81)

which is equivalent to (13).
Figure 6 illustrates the eigenvalue problem (76). In the

plane f1, f2, the objective function ḡ =
1
2 f
TBf = const. is

presented as an ellipse. The coaxiality rule requires the
gradient vector of the ellipse to be coaxial with the load
vector f . This rule specifies two solutions corresponding
to tangency points of the constraint line fT f −ρ20 = 0 and
the ellipses ḡ = g1, ḡ = g2, where g1, g2 are the minimal
and maximal values of ḡ.

Fig. 6 Graphical illustration of the eigenvalue problem (76)
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2.6
Extension to non-linear elastic structures

Now consider a non-linear elastic structure for which the
potential energy is of the form

Π(u, f) = U(u)− fTu , (82)

where U(u) is a non-linear energy function of nodal dis-
placements generating the internal nodal forces

F=
∂U

∂u
(83)

satisfying the equilibrium equations

∂Π

∂u
= F− f =000 . (84)

Note that when U(u) is a homogeneous function of degree
n+1, then we have

fTu= FTu=

(
∂U

∂u

)T
u= (n+1)U(u)

Π = U(u)− fTu=−nU(u) =−
n

n+1
fTu (85)

and the potential energy can be expressed in terms of
the work of external forces on conjugate displacements.
In this case the global stiffness can be represented by the
potential energy Π.
The previous analysis of optimality conditions can

now be easily extended to the non-linear case. Consider-
ing the minimization of the potential energy with a con-
straint set on the force norm, instead of (10), we now have

δΠL = δuT
(
∂Π

∂u

)
− dfT

(
u−η2f

)
= 0 (86)

and in view of (84) the first term of (86) vanishes and the
coaxiality condition (11) is obtained. Similarly, consider-
ing an arbitrary displacement functional (67), instead of
(71), we obtain the optimality condition in the form

Ktua =
∂g

∂u
= fa , Kt =

∂2U

∂u∂u

ua = η2f (87)

whereKt is the tangent stiffness matrix.

3
Optimal load vector for identification problem

Assume the same structure to be described by two stiff-
ness matrices K1 and K2, so that the equilibrium equa-
tions are

K1u1− f = 0 , K2u2− f = 0 . (88)

Let K1 be the stiffness matrix of the actual structure
specified from experimental data. The stiffness matrixK2
results from the assumed structure model. Specify the
distance of solutions by a positive – definite distance
norm

I = Ψ(u1,u2) = Ψ(u2−u1) , Ψ(0) = 0 . (89)

Assume the load f to be controllable and to satisfy the
constraint

fT f −ρ20 ≤ 0 . (90)

Now, the distance norm is maximized with respect to
load distribution and minimized with respect to structure
model parameters.1 In other words, the structure load-
ing should be selected in order to maximize the response
difference between the structure and its model. The asso-
ciated Lagrangian and its variation take the form

IL = I− (ua1)
T [K1u1− f ]+ (u

a
2)
T [K2u2− f ]−

1

2
µ
(
fT f −ρ20

)
(91)

and

δIL =

(
∂Ψ

∂u2

)T
δu2+

(
∂Ψ

∂u1

)T
δu1− (u

a
1)
T
K1δu1+

(ua2)
T K2δu2+ δf

T (ua2−u
a
1−µf) . (92)

Here ua1,u
a
2 and µ are the Lagrangemultipliers. Introduce

the adjoint structures for which the displacement fields
ua1 and u

a
2 are the Lagrange multipliers in (91) and are

specified by the equations

K1u
a
1 =
∂Ψ

∂u1
= fa , K2u

a
2 =−

∂Ψ

∂u2
=+

∂Ψ

∂u1
= fa . (93)

The optimality condition for load distribution now takes
the form

δfT (ua2−u
a
1−µf) = 0 (94)

and for an arbitrary δf is expressed as the coaxiality rule

ua2−u
a
1 = µf , (95)

or

(D2−D1)f
a = µf , (96)

where D2 =K
−1
2 , D1 =K

−1
1 are the structure compli-

ance matrices.
Thus, the load vector should be coaxial with the dis-

placement difference vector of the adjoint structures.

1 In a general theory of optimal experiment design for pa-
rameter identification, usually the Fisher information matrix
is used, cf. Haftka et al. (1998). It is composed of sensitivity
gradients of measured responses with respect to material pa-
rameters. The present analysis provides the sensitivity of the
distance functional with respect to load parameters.
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Fig. 7 Structural identification problem. Stiffness matrixK1 and the measured displacements u1 refer to the real structure. The
matrix K2 and displacements u2 follow from model prediction. Adjoint load is f

a
1 = f

a
2 = f

a and respective adjoint displacements
are ua1, u

a
2

Equation (96) specifies the generalized eigenvalue prob-
lem.
Assume the functional I in the form

I1 =
1

2
(u2−u1)

TA(u2−u1) , (97)

whereA=AT ,detA> 0 andA is a symmetric weighting
matrix.
From (93) we then have

fa =−A(u2−u1) =−A(D2−D1)f (98)

and the eigenvalue problem (96) now takes the form

(D2−D1)
TA(D2−D1)f = µf , (99)

or

Lf = µf , (100)

where L= (D2−D1)
T
A (D2−D1) is the positive defi-

nite and symmetric matrix.
An alternative distance norm can be assumed in the

form of the elastic energy difference, so that

I2 =
1

2
fT (D2−D1)f . (101)

The optimality condition now provides the coaxiality rule

(u2−u1) = µf (102)

expressed by the eigenvalue problem

(D2−D1)f = µf . (103)

Following the formulation of Lee et al. (1994), the
ratio of elastic energies can be assumed as an indicator of
difference between states of two structures, thus

I3 = λ=
1
2 f
TD2f

1
2 f
TD1f

(104)

and the stationary condition of I3 with the constraint (90)
now provides

(D2−λD1)f = µf . (105)

Let us note that the matricesD2−D1 andD2−λD1 oc-
curring in (103) and (105) may not be positive definite
in general so the problem should be properly formulated
to obtain positive eigenvalues. On the other hand, the
eigenvalue problem (99) is associated with the positive –
definite – symmetric matrix L. The examples presented
by Lee et al. (1994) refer to the antioptimization method
aimed at maximization of I3 or other measures associated
with harmonic vibrations. An example of identification
presented in the present paper illustrates the application
of optimal load distribution specified by (99).

4
Examples

In this section we shall present several illustrative exam-
ples of applications of general theorems. The first four
examples refer to statically determinate beam-column
structures, where closed form solutions will be derived
to illustrate in comprehensive way the derived formulae
for optimal load in structural problems. Example 5 refers
to a propped cantilever beam, where structural identi-
fication using a min-max approach will be discussed by
applying FEM solutions.
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4.1
Example 1

Optimal loading for maximal and minimal structure stiff-
ness
Consider a beam-column structure shown in Fig. 8(a),

loaded by two independent concentrated forces f1, f2.
Find the best and worst loading conditions, using the
global stiffness or compliance functions according to (7),
(18), or (19). Assume the stiffness ratio k = 2.
Introducing unit forces f1, f2 and using a virtual work

theorem we derive the closed form expression of the com-
pliance matrix

D=K−1 =
a3

12EI

[
2 3
3 10

]
(106)

and u=Df , where u= [u1,u2]
T , f = [f1, f2]

T . The solu-
tions of the eigenvalue problem (13) are:

eigenvalues η2 =
a3

12EI

[
1
11

]
,

eigenvectors f =



3
√
10

1
√
10

−1
√
10

3
√
10


 (107)

The angles of principal directions are

tan 2αpr =
3

4
, αpr = 18.4

◦±n90◦ . (108)

The complementary energy expressed in terms of force
components is

C = Π̃ =
a3

12EI

(
f21+3f1f2+5f

2
2

)
. (109)

The results are illustrated in Fig. 9. Note that the ex-
tremal load vectors f are collinear with the induced dis-
placement vectors u and are represented by semiaxes of

Fig. 8 A beam-column structure: (a) loads (b) displacements

the ellipse (109). The values of the energy C for the ex-
tremal loads are

minC =
1

24

ρ20a
3

EI
, maxC =

11

24

ρ20a
3

EI
. (110)

4.2
Example 2

Optimal loading for minimizing or maximizing local dis-
placement norm
Consider a similar structure as in Example 1, shown

in Fig. 8(a), but apply the response function g(u) in the
form of (74) as the quadratic norm of u, with A = I,
namely

g(u) =
1

2
uTu , (111)

where u = [u1,u2]
T is the displacement vector at the

tip of the beam. Now, we use the adjoint variable
method. The adjoint structure is similar to the primal one
(Fig. 8(a)), but according to (75) the adjoint load is equal
to the primal displacement u shown in Fig. 8(b), namely
f a1 = u1, f

a
2 = u2. These adjoint loads induce the displace-

ments of the tip of the adjoint structure ua = [ua1,u
a
2].

Introducing A = I in the optimality conditions (76)–
(78) we compute the optimal load vectors as eigenvectors
of the square of the compliancematrixD fromExample 1,
namely

DTD=

(
a3

12EI

)2 [
13 36
36 109

]
(112)

and

eigenvalues η2 =

(
a3

12EI

)2 [
1
121

]
,

eigenvectors f =



3
√
10

1
√
10

−1
√
10

3
√
10


 . (113)
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Fig. 9 Extremal loads and the ellipses illustrating the structural response measures

Note that the eigenvectors (113) are identical to (107).
The coaxiality of extremal load and the conjugate dis-
placement in Example 1 is also in agreement with the
optimality condition in Example 2. In the latter case the
extremal load of primal structure, primal displacement,
adjoint load and adjoint displacement are all coaxial by
definition.
Interesting are the values of the response measure

(111) for extremal loads as the principal axes of the
ellipses. Introducing eigenvectors into (74) and setting
A= I we arrive at

min g =
1

2

(
ρ0a

3

12EI

)2
, max g =

1

2
121

(
ρ0a

3

12EI

)2
. (114)

The ratio of max g/min g is 121, whereas in Example 1
the ratio was 11. These ratios illustrate the importance of
load optimization.

4.3
Example 3

Optimal loading for minimizing or maximizing global dis-
placement norm
Consider again the structure discussed in Examples 1

and 2 with stiffness ratio k = 2, shown in Fig. 10(a). Our
aim is to find the extremal load f = [f1, f2], following the
formulation (67), (68). We introduce the response func-
tion g(u) as the quadratic norm of u following from (74),
but this time we define the scalar product (111) in the
form

g(u) =
1

2

∑ a∫
0

uTudx , (115)

where the displacement vector u is now considered to
be a continuous function of local coordinates x and

∑
denotes the summation over column and beam. Let the

horizontal and vertical displacement components be u(x)
and v(x) (cf. Fig. 10(b)). We use the adjoint variable
method. According to (71) the displacements of the ac-
tual (primal) structure play the role of loading of the
adjoint structure. To find the closed form solution we con-
sider unit loads of primal structure.

Step 1. Loading f1 = 1 Displacements (adjoint loading)
and bending moments:
Column: u(x) = (1/12EI)(3ax2−x3), v(x) = 0
Beam: u(x) = (1/6EI)a3, v(x) = (1/4EI)a2x
Bending moments in the adjoint structure:
Beam: M(x) = (1/24EI)(2a5−3a4x+a2x3)
Column: M(x) = (1/240EI)(71a5−55a4x+
5ax4−x5)
Displacements of the tip of the adjoint structure:

Horizontal: ua11 =
1

(EI)2
139

2520

Vertical: ua21 =
1

(EI)2
83

720
(116)

Step 2. Loading f2 = 1 Displacements (adjoint loading)
and bending moments:
Column: u(x) = (1/4EI)ax2, v(x) = 0
Beam: u(x) = (1/4EI)a3, v(x) = (1/6EI)(3a2x+
3ax2−x3)
Bending moments in the adjoint structure:
Beam: M(x) = (1/120EI)(31a5− 45a4x+10a2x3+
5ax4−x5)
Column: M(x) = (1/240EI)(137a5−80a4x+5ax4)
Displacements of the tip of the adjoint structure:

Horizontal: ua12 =
1

(EI)2
83

720

Vertical: ua22 =
1

(EI)2
29

105
(117)

The relation between the adjoint displacements of the
tip of beam and the primal loads f is
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Fig. 10 Optimal loading for the quadratic norm (115). (a) Loading subject to optimization, b) Displacement field u(x), c)
Adjoint structure loaded by ta(x) = u(x), and d) Displacements of the adjoint structure

ua =

[
ua1
ua2

]
=
a7

(EI)2



139

2520

83

720
83

720

29

105



[
f1
f2

]
, or ua =Bf .

(118)

The optimality condition (73)1 now has the form of a lin-
ear eigenvalue problem

Bf = η2f , (119)

Fig. 11 The “best” loading direction I, the “worst” II and the associated load measures ρ20

which provides the solution for the extremal loading

η2 =

(
a7

(EI)2

)[
5.979×10−3

0.3254

]
,

eigenvectors f =

[
0.9198 0.3924
−0.3924 0.9198

]
. (120)

The angles of principal directions areαpr= arctan(0.3924/
0.9198)= 23.10◦±n90◦. The values of the response norm
(115) for the extremal loading follow from
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g =
1

2
fTBf . (121)

Hence

max g =
1

2
[0.3924 0.9198][B]

[
0.3924
0.9198

]
ρ20 = 0.3254

a7ρ20
2(EI)2

(122)

and similarly for the second eigenvector

min g = 5.979×10−3
a7ρ20
2(EI)2

. (123)

Note that the response function (122) is associated with
the “worst” and (123) with the “best” loading. Alterna-
tively, when the value of the response function is pre-
scribed g = g0, the solutions (122) and (123) provide the
minimum and maximum load, respectively:

min ρ20 = 3.073
2(EI)2

a7
g0 , max ρ

2
0 = 167.255

2(EI)2

a7
g0 .

(124)

Fig. 12 Rigid plastic structure with constant yield moments (k = 1): (a) Principal directions, (b) Moment-curvature relation,
and (c) Limit load polygon in non-dimensional coordinates

The ellipse (121) and the solutions (124) are shown in
Fig. 11. Note the coaxiality of primal load f and adjoint
displacement ua for the optimal solutions (124).

4.4
Example 4

Optimal loading maximizing or minimizing limit load for
a perfectly plastic structure
For the sake of better illustrating the class of prob-

lems of optimal load action, we will briefly demonstrate
optimal load of a structure made of a rigid, perfectly plas-
tic material. This example extends the analysis to non-
linear structures discussed in Sect. 2.5. In fact, setting
n = 0 in (85), we specify the perfectly soft material re-
sponse equivalent to the rigid, perfectly plastic response.
Our aim is to find optimal load f = [f1, f2] corresponding
to a maximum of limit load of the structure shown in
Fig. 8(a). We shall solve the problem for the ratios of the
yield moments k = (MYcolumn)/(M

Y
beam) = 1 and k = 2.

The problem can be formulated as follows: specify the
optimal load vector f , which provides
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Fig. 13 Rigid plastic structure with the ratio of yield moments k = 2: (a) Principal directions specified by the coaxiality rule, (b)
Limit load polygon in non-dimensional coordinates

maximum ρ0,
subject to constraints

fT f≤ ρ20 , |f1+f2| ≤
kMY

a
, |f2| ≤

MY

a
. (125)

The constraints (125)2 and (125)3 represent the yield
conditions for plastic hinges at the cross-sections A and
B, respectively. The solution for k = 1 is illustrated in
Fig. 12, whereas Fig. 13 refers to the case k = 2. Note
that the principal axes I and II are not orthogonal, as
in previous examples. It is interesting that for optimal
solutions (the best and the worst loading f) the associ-
ated plastic displacements u are collinear with f . It is also
interesting that in the space of loads f1, f2 the plastic
displacement u is orthogonal to the limit load curve, sim-
ilarly as in the classical theory of plasticity in the space of
stress.

4.5
Example 5

Optimal loading in structural identification
Consider a propped cantilever elastic beam. Assume

that the beam consists of six elements of constant cross-
sections with moments of inertia I1, I2, . . ., I6, shown in
Fig. 14, which provide bending stiffness coefficients si =
EIi. Let the vector of the stiffness coefficients of the actual
beam be

s(1) = [3; 1; 1.5; 2.5; 2; 1]×103 kNm2 . (125)

Our aim is to find the unknown vector s(1) using ex-
perimental data and the theory of load optimization dis-
cussed in Sect. 3.
Let us assume that in the experiment the structure

has been subjected to static load f1, next to the load f2
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Fig. 14 Propped cantilever beam, applied loading f1, f2 and measured displacements u1, u2

and assume that displacements u1 and u2 (Fig. 14) have
been measured for each load case. At this stage of the
study we neglect measurement errors. Dividing the meas-
ured displacements by the values of forces we arrive at
the compliance matrix D(1) of the actual structure. In
this example we have just computed displacements using
FEM with high precision for two load cases of the actual
structure (125): displacements u11 and u21 induced by the
force f1 = 1 and displacements u12 and u22 induced by
f2 = 1. Thus, the starting point for structural identifica-
tion is the experimentally measured compliance matrix

D(1) =

[
4.993 4.937
4.937 9.354

]
×10−4

m

kN
. (126)

Note that we aim at finding six unknown stiffness param-
eters si based on three experimental data (126), namely:
D11 = u11, D12 = u12 = u21,D22 = u22. Our first guess is
a structure model assumed as a beam of uniform cross-
section represented by (127)

s(2) = [1; 1; 1; 1; 1; 1]×103 kNm2 . (127)

This structure model will be improved in the step-by-step
procedure.
In this example, for brevity, we denote by .(1) all quan-

tities that refer to the actual structure, whereas the re-
spective quantities referring to structure model are de-
noted as .(2). In Sect. 3 subscripts .1 and .2 were used,
respectively. However, there is a substantial difference be-
tween compliance matrices (96) in Sect. 3 and the ma-
trices (126), (128). The former matrices had dimensions
n×n resulting from FEM discretization, and referred to
the general case, when the load was specified as a vector
in the space Rn. In this section the load is specified by
two components f1 and f2. The reduction of space dimen-
sions is similar to that discussed in Sect. 2.3. In fact we
use three Euclidean spaces in this example, namely Rn for
discrete mathematical model FEM, R2 for optimization
of load f and R6 for structural identification of s.

Step 1. Optimization of loading.
Using the parameters of the structure model s(2)

we compute displacements induced by unit forces
f1 and f2. Thus, the computed compliance matrix
D(2) is

D(2) =

[
10.864 11.358
11.358 19.753

]
×10−4

m

kN
. (128)

Let us determine the loading that maximizes the
discrepancy between the model and the actual
structure. We introduce ρ0 = 1 kN to the con-
straint (90) and maximize the quadratic distance
measure (97) setting A = I. Hence, the distance
measure is

I1 =
1

2

(
u(2)−u(1)

)T (
u(2)−u(1)

)
=

1

2

[(
u
(2)
1 −u

(1)
1

)2
+
(
u
(2)
2 −u

(1)
2

)2]
(129)

and the optimal loading is specified by the eigen-
value problem (99). The respective matrices are

(
D(2)−D(1)

)
=

[
5.8710 6.4209
6.4209 10.3989

]
×10−4

m

kN
,

(130)

and(
D(2)−D(1)

)T (
D(2)−D(1)

)
=

[
0.75697 1.04468
1.04468 1.49366

]
×10−6

m

kN
. (131)

Solving the eigenvalue problem (99), the follow-
ing eigenvalues µ and eigenvectors f are obtained[
µ1

µ2

]
=

[
1.7599

223.303

]
×10−8 m2 ,

f =

[
f1 f1

f2 f2

]
=

[
0.81625 0.5777

−0.5777 0.8163

]
kN . (132)

The extremal values of distance measure I1 can
be evaluated from (129) for the loads (132)2, or
using compliance matrices and solution (132) we
transform (129) to

I1 =
1

2
fT
(
D(2)−D(1)

)T (
D(2)−D(1)

)
f =

1

2
µfT f . (133)

Since we have set ρ0 = 1 in (90) the eigenvalues
µ1 and µ2 provide the extremal values of dis-
tance function (129) multiplied by two. Hence,
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the minimum and maximum of distance meas-
ure, min(2I1) = µ1 and max(2I1) = µ2, are asso-
ciated with the loads specified by the first and
second columns of (132)2, respectively. Note the
extremely large value of the ratio max I1/min
I1) = (µ2/µ1) = 126.9, which demonstrates the
importance of load optimization. The eigenvector
f = [f1, f2] shown in the second column specifies
the forces acting in the same direction.

Step 2. Optimization of structure model parameters s
Let the structure be subjected to extremal loads

f1 = 0.5777 kN , f2 = 0.8163 kN (134)

Since the displacement u(2) of the structure
model depends on the control vector s, the re-
sponse function (129) is also a function of s. We
can find the sensitivity gradient ∇I1 = ∂I1(s)/∂s
and next minimize I1 with respect to s. We use
the adjoint variable method. The primary struc-
ture is loaded by forces (134). The loads of the
adjoint structure are

fa1 =
∂I1

∂u
(2)
1

= u
(2)
1 −u

(1)
1 ,

fa2 =
∂I1

∂u
(2)
2

= u
(2)
2 −u

(1)
2 , (135)

or briefly

fa =
(
D(2)−D(1)

)
f . (136)

The sensitivity gradient is

∇I1 =−u
a ∂K

(2)

∂s
u(2) , (137)

where ua, u(2) and K(2) are the displacement
vectors and the stiffness matrix of the structure
model in n-dimensional space. In this way we ar-
rived at the sensitivity gradient

∇I1 =−
1

2
[2.727; 0.198; 0.940;

2.228; 1.784; 0.255]×10−1 kN−1 . (138)

Our model structure can be improved in the one-
dimensional search in the direction opposite to
∇I1, namely

s
(2)
k = s

(2)−αk2∇I1 . (139)

Employing a typical gradient algorithm one
proceeds in the direction (139) until min I1 is
reached. Actually, increasing αk resulted in re-
duction of the distance function I1 measured for
the fixed load (134). However, simultaneously
the distance function I1 measured for the other

load increased. Therefore, in a one-dimensional
search in direction (139), at each step k we com-
puted eigenvalues and eigenvectors (132) for the
actual sk and we evaluated the maximum of dis-
tance function using the optimal load. In fact,
we repeated the procedure of Step 1 for each in-
crement of αk in (139). In this way an optimum
αopt = 6.27781657 has been reached in a one-
directional search. Thus, the obtained structure
model was represented by the vector sopt and dis-
tance function I1

s
(2)
opt = [2.711; 1.124; 1.590; 2.399; 2.120; 1.160]×

103 kNm2

2I1 = 2.573×10
−10m2 . (140)

The solution (140) is definitely better than the
first model (127) and the corresponding dis-
tance function 2I1 = 2.233×10−6m2 specified by
(132)1. The result of identification (140) can be
considered satisfactory since the maximum error
in the components of s(2) is 16% in the last sec-
tion of the beam. However, in the identification
procedure, components of the vector s(1) are not
known, and we should try to further reduce the
distance measure I1. In common gradient algo-
rithms one computes a new sensitivity gradient
∇I1 and repeats the one-dimensional search. We
keep in mind what Cherkaev (1999a) observed
that in problems of load optimization for struc-
tural identification purposes, multiple eigenval-
ues may appear. We encountered a much more
interesting and difficult situation that at the op-
timum solution (140) multiple and equal eigen-
values appear, since the matrix [D(2)−D(1)]2 is
isotropic, whileD(2)−D(1) is deviatoric, namely

(
D(2)−D(1)

)
=

[
1.2052 1.0586

1.0586 −1.22052

]
×10−5

m

kN
,

(141)

(
D(2)−D(1)

)T (
D(2)−D(1)

)
=

[
2.5732 0

0 2.5732

]
×10−10

m

kN
. (142)

All vectors f generate the same distance meas-
ure 2I1 = 2.5732×10−10m2. The sensitivity gra-
dients for different loading f all have components
of the same sign and value and do not induce re-
duction of the distance measure I1.

In this situation we decided to change the distance
measure. Introduction of I2 specified by (101) brought no
improvement in view of (103), (141) and (142). So we em-
ployed a new distance measure namely the square of the
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Fig. 15 Variation of distance measures in the one-dimensional search (139) and the optimal solution (140) for αopt = 6.27781657

Euclidean norm of the matrixD(2)−D(1).

I4 =
(∥∥∥D(2)−D(1)∥∥∥

Eucl

)2
=
(
D
(2)
11 −D

(1)
11

)2
+

2
(
D
(2)
12 −D

(1)
12

)2
+
(
D
(2)
22 −D

(1)
22

)2
. (143)

Note that I4 does not depend on loads since all terms rep-
resent displacements induced by unit forces f1 or f2. For
better insight into the problem of interrelation of the dis-
cussed distance measures the distance function I4 for all
steps k in the one-dimensional search (139) has been com-
puted. The results are shown in Fig. 15.
The following notation was used in Fig. 15: diff2 = µ2

denotes the doubled distance function I1 evaluated for
the load as the eigenvector f associated with µ2 provid-
ing maximum distance at the beginning of the search,
diff1 = µ1 denotes the doubled distance for the other
eigenvector, whereas diff = I4 denotes the square of Eu-
clidean norm. The “bimodal” optimum at the crossing
of diff1 and diff2 at optimum α is illustrated. Interest-
ing is the fact of very flat sub-optimum branches of diff1
and diff2 in Fig. 15. This fact clearly demonstrates the
significance of load optimization. Evaluation of distance
function for non-optimal load can be ineffective in struc-
tural identification. It is interesting to note that quadratic
Euclidean norm is so close to both branches diff1 and diff2
in their effective regions. Note that the distance function
max(diff1, diff2) is not differentiable at the optimal point,
whereas the function I4 is differentiable.
The starting point for optimization with the use of

quadratic Euclidean norm (143) is s(2) and distance
measures diff1, diff2 shown in (140), and I4 = diff =
5.14642433×10−10. The sensitivity gradient was com-
puted using the perturbation method. All components of
s(2) were sequentially perturbed by 1×10−6 kNm2, i.e.,
less than 0.1%. The sensitivity gradient was

∇I4 = [−3.8853; −0.9868; −2.7832; 0.6355;

1.8966; 0.8498]×10−4m2 kN−2 . (144)

One-dimensional search

s
(2)
k = s

(2)−αk∇I4 (145)

brought us to optimal distance functions I4 = diff =
1.6460×10−10, min 2I1 = diff1 = 5.0355×10−12, max 2I1
= diff2 = 1.5957×10−10.
The optimal structure model now is

s
(2)
opt = [2.808; 1.149; 1.659; 2.383; 2.073; 1.139]×

103 kNm2

I4 = 1.6460×10
−10 , 2I1 = 1.5957×10

−10 . (146)

Comparing (146) with (140) we note that minimization of
I4 also resulted in reduction of I1, however, the accuracy
of s(2) in relation to actual parameters s(1) from (125) has
not been considerably improved.

5
Concluding remarks

The sensitivity derivatives with respect to load parame-
ters and respective optimality conditions were derived in
this paper using the adjoint variable approach. The main
result of the analysis is that the coaxiality of load and
adjoint displacement vectors occurs at the stationary con-
dition. These stationary solutions are obtained from the
respective eigenvalue problems and may correspond to a
minimum or maximum of the response functional, thus
specifying the best or the worst loading conditions. In the
case of identification, the coaxiality occurs between the
load vector and the displacement differences of experi-
mental and predicted values. The results obtained gener-
alize previous studies and provide uniform treatment of
load control problems in static conditions.
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