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Abstract

Mathematical methods of information theory appear to provide a useful language to

describe how stimuli are encoded in activities of signaling effectors. Exploring the informa-

tion-theoretic perspective, however, remains conceptually, experimentally and computation-

ally challenging. Specifically, existing computational tools enable efficient analysis of

relatively simple systems, usually with one input and output only. Moreover, their robust and

readily applicable implementations are missing. Here, we propose a novel algorithm, SLEMI

—statistical learning based estimation of mutual information, to analyze signaling systems

with high-dimensional outputs and a large number of input values. Our approach is efficient

in terms of computational time as well as sample size needed for accurate estimation. Anal-

ysis of the NF-κB single—cell signaling responses to TNF-α reveals that NF-κB signaling

dynamics improves discrimination of high concentrations of TNF-α with a relatively modest

impact on discrimination of low concentrations. Provided R-package allows the approach to

be used by computational biologists with only elementary knowledge of information theory.

Author summary

In light of single-cell, live-imaging experiments understanding of how cells transmit infor-

mation about identity and quantity of stimuli is incomplete. When exposed to the same

stimulus individual cells exhibit substantial cell-to-cell heterogeneity. Besides, stimuli

have been shown to regulate temporal profiles of signaling effectors. Therefore, it is, for

instance, not entirely clear whether single-cell responses are binary or contain more infor-

mation about the quantity of stimuli. The above questions resulted in a considerable inter-

est to study cellular signaling within the framework of information theory. Unfortunately,

the utilization of the information-theoretic perspective is handicapped in part by the lack

of suitable methods that account for multivariate signaling data. Here, we propose a novel

algorithm that breaks a considerable computational barrier by allowing the effective infor-

mation-theoretic analysis of highly-dimensional single-cell measurements. Our approach

is computationally efficient, robust and straightforward to use. Moreover, we provide a

simple R-package implementation.
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Introduction

Biochemical descriptions of cellular signaling appear to require quantitative support to explain

how complex stimuli (inputs) are translated and encoded in activities of pathway’s effectors

(outputs) [1–5]. An attractive approach seems to be offered by probabilistic modeling and

information theory [6–10], which provide a mathematical language to describe input-output

relationships of complex and stochastic cellular processes. Specifically, the unique perspective

of information theory holds a promise of gaining new insights into functional aspects of signal-

ing, as opposed to biochemical and mechanistic descriptions [1, 9, 11–16]. So far, quantifica-

tion of an overall signaling fidelity and analysis of factors by which it is determined have

proven to be useful applications of information theory in studies of cellular signaling [5, 17–

19]. Nevertheless, exploring the information-theoretic approach remains conceptually and

technically challenging [7, 9, 10]. In particular, for systems with multiple inputs and outputs

existing theoretical tools are computationally inefficient and require a large sample size for

accurate analysis.

Within information theory, regardless of specific details of a signaling pathway, a signaling

system can be considered as an input-output device that measures an input signal, x, by elicit-

ing a stochastic output, Y [7, 9, 10]. In a typical example, the input, x, is the concentration of a

ligand, e.g., cytokine, that activates a receptor. The output, Y, is an activity of one or more sig-

naling effectors, e.g., of transcription factors quantified over time. As cellular signaling systems

are inherently stochastic, the information about the input contained in the output is imprecise

and only a limited number of input values can be resolved [6, 15, 20, 21]. To date, a number of

studies have experimentally examined fidelity of various signaling systems, e.g., [13, 15, 19,

22–24]. In a typical experiment aimed to quantify fidelity, input values, x1� x2. . .� xm, rang-

ing from 0 to saturation are considered. In some scenarios, utilization of physiologically arising

input concentrations, e.g., morphogen gradients, is also possible [5, 16, 25]. Then, for each

input level, xi, cellular responses are quantified in a large number, say ni, of individual cells.

Single-cell responses are typically represented as vectors, yil, that contain entries with quanti-

fied activities of signaling effectors, where l varies from 1 to the number of measured cells, ni.
Further, cell-to-cell heterogeneity of responses is simplistically used as a proxy of how repro-

ducible signaling output of an individual cell is. Formally, responses corresponding to each of

the inputs, xi, are assumed to follow a probability distribution

yil � PðYjX ¼ xiÞ; ð1Þ

which is reconstructed from the data and serves as a model of the single-cell response to the

input xi.
Given the above, information theory offers to quantify the overall fidelity of signaling in

terms of how many input values, xi, can be resolved based on information contained in the

responses. The key factor that determines how many inputs can be resolved is the degree of

the overlap between the distributions corresponding to different inputs. For instance, two

inputs x1 and x2 can be easily resolved if the corresponding output distributions P(Y|X = x1)

and P(Y|X = x2) are completely distinct, non-overlapping. Then, a given response, y, can be

assigned without error to the only input for which it can occur. In the scenarios in which

P(Y|X = x1) and P(Y|X = x2) are overlapping the inputs x1 and x2 cannot be resolved as a

given response y is equally likely to arise for both inputs. The second factor that is essential for

formal quantification of the overall fidelity is how frequently the different inputs occur. For
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illustration, consider a system with three input values, x1, x2 and x3. Suppose, x1 and x2 induce

very similar output distributions, i.e., P(Y|X = x1)� P(Y|X = x2), whereas the input x3 induces

distribution P(Y|X = x3) that is distinct, non-overlapping, with the first two. How many inputs

are on average resolved in this system depends on how frequently different inputs occur. If for

instance, x1 and x3 occur frequently, e.g., P(x1) = P(x3)� 1/2, whereas, x2 has a negligible inci-

dence, i.e., P(x2)� 0, the fidelity of signaling allows to resolve two inputs on average. This is

because the two inputs that can be resolved occur with high probability. On the other hand, if

inputs x1 and x2 occur with probability� 1/2, and x3 has probability close to 0, then only one

state can be resolved on average, i.e., concatenation of x1 and x2. The frequencies of inputs are

taken into account in the form of the input distribution P(X) = (P(x1), . . ., P(xm)).

The degree of the overlap between the output distributions as well as frequencies of inputs

are used to evaluate the overall signaling fidelity in the form of the mutual information

MIðX;YÞ ¼
Xm

i¼1

PðxiÞ
Z

Rd
PðyjX ¼ xiÞ log2

PðyjX ¼ xiÞ
PðyÞ

dy; ð2Þ

where P(y) is the overall distribution of the output implied by a given distribution of the input,

i.e., PðyÞ ¼
Pm

i¼1
PðyjX ¼ xiÞPðxiÞ.MI is expressed in bits and 2MIcan be interpreted as the

number of inputs that the system can resolve on average. Definition of mutual information

stems from axioms proposed by C. Shannon [26] and can also be written in a more intuitive

form of entropy differences, see supporting S1 Text. Selection of the input distribution that is

suitable for quantification of information transfer in a specific application can be problematic

and provides a degree of arbitrariness. The uniform distribution, i.e., one that gives the same

weight to all inputs appear to be a suitable choice in some applications [15]. Alternatively, a

most favorable input distribution, P(X), i.e., the one that maximizes information transfer, can

be found. The maximization of mutual information with respect to the input distribution

defines the information capacity, C�. Formally,

C� ¼ max
PðXÞ

MIðX;YÞ: ð3Þ

Information capacity is expressed in bits and 2C
�

can be interpreted as the maximal number of

inputs that the system can effectively resolve.

In summary, the overall fidelity of a signaling system depends on the degree of the overlap

between distributions corresponding to different inputs. The degree of the overlap is translated

into the logarithm of the number of resolvable inputs by mutual information, which takes into

account how frequently different inputs are transmitted. On the other hand, the information

capacity quantifies the logarithm of the number of resolvable inputs under input frequencies

that maximize the information transfer. Information capacity, as opposed to mutual informa-

tion, does not depend on input distribution and therefore may provide a less arbitrary quanti-

fication of the overall fidelity.

Existing tools to compute the mutual information and the information capacity [16, 19, 22,

27–29] utilise the data, yil; to construct approximations, P̂ðYjX ¼ xiÞ, of the output distribu-

tions, P(Y|X = xi), for each input, xi. Thereafter, the approximations, P̂ðYjX ¼ xiÞ, rather than

the exact probabilities, P(Y|X = xi), are used for evaluation of the mutual information and

information capacity, according to Eqs 2 and 3. The available algorithms differ in the way, in

which, the approximations of the output distributions, P̂ðyjX ¼ xiÞ, are constructed. Specifi-

cally, Blahut—Arimoto (BA) algorithm [22, 27–29] uses a discrete approximation. All possible

values of responses are divided into a finite set of intervals and frequencies of responses falling

into the same interval as yil are used as the approximation of PðyiljX ¼ xiÞ. On the other hand,
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methods based on the small noise approximation assume Gaussian output with a limited vari-

ance [16, 25, 30, 31]. Finally, the approach of [19], following the earlier work [32], uses the k-

nearest neighbors (KNN) method, in which continuous approximations of PðyiljX ¼ xiÞ are

constructed based on the distance of yil to the k-th most similar response. Each of the above

approaches is practically limited by the dimensionality of the output, Y. The BA algorithm can

be essentially applied to systems with the one-dimensional output only. On the other hand, for

multidimensional outputs, an accurate estimation of P(Y|X = xi) using KNN requires a rela-

tively large sample size [33]. Moreover, KNN demands arbitrary specification of the parameter

k, which for insufficient data size does not generally guarantee unbiased estimation [32–35],

and yields estimation sensitive to algorithm’s settings, i.e., is not parameter-free. Also, KNN

based approaches, when used to compute capacity, often require solving computationally

expensive optimization problems.

In summary, for multidimensional outputs, the practical difficulty in calculating mutual

information, Eq 2, results largely from the lack of methods for accurate estimation of multivar-

iate probability distributions, P(y|X = xi). In addition, calculation of C�, Eq 3, can be problem-

atic, as it requires maximization of the nonlinear function, i.e.,MI, over the input probability

distribution, which can be computationally intense. In Section 1 in S1 Text, we provide more

background on information theory and existing computational tools. Here further, we propose

an alternative framework, statistical learning estimation of mutual information (SLEMI) that

appears to significantly simplify the calculation of the mutual information and the information

capacity, especially for systems with high-dimensional outputs and a large number of input

values. Moreover, our framework enables simple quantification of the extent to which different

inputs can be discriminated.

Results

The framework to calculate the mutual information and the information capacity proposed

here is based on an estimation of the conditional input distribution, P(X|Y = y), as opposed to

the output distributions P(Y|X = xi) in the existing approaches. Therefore, it bypasses the esti-

mation of, possibly high dimensional, probability densities. Moreover, we show that the use of

the conditional input distribution, P(X|Y = y), can be combined with an efficient iterative opti-

mization scheme to avoid, potentially problematic, numerical optimization. As a result, the

introduced algorithm is computationally and statistically efficient and ensures robust, parame-

ter-free estimation. Besides, we demonstrate that estimation of the conditional input distribu-

tion, P(X|Y = y), provides a simple way to compute probabilities of correct discrimination

between different inputs, which augments insight given by the information capacity. The

critical advantage of SLEMI over available approaches is that it allows for efficient and robust

analysis of systems with multidimensional outputs and a large number of inputs, which we

demonstrate here using numerical test models. Further, we deploy SLEMI to examine single-

cell signaling responses of the NF-κB pathway to TNF-α stimulation. Our analysis reveales

that the NF-κB signaling dynamics improves discrimination of high concentrations of TNF-α
with a modest impact on discrimination of low concentrations. A robust implementation of

the proposed computational tool is provided as the R-package that can be used by computa-

tional biologists with only elementary knowledge of information theory.

Efficient estimation of the mutual information and the information

capacity

In contrast to existing approaches, instead of estimating, possibly highly dimensional, condi-

tional output distributions P(Y|X = xi), we propose to estimate the discrete, conditional input
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distribution, P(xi|Y = y), which is known to be a simpler problem [36, 37]. Estimation of the

MI using estimates of P(xi|Y = y), denoted here as P̂ðxijY ¼ yÞ, is possible as theMI, Eq 2, can

be alternatively written as [38]

MIðX;YÞ ¼
Xm

i¼1

PðxiÞ
Z

Rd
PðyjX ¼ xiÞ log2

PðxijY ¼ yÞ
PðxiÞ

dy: ð4Þ

Although P(Y|X = xi) is still present in the above sum, it represents averaging of the term

log
2

Pðxi jY¼yÞ
PðxiÞ

with respect to P(Y|X = xi). The experimental data, however, constitutes a sample

from the distribution P(Y|X = xi). The average with respect to distribution P(Y|X = xi) can be,

therefore, approximated by the average with respect to data, which is justified by the law of

large numbers. Precisely, for a given P(X) and P̂ðxijY ¼ yÞ,MI can be approximated with the

following formula

MIðX;YÞ �
Xm

i¼1

PðxiÞ
Xni

l¼1

1

ni
log

2

P̂ðxijY ¼ yilÞ
PðxiÞ

: ð5Þ

An estimator P̂ðxijY ¼ yÞ, can be built using a variety of Bayesian statistical learning methods.

For simplicity and efficiency, here we propose to use logistic regression, which is known to

work well in a range of applications [39–43]. In principle, however, other classifiers could

also be considered. The logistic regression estimators of P(xi|Y = y) arise from a simplifying

assumption that log-ratio of probabilities, P(xi|Y = y) and P(xm|Y = y) is linear. Precisely,

log
PðxijY ¼ yÞ
PðxmjY ¼ yÞ

� �

� ai þ b
T
i y:

The above formulation allows fitting the logistic regression equations to experimental data,

i.e., finding values of the parameters, αi and βi that best represent the data. Once logistic regres-

sion parameters are known, estimates P̂ðxijY ¼ yÞ can be constructed. Estimates, P̂ðxijY ¼ yÞ,
allow, in turn, to calculate mutual information using Eq 5. The use of logistic regression,

therefore, constitutes a simple way to evaluate mutual information for multidimensional data

without knowledge of P(Y|X = xi). Moreover, fitting the logistic regression equations to experi-

mental data is efficient and available in most statistical software packages. Even though the

assumed linear relationship may seem to be an oversimplification, the logistic regression

approach has been shown to work exceptionally well in a variety of scenarios and gained broad

applicability [36].Methods contain more details on the form and estimation of the logistic

regression model.

In addition to the possibility of effective evaluation of the mutual information for models

with the multivariate output, Y, the use of the logistic regression enables to overcome the

potentially problematic numerical, typically gradient, maximization of the mutual information

with respect to the input distribution, P(X), in computations of the information capacity. Pre-

cisely, the numerical optimization can be bypassed, by dividing the maximization with respect

to the input distribution, P(X), into two simpler maximization problems, for which explicit

solutions exist. Thereafter, a solution of the joint maximization can be obtained from the two

explicit solutions in an iterative procedure known as alternate maximization. Compared to

gradient optimisation, alternate maximization is superior in terms of computational efficiency,

and much less prone to numerical complications. A complete description of the maximization

procedure is technically demanding and therefore is provided inMethods section. In particu-

lar, the algorithm’s pseudo-code is presented in Box 1 therein.
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In summary, the use of logistic regression described above allows computingMI without

estimation of the possibly highly dimensional output distributions P(Y|X = xi). Moreover,

it allows for efficient maximization ofMI without gradient-based methods. InMethods and

Section 3 in S1 Text, we perform several numerical tests to show how the above design of the

algorithm leads to practical benefits in terms of the accuracy of estimation and computational

efficiency. Specifically, we demonstrate that SLEMI: (i) provides more accurate estimates than

the KNN method, especially for small sample size and highly dimensional output; (ii) delivers

robust estimates, insensitive to algorithm’s settings; and (iii) has desired properties in terms of

computational cost, especially scales well with the number of input values.

Probabilities of correct discrimination

The information capacity, C�, tells us how many inputs can be discriminated on average.

What it does not tell us directly is which inputs, and to what extent, can be discriminated. Spe-

cifically, the same information capacity can result from different patterns of discriminability

between input signals. For illustration, consider three inputs, x1, x2 and x3. Assume that inputs

x1 and x2 induce very similar output distributions, i.e., P(Y|X = x1)� P(Y|X = x2), as opposed

to x3 that induces a distinct distribution, P(Y|X = x3). In such a scenario, the information

capacity is approximately 1 bit, as two inputs can be discriminated, i.e., x3 can be resolved

from either of the other two. The capacity of 1 bit would also result from a scenario, in which

roles of input values are swapped, say, P(Y|X = x2) is distinct from the overlapping P(Y|X = x1)

and P(Y|X = x3). Therefore, it appears that an insight regarding which inputs, and to what

extent, can be discriminated can usefully augment computation of the information capacity.

Here, we argue that the extent to which different inputs can be discriminated can be

conveniently quantified and visualized using the probability of correct discrimination (PCD)

between input pairs. We define the PCD between a pair of input values, xi and xj, as the frac-

tion of cellular responses that can be assigned correctly to one of the two inputs based on

the information contained in the signaling response, Y. If the distributions P(Y|X = xi) and

P(Y|X = xj) are entirely distinct, knowing the response, y, allows assigning each cellular

response to the correct input without error. PCD between xi and xj is then equal to 1. If, on the

other hand, these two distributions are completely overlapping knowing the response, y, does

not provide any information to assign a cell with a given response to the correct input. In such

a case, the discrimination is close to random, yielding half of the cells being assigned correctly,

i.e., PCD equals 0.5. Depending on the degree of the overlap, the PCD varies between 0.5 and

1. Further, calculation of PCDs for all input pairs can provide insight regarding which inputs,

and to what extent, can be discriminated.

The above intuitions can be mathematically formalized, Fig 1. For formal quantification, in

order to treat both inputs equally, we assume that both have the same frequency, P(X) = (1/2,

1/2), or equivalently that half of the considered cells is stimulated with either of the input val-

ues, Fig 1A. How many cells can be assigned correctly depends on the overlap between the dis-

tributions P(Y|X = xi) and P(Y|X = xj), Fig 1B. The conditional input distribution, P(xi|Y = y)
expresses the probability that a given response y was generated by the stimulation level xi, Fig

1C. Equivalently, P(xj|Y = y) is the frequency, at which the given response, y, is generated by

the stimulation level xj. The probabilities P(xi|Y = y) and P(xj|Y = y) tell us, therefore, how

often assignment of the observation y to the input xi and xj, respectively, is correct. To maxi-

mize the probability of correct assignment, the response y should be assigned to the input for

which it is most likely, i.e. to xi if P(xi|Y = y)� P(xj|Y = y), or to xj, otherwise. Therefore, the

observation y can be assigned correctly with the probability equal to the maximum of P(xi|Y =

y) and P(xj|Y = y). Precisely, the probability of correct discrimination between input xi and xj

Information-theoretic analysis of multivariate single-cell signaling responses

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007132 July 12, 2019 6 / 23

https://doi.org/10.1371/journal.pcbi.1007132


Fig 1. Probabilities of correct discrimination between two inputs, xi and xj. The input distribution, P(X) = (1/2, 1/

2), visualized in (A), and the conditional output probabilities P(Y|X), presented in (B), can be translated, via the Bayes

formula, into conditional input distributions, P(X|Y), visualized in (C). The conditional input distribution, P(X|Y),

serves to calculate the probability of correct discrimination of the observation y, as shown in (D). Precisely, for any

fixed output, y, vertical line in (B), the conditional input probability, in (C), P(X|Y = y), quantifies how likely it is that y
was generated by each of the inputs. The probability of correct discrimination of the observation, y is given as the

maximum of P(xi|Y = y) and P(xj|Y = y). Completely overlapping conditional output probabilities P(Y|X), left column,

yield random discrimination as opposed to non-overlapping distributions yielding perfect discrimination, right

column. The use of the conditional input distribution, P(X|Y), enables quantification of intermediate scenarios, middle

column.

https://doi.org/10.1371/journal.pcbi.1007132.g001
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for the response y, denoted as PCDxi ;xjðyÞ, is calculated as

PCDxi ;xj
ðyÞ ¼ maxfPðxijY ¼ yÞ; PðxjjY ¼ yÞg; ð6Þ

which is visualised in Fig 1D. The average of the above probabilities over cellular responses, yil ,
corresponding to the input xi is equal to 1

ni

Pni
l¼1
PCDxi ;xjðy

i
lÞ and quantifies the average proba-

bility of correct discrimination of responses induced by the input xi. Then, the overall proba-

bility of correct discrimination between xi and xj is given as

PCDxi ;xj
¼

1

2

1

ni

Xni

l¼1

PCDxi ;xjðy
i
lÞ þ

1

2

1

nj

Xnj

l¼1

PCDxi ;xjðy
j
lÞ: ð7Þ

In summary, the probability of correct discrimination between inputs xi and xj, PCDxi ;xj
,

quantifies the fraction of cellular responses that can be correctly assigned to either of the inputs

based on the output, Y. Therefore, the calculation of PCDs for all pairs of input values reveals

the extent to which different inputs are discriminated.

From the computational perspective, PCDs are defined in terms of the conditional input

probabilities, P(xi|Y = y), Therefore, similarly to the mutual information, these can be calcu-

lated using logistic regression. InMethods we provide practical details on how to compute

PCDs. In the analysis of the NF-κB signaling data, presented below, we show how quantifica-

tion of PCDs along with computation of the information capacity C� helps to provide insight

regarding how signaling dynamics increases overall signaling fidelity.

Signaling dynamics of the NF-κB system strongly improves discrimination

of only high TNF-α concentrations

NF-κB pathway is one of the key biochemical circuits involved in the control of the immune

system [44–46]. It is also one of the first cellular signaling systems studied within the frame-

work of information theory [22]. So far, several papers examined its dose dependency, e.g.,

[12, 44, 47] and quantified its information capacity, e.g., [13, 19, 22]. Interestingly, response

dynamics have been shown to have greater signaling capacity compared to time-point, non-

dynamic, responses [13, 19]. To demonstrate what benefits result from efficient calculation of

the information capacity and of the probabilities of correct discrimination, we have measured

NF-κB responses (yil ’s in our notation) to a range of 5 minutes pulses of TNF-α concentrations

(xi’s), in single—cells, using life confocal imaging. Experimental methods are described in Sec-

tions 4.1—4.3 in S1 Text. Fig 2A shows temporally resolved responses to representative four

concentrations, whereas Fig. IV, in S1 Text, to all ten considered concentrations. Further, we

used the data to calculate the information capacity between TNF-α concentration and cellular

response for two different scenarios: time-point and time-series. Precisely, for the time-point

scenario, we considered single-cell measurements at each time-point separately. In this case,

the signaling output of an individual cell at a given time, y, is represented by a single number,

which is different for different time-points. On the other hand, for the time-series scenario, we

considered single-cell measurements from the beginning of the experiment until an indicated

time. In this case signaling output of an individual cell, y, is a vector corresponding to a time

window from 0 till a given time. Fig 2B and 2C show information capacity as the function of

time for the time-point and time-series scenario, respectively.

For the time-point scenario, the capacity increases at early times and reaches the maximum

of� 1 bit at� 20 minutes, which coincides with the time of maximum response of trajectories

shown in Fig 2A. Interestingly, the second peak of information transfer, of� 0.3 bits, appears
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Fig 2. Information-theoretic analysis of the NF-κB responses to TNF-α stimulation. (A) Temporally resolved responses of individual cells to

selected concentrations of TNF-α. The panel corresponds to Fig. IV in S1 Text. (B) The information capacity as a function of time for time-point

responses. (C) As in (B) but for time-series responses. (D) Probabilities of the correct pairwise discrimination between TNF-α concentrations for

time-point responses at 21 minutes. The color filled fraction of the circle marks the probability of correct discrimination. (E) The same as in (D)

but for time-series responses. (F) Differences between probabilities in (D) and (E). Modeling details: Uncertainties of estimates (grey ribbons in B

and C) were obtained by bootstrapping 80% of data (repeated 100 times). Probabilities in (D) and (E) present mean of 50 bootstrap re-sampling.

https://doi.org/10.1371/journal.pcbi.1007132.g002
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at� 90 minutes. Inspection of the response trajectories, Fig 2A, around 90 minutes allows

for an interpretation of the second peak. Comparison of the response trajectories correspond-

ing to 1 and 100 ng/ml of TNF- α, Fig 2A, indicates the emergence of a fraction of cells that

exhibit a second peak in response to the highest considered concentration. The second peak is

reminiscent of the oscillatory behavior that is typical for the NF-κB pathway when exposed to

continuous, as opposed to 5 minutes, stimulation [44, 48–50]. The second peak in response

trajectories carries some information about TNF-α and, therefore, contributes to the second

peak of information transfer.

For the time-series scenario the capacity also rapidly increases at early times to reach 1 bit

at 20 minutes. For later times, the capacity continues to increase but at a much slower rate,

with a modest acceleration around 70 minutes, to reach� 1.3 bits at the end of the experiment.

As the information contained in shorter time-series is contained in longer time-series, the

capacity does not decrease. An increase in the capacity in a given time interval indicates that

new information is arriving. Analogously, a time interval with a plateau demonstrates the lack

of new information being transmitted at times of that interval. Therefore, our analysis demon-

strates that most of the information,� 1 bit, is transferred relatively early, i.e., within the first

20 minutes after stimulation. Later times provide� 0.3 bits of new information. In Section 4.5

in S1 Text we use the method proposed in [51] to further examine the redundancy of informa-

tion contained in responses at individual time-points.

The higher information content of the time-series poses the question: what type of informa-

tion is contained in the time-series responses that is not encapsulated in the time-point

responses? The information capacity per se, being an overall measure of signaling fidelity, does

not tell us to what extent specific inputs can be discriminated. Therefore, the information

capacity alone cannot reveal which inputs gain discriminability due to signaling dynamics. In

order to address the above question in detail, we have calculated the probabilities of correct

discrimination, PCDs, for each pair of concentrations, xi, xj. Analogously as in the computa-

tion of the capacity, we have considered the time-point and time-series scenarios. PCDs for

the two scenarios are shown in Fig 2D and 2E. The filled fractions of the pies mark the PCDs

between the corresponding pairs of concentrations, i.e., the fractions of cells that can be

assigned to the correct input. The plots, primarily reveal how the time-point and time-series

capacities of 1 and 1.3 bits, respectively, translate into discrimination between pairs of inputs.

They show that concentrations far apart can be easily discriminated in both scenarios. For

instance, PCDs between 0 and 100 ng/ml are close to 1. The discrimination of closer concen-

trations is more difficult. For instance, in both scenarios, PCDs between 0 and 0.01 ng/ml are

approximately 0.75, which corresponds to 0.25 probability of incorrect assignment.

Interestingly, for time-point responses, PCDs between pairs of concentrations� 1 ng/ml

are close to 0.5, which implies lack of discriminability. This is, however, not the case for time-

series responses where PCDs are considerably greater than 0.5. Comparison of PCDs between

the two scenarios reveals, therefore, which states gain discriminability due to signaling dynam-

ics. Fig 2F presents differences between PCDs for time-series and time-points. The increase in

discriminability resulting from signaling dynamics is particularly striking for high concentra-

tions, say> 1 ng/ml. These concentrations are only weakly discriminated for the time-point

scenario. Certain low concentrations also gain discriminability, e.g., 0.01 and 0.03. However,

overall, the increase in discriminability is not so significant for low concentrations as these are

relatively well discriminated in the time-point scenario.

The above analysis yields similar conclusions to these presented in [19]. Here, we used 5

minutes TNF-α as opposed to continuous lipopolysacharide stimulation in [19]. Also, we used

a more complete, higher dimensional, response trajectories, which allowed to plot the tempo-

ral profile of information transfer. Our analysis of PCDs complemented calculation of the
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capacity by revealing discriminability between different inputs. Indeed, values far apart are dis-

criminated virtually without error. Closer concentration gain discriminability due to dynamics

of signaling, whereas the gain is particularly strong for high concentrations.

R-package

Our algorithm is available as robustly implemented R-package, SLEMI. It is designed to be

used by computational biologists with a limited background in information theory. It includes

functions to calculate mutual information, information capacity and probabilities of correct

discrimination. These functions take as the argument a data frame, data, containing signaling

responses stored in the following form

input output 1 output 2 output 3 . . .

n1

x1
...
x1

y11;1
...

y1n1;1

y11;2
...

y1n1;2

y11;3
...

y1n1;3

n2

x2
...
x2

y21;1
...

y2n2;1

y21;2
...

y2n2;2

y21;3
...

y2n2;3
. . .

...
...

...
...

nm

xm
...
xm

ym1;1
...

ymnm;1

ym1;2
...

ymnm;2

ym1;3
...

ymnm;3

: ð8Þ

Each row, l, represents a single cell. The first column contains stimulation levels, xi. Further

columns contain entries corresponding to measurements of cellular output, yil;d, e.g., subse-

quent elements of a time-series.

Upon download with the function install_github() of the ‘devtools’ package

install_github(“sysbiosig/SLEMI”)
the considered information-theoretic measures can be calculated by running

mi_logreg_main(data)
forMI, with uniformly distributed inputs;

capacity_logreg_main(data)
for information capacity C�; and

prob_discr_pairwise(data)
for probabilities of correct discrimination.

More details on installation and applicability are provided in the package’s User Manual. A

step-by-step Testing Procedures file is also available to assist with running essential functions.

The package includes the NF-κB dataset as well as scripts to reproduce Fig 2. Computations

needed to plot each panel of the figure, without bootstrap, do not exceed several minutes on a

regular laptop.

Discussion

Building upon existing approaches, our framework considerably simplifies information-theo-

retic analysis of multivariate single-cell signaling data. It benefits from a novel algorithm,
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which is based on the estimation of the discrete input distribution as opposed to the estimation

of continuous output distributions. Conveniently, the algorithm does not involve numerical

gradient optimization. These factors result not only in short computational times but, also, in

relatively low sample sizes needed to obtain accurate estimates. Therefore, our framework is

particularly suitable to study systems with high dimensional outputs and a large number of

input values. Also, the approach relates the information capacity to the probability of discrimi-

nation between different input values.

Information theory seems to offer useful tools to provide a better understanding of how

cells transmit information about identity and quantity of stimuli, and further how signaling

systems enable cells to perform complex functions. Such tools might have a fair potential to

successfully augment more traditional approaches. The latter provided a relatively good under-

stooding of the overall molecular and biochemical mechanisms how individual cells transmit

signals to effectors [1]. However, we lack understanding of how the stimuli are translated into

distinct responses and, hence, how to effectively control cellular processes and decisions [1, 3,

15]. Specifically, the induction of distinct responses in individual cells by means of biochemical

interventions in non-trivial settings is most often problematic [52–54]. Results of our work

appear to contribute a relevant tool to apply information-theoretic analysis to more complex,

particularly highly multivariate, data sets on signaling systems than achievable with available

approaches. The multivariate aspect seems to be particularly relevant given the complexity of

cellular processes. Hopefully, current and future development of multivariate single-cell mea-

surement techniques, accompanied by computational tools, will enable utilization of the infor-

mation-theoretic perspective in more complex scenarios. These in turn appear to have a

potential to provide a comprehensive insight into how cells can derive a variety of distinct out-

puts from complex inputs using noisy, cross-wired and dynamic signaling pathways.

Methods

Logistic regression

The logistic regression model is the state-of-the-art statistical method to estimate the probabil-

ity of a given observation, i.e., data vector, y, belonging to one of them considered classes.

In the setting of the paper, classes correspond to input values and observations to signaling

responses. The method assumes that the overall frequencies of observations belonging to each

class are described by a probability distribution. In the paper’s setting, these probabilities cor-

respond to the input distribution P(X) = (P(x1), . . ., P(xm)).

The method is based on the assumption that for a given P(X), the ratio of the probability of

the observation y belonging to class i to the same probability for the classm is linear with respect

to y. Precisely, denoting the logistic regression estimate of the probability of a given observation,

y, belonging to the class i as P̂lrðxijY ¼ y; PðXÞÞ, the above assumption writes as follows

log
P̂lrðx1jY ¼ y; PðXÞÞ
P̂lrðxmjY ¼ y; PðXÞÞ

 !

� a1 þ b
T
1
y;

..

.

log
P̂lrðxijY ¼ y; PðXÞÞ
P̂ lrðxmjY ¼ y; PðXÞÞ

 !

� ai þ b
T
i y;

..

.

log
P̂lrðxm� 1jY ¼ y; PðXÞÞ
P̂lrðxmjY ¼ y; PðXÞÞ

 !

� am� 1 þ b
T
m� 1
y

ð9Þ
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and
Pm

i¼1
P̂lrðxijY ¼ y; PðXÞÞ ¼ 1. Given the linear form of the above equations, for a data set

given as Eq 8, estimation of the parameters αi and βi can be done efficiently with state-of-the-art

methods [36, 55]. Further, the above equations imply that estimates, P̂lrðxijY ¼ y; PðXÞÞ, can be

explicitly written as

P̂lrðx1jY ¼ y; PðXÞÞ ¼
exp ða1 þ b

T
1
yÞ

1þ
Pm� 1

r¼1
exp ðar þ b

T
r yÞ

;

..

.

P̂lrðxijY ¼ y; PðXÞÞ ¼
exp ðai þ b

T
i yÞ

1þ
Pm� 1

r¼1
exp ðar þ b

T
r yÞ

;

..

.

P̂lrðxm� 1jY ¼ y; PðXÞÞ ¼
exp ðam� 1 þ b

T
m� 1
yÞ

1þ
Pm� 1

r¼1
exp ðar þ b

T
r yÞ

;

P̂lrðxmjY ¼ y; PðXÞÞ ¼
1

1þ
Pm� 1

r¼1
exp ðar þ b

T
r yÞ

:

ð10Þ

Maximization algorithm to compute capacity

Below, we describe maximization of the mutual estimation,MI, with respect to the input distri-

bution P(X), using the so-called alternate optimization, which bypasses gradient optimization.

The proposed algorithm is largely based on the original Blahut-Arimoto approach [27, 28]. It

is adapted to work with logistic regression and, hence, with continuous and multidimensional

output, Y. The provided Lemmas are minor modifications of the original Blahut-Arimoto

results to account for continuous and multidimensional output.

The algorithm is based on the following five key components. One, the maximization of

mutual information with respect to input distribution, P(X), is replaced with a double maximi-

zation, i.e., maximization with respect to the input distribution, P(X), and with respect to tai-

lored auxiliary function, Q(X|Y). The function Q(X|Y) is introduced to dissect the effects of the

input distribution, P(X), and the conditional input distribution, P(Y|X), on the mutual infor-

mation,MI. Two, explicit solutions of the individual maximizations are found. Three, the

individual maximizations are combined in an iterative procedure to provide the solution of

the joint maximization. Four, integrals involved in the evaluation of the optimal solutions of

individual maximizations are computed through averaging with respect to data. Five, logistic

regression is used to evaluate optimal Q(X|Y) at each step of the iterative procedure. Each of

the above five elements is described in detail below, and the complete algorithm is summarized

in Box 1.

Information capacity as a double maximization problem. The first element of the pro-

posed approach involves replacing the maximization in the capacity definition, Eq 3, with the

double maximization. Precisely, it can be shown (Lemma 1 in S1 Text) that in the setting of Eq

1, the capacity, C�, Eq 3, can be written as

C� ¼ max
PðXÞ

max
QðXjYÞ

JðPðXÞ;QðXjYÞÞ; ð11Þ

where Q(X|Y), for a given Y = y, is a discrete probability distribution with respect to X, whereas
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J is an auxiliary function defined as

JðPðXÞ;QðXjYÞÞ ¼
Xm

i¼1

PðxiÞ
Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞ
PðxiÞ

dy: ð12Þ

The function J is introduced for technical convenience and was obtained from the mutual

information, Eq 4, by replacing P(X|Y) with Q(X|Y). To prove Lemma 1 in S1 Text, we also

shows that for Q(X|Y) = P(X|Y), the function J is maximised and equal to the mutual informa-

tion. It is a generalisation of Theorem 1a of [27] to work for systems with continuous and mul-

tidimensional output, Y.

Individual maxima can be found explicitly. Compared to the single maximization prob-

lem with respect to P(X) in Eq 3, the double maximization in Eq 11 with respect to P(X) and

Q(X|Y) has the advantage that the optimal solutions of the individual optimisation problems

can be found analytically.

Precisely, the individual maximizations

P�ðX;QðXjYÞÞ ¼ arg max
PðXÞ

JðPðXÞ;QðXjYÞÞ; ð13Þ

Q�ðXjY; PðXÞÞ ¼ arg max
QðXjYÞ

JðPðXÞ;QðXjYÞÞ ð14Þ

have explicit solutions. The solution of the maximization in Eq 13 can be found using Lagrange

multipliers. Lemma 2 in S1 Text shows that for a given Q(X|Y) the optimal value of

max
PðXÞ

JðPðXÞ;QðXjYÞÞ ð15Þ

is achieved by

P�ðxi;QðXjYÞÞ ¼
expðDiðQÞÞPm
r¼1

expðDrðQÞÞ
; ð16Þ

where

DiðQÞ ¼
Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞdy: ð17Þ

The above is similar to the solution presented in the conventional BA algorithm [27] but

accounts for continuous output Y.

Solution of the maximization in Eq 14 is a well established result provided in [27] as Theo-

rem 1, which is used here in an unchanged form. Precisely, for a given P(X), Eq 14 has the

explicit solution

Q�ðxijy; PðXÞÞ ¼
PðxiÞPðyjX ¼ xiÞPm
r¼1
PðxrÞPðyjX ¼ xrÞ

: ð18Þ

Alternate maximization. Further, similarly as in the BA approach, we propose to com-

bine the above solutions, i.e., Eqs 16 and 18, in the so called alternate maximization (AM) iter-

ative procedure to deliver the solution of the joint maximization of Eq 11. Precisely, in an

initial step, arbitrary P(X) and Q(X|Y), denoted here as P(0)(xi), Q(0)(xi|y), respectively, are

assumed. Thereafter, at each step indexed by k new P(X) and Q(X|Y), denoted as P(k)(xi),
Q(k)(xi|y), are found. Precisely, P(k)(xi) and Q(k)(xi|y) are set to optimal solutions of the
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individual maximization problems of Eqs 13 and 14 given previous values P(k−1)(xi), Q(k−1)(xi|
y), i.e.,

PðkÞðxiÞ ¼ P�ðxi;Qðk� 1ÞðxijyÞÞ; ð19Þ

QðkÞðxijyÞ ¼ Q�ðxijy; PðkÞðxiÞÞ: ð20Þ

By Lemma 2 the capacity, C�, is then approximated as

CðkÞ ¼ JðPðkÞðXÞ;QðkÞðXjYÞÞ ¼
Xm

i¼1

PðkÞðxiÞðDiðQ
ðkÞÞ � log

2
PðkÞðxiÞÞ: ð21Þ

In Lemma 4, we generalise the result of [28], and we show that for systems with continuous

output Y, the iterative scheme converges to the solution of the joint maximization problem, Eq

11, precisely

PðkÞðxiÞ
k!1
��! P�ðxiÞ

and

CðkÞ k!1
��! C�:

Integration through averaging. For a practical implementation of the above AM method,

solutions of the individual maximizations problems need to be found for a given data set. Pre-

cisely, Eqs 12, 16 and 18 need to be numerically evaluated, which is seemingly problematic, as

these equations depend on the unknown conditional probabilities P(Y|X). Therefore, we pro-

pose a strategy to evaluate Eqs 12, 16 and 18 without knowledge of P(Y|X). Primarily, we show

below that integration with respect to y, in Eqs 12 and 17, can be performed without knowl-

edge of P(y|X = xi). Thereafter, we demonstrate how Q(k)(xi|y) can be computed.

Eqs 12 and 17 involve integrals

Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞ
PðxiÞ

dy

and

Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞdy;

respectively, that denote expectations with respect to the distribution P(Y|X = xi), i.e.,

EPðY jX¼xiÞð�Þ. The law of large numbers implies that expectations can be approximated solely

based on a sample from the distribution P(Y|X = xi). Indeed, if only the number of observa-

tions in experimental data is large enough, the average computed based on the sample approxi-

mates the expectation, leading to

Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞ
PðxiÞ

dy ¼ EPðY jX¼xiÞ log
2

QðxijYÞ
PðxiÞ

� �

�
1

ni

Xni

l¼1

log
2

QðxijyilÞ
PðxiÞ

; ð22Þ

Z

Rd
PðyjX ¼ xiÞ log2

QðxijyÞdy ¼ EPðY jX¼xiÞ log2
QðxijYÞ �

1

ni

Xni

l¼1

log
2
Qðxijy

i
lÞ: ð23Þ

The above shows, that the integration of Eqs 12 and 17, indeed does not require explicit
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knowledge of P(y|X = xi). Below, we show that computation of Q�(xi|y; P(X)) in Eq 18 does not

require evaluation of P(y|X = xi) either.

Incorporation of logistic regression. The Bayes conditional probability formula

PðxijY ¼ yÞ ¼
PðxiÞPðyjX ¼ xiÞPm
r¼1
PðxrÞPðyjX ¼ xrÞ

implies that, for a given P(X), Q�(xi|y; P(X)) defined by Eq 18 is equivalent to P(xi|Y = y), i.e.,

Q�ðxijy; PðXÞÞ ¼ PðxijY ¼ yÞ: ð24Þ

Therefore, for a given P(X) finding Q�(xi, y; P(X)) is equivalent to finding P(xi|Y = y) and,

therefore, P(y|X = xi) is not required. As discussed eariler, approximation of P(xi|Y = y) is a

classification problem in the statistical learning theory [36] and here we propose to approxi-

mate P(xi|Y = y) and, hence, also Q�(xi|y; P(X)) using logistic regression. Precisely,

Q�ðxijy; PðXÞÞ � P̂lrðxijY ¼ y; PðXÞÞ; ð25Þ

where P̂lrðxijY ¼ y; PðXÞÞ denotes the logistic regression model, Eq 10, for classifying xi based

on responses, y, and the input distribution, P(X). Moreover, in Lemma 6 in S1 Text we show

that the parameters of logistic regression have to be estimated only once. Precisely, change of

P(X) from P(k−1)(X) to P(k)(X) at each step of the iterative procedure requires only an update of

the intercept parameters αi, for i from 1 tom − 1, according to the following formula

a
ðkÞ
i ¼ a

ðk� 1Þ

i þ log
Pðk� 1ÞðxmÞ
Pðk� 1ÞðxiÞ

� �

� log
PðkÞðxmÞ
PðkÞðxiÞ

� �

; ð26Þ

where a
ðkÞ
i is the intercept parameter of the logistic regression model, Eq 10, at k-th iteration of

the alternate maximization procedure. Parameters, βi, for i = 1 tom − 1, remain the same for

all iterations.

Pseudo-code. The above five elements are combined into the algorithm to compute infor-

mation capacity, C� in the following way. Primarily, the initial values of the input distribution,

denoted as P(0)(X), are set, e.g., to be equal to relative frequencies of measurements available for

each input, Pð0ÞðxiÞ ¼
niPm

r¼1
nr

. Thereafter, logistic regression model is constructed to obtain ini-

tial value of the function Q(), denoted as Q(0), i.e., Qð0Þðxijy; Pð0ÞðXÞÞ ¼ P̂lrðxijY ¼ y; Pð0ÞðXÞÞ.
Thereafter, at each iteration, k, distribution P(X), and function Q(X|Y) are updated, as well as

the approximation of the capacity provided by the function J() is evaluated according to Eq 12.

Iterations are repeated until convergence is reached. The algorithm is summarized as a pseudo-

code in Box 1.

Practical calculation of the probabilities of correct discrimination

Probabilities of correct discrimination, PCDs defined in Eqs 6 and 7, are expressed in terms

of probabilities P(xi|Y = y). Logistic regression model, Eq 10, on the other hand, provides esti-

mates of these probabilities. Therefore, logistic regression estimates, P̂lrðxijY ¼ y; PðXÞÞ, can

be used to estimate probabilities of correct discrimination.

In order to estimate PCDs, for a given pair of input values xi and xj, the logistic regression

model needs to be fitted using response data corresponding to the two considered inputs, i.e.

yrl , for r 2 {i, j} and l ranging from 1 to nr. To ensure that both inputs have equal contribution

to the calculated discriminability, equal probabilities should be assigned, P(X) = (P(xi),
P(xj)) = (1/2, 1/2). Once the regression model is fitted, probability of assigning a given cellular
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response, y, to the correct input value is estimated as

maxfP̂ lrðxijY ¼ y; PðXÞÞ; P̂ lrðxjjY ¼ y; PðXÞÞg:

Note that P(xj|Y = y) = 1 − P(xi|Y = y) as well as P̂lrðxjjY ¼ y; PðXÞÞ ¼ 1 � P̂ lrðxijY ¼ y; PðXÞÞ.
Averaging the above over all responses corresponding to input values xi and xj, i.e., with respect

to the distribution PðyÞ ¼ 1

2
PðyjX ¼ xiÞ þ 1

2
PðyjX ¼ xjÞ, yields PCD(xi, xj)

PCDðxi; xjÞ �
1

2

1

ni

Xni

l¼1

maxfP̂ lrðxijY ¼ y
i
l; PðXÞÞ; P̂lrðxjjY ¼ y

i
l; PðXÞÞg

þ
1

2

1

nj

Xnj

l¼1

maxfP̂ lrðxijY ¼ y
j
l; PðXÞÞ; P̂ lrðxjjY ¼ y

j
l; PðXÞÞg:

ð27Þ

Box 1 Algorithm to calculate channel capacity using statistical learning

1: Set maximum number of iterations MAXIT and tolerance level tol

2: Set k = 1

3: Initialise C(k), e.g. C(−1) = −1, C(0) = 0

4: Set initial distribution of P(0)(X): Pð0ÞðxiÞ ¼
niPm
r¼1
nr

5: Estimate Qð0Þðxijy; P
ð0ÞðXÞÞ ¼ P̂ lrðxijY ¼ y; P

ð0ÞðXÞÞ, i.e., by logistic regression model

6: while k� MAXIT AND |C(k−1) − C(k−2)|>tol do

7: Calculate Di(Q(k−1)) by Monte Carlo integration

DiðQðk� 1ÞÞ ¼ EPðYjX¼xiÞ log2
Qðk� 1ÞðxijyÞ

� �
�

1

ni

Xni

l¼1

log
2
Qðk� 1Þðxijy

i
lÞ;

8: Optimize maxP(X) J(P, Q(k−1))

PðkÞðxiÞ ¼ P�ðxi;Qðk� 1ÞðxijyÞÞ ¼
expðDiðQðk� 1ÞÞÞ

Pm
r¼1

expðDrðQðk� 1ÞÞÞ

9: Optimize maxQ(X, Y) J(P(k), Q) by

QðkÞðxijyÞ ¼ Q�ðxijy; PðkÞðxiÞÞ ¼ P̂ lrðxijY ¼ y; PðkÞðXÞÞ

which can be calculated from Q(k−1)(xi|y) according to Eq 26

10: Get, C(k), an estimate of C�

CðkÞ ¼
Xm

i¼1

PðkÞðxiÞðDiðQ
ðkÞÞ � log PðkÞðxiÞÞ

11: k = k + 1

12: end while

13: return C� = C(k), P�(X) = P(k)(X).
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To account for the possibility of overfitting of the regression model, the bootstrap proce-

dure needs to be used [36]. For instance, available data should be randomly divided into a

training data set, i.e., data set used to fit logistic regression, and test data set, i.e., the set to eval-

uate Eq 27. The average of the PCDs from the bootstrap procedure should be used as a final

estimate of the probability of correct discrimination.

Numerical validation

In order to validate the accuracy of the proposed information capacity estimators, examine

the computational performance of the algorithm, and highlight advantages of the introduced

approach, we have designed four test scenarios and carried out a comparison with the KNN

method. We have chosen KNN for the comparison as it is virtually the only available technique

that allows estimatingMI and C� for systems with multidimensional output, Y. One of the test

scenarios, Scenario 1, is presented below whereas the remaining three scenarios, Scenarios 2-4,

are part of S1 Text. Scenario 1 demonstrates that the proposed approach, here further referred

to as SLEMI, (i) provides more accurate estimates than the KNN method; (ii) provides robust,

parameter-free estimates; and (iii) has desired properties in terms of the computational cost.

Scenario 2 replicates diagnostics proposed for the KNN methods in reference [19] and demon-

strates that, in contrast to the KNN method, accuracy of SLEMI estimates persists for high

dimensionality of output data. Scenario 3 validates the accuracy of SLEMI estimates against

several different shapes of the output distribution. Finally, Scenario 4 uses a model of a tran-

scription factor activity [20] to demonstrate that SLEMI can be used to quantify the informa-

tion capacity of frequency encoded signals.

The test model used as Scenario 1 aims to reflect a simple experimental setup in which one-

dimensional responses of individual cells to a range of stimuli are quantified. Precisely, the test

model considers a channel with the log-normally distributed output, Y. The mean, μ(x) and

variance σ2 of the log-output are assumed to be the sigmoid function, and a constant, respec-

tively. Precisely,

Yjxi � exp ðNðmðxÞ; s2ÞÞ;

for mðxÞ ¼ V�x
1þx, V = 10, σ2 = 1. For the above model, we considered eleven input values,m = 11.

Input vales range from 0 to 100, xi 2 [0, 100]. Sample distributions of output corresponding to

considered input values are shown in Fig 3A.

To test the estimation accuracy, we computed information capacity estimates using SLEMI

and KNN method for different sample size, N, i.e., the number of data points corresponding to

each input value used for estimation. True information capacity was evaluated numerically.

Fig 3B presents both information capacity estimates, as well as the true value, as the function

of N, for N ranging from 50 up to 2000. For sample sizes typical for biological experiments,

i.e., tens or hundreds of measured cells, SLEMI clearly provides more accurate estimates than

KNN.

In contrast to SLEMI, KNN estimates depend on the choice of the parameter k, whereas

clear rules how k should be selected are missing [56–58]. For computation of the KNN esti-

mates in Fig 3A we used k = 10, i.e., 10 closest points to each observation y were used to

approximate the density P(y|X = xi). To highlight the impact of the parameter k, we re-calcu-

lated the KNN estimates of Fig 3B using k ranging from 2 to 50, at fixed N = 1000. As show in

Fig 3C, selection of k has an impact on the value of the capacity estimates that may lead to con-

siderable bias. SLEMI estimates are free from this disadvantage.

Further, we have examined how the computational time needed to obtain estimates scales

with sample size, N, and the number of input values,m. Fig 3D presents computational times
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as a function on N. Both methods exhibit linear increase with N (Fig 3D). Computational time

of SLEMI increases at the lower rate. Although we optimized implementations of both meth-

ods to ensure a fair comparison, the rate of increase may depend on specifics of the code used.

Finally, we calculated the computational time as a function of the number of input values.

Fig 3. Test scenario 1. (A) A violin plot representation of the conditional output distribution Y|xi for 11 considered

inputs. (B) Information capacity estimates as the function of the sample sizeN. Blue and red lines correspond to

SLEMI and KNN estimates, respectively. The bold black line marks the true value of the capacity. For the KNN

estimation, k = 10 was assumed. (C) Information capacity estimates of the KNN method as a function of k compared

with the true value (bold black line). The error-bars in B and C show the standard deviation of capacity estimates from

40 repeated samplings. N = 1000 was assumed. (D) Computation time of SLEMI and KNN method as the function of

the sample sizeN. (E) Computation time of SLEMI (blue) and the KNN method as the function of the number of

considered input values. Input values were subsequently added starting with x1 and x2, only, and ending up with all 11

considered input values. The times reported in panels (D) and (E) correspond to computations performed by a single

core on a workstation with Intel Xeon E5-1650 3.50 GHz processor and 32 GB RAM.

https://doi.org/10.1371/journal.pcbi.1007132.g003
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Initially, we considered two input values,m = 2, and increased, one by one, up to eleven input

values,m = 11. The computational time of SLEMI increases linearly, whereas computational

time corresponding to KNN method increases at least quadratically (Fig 3E). Linear scaling

with respect to the number of input values is important for the method to be applicable to

study complex systems with multiple inputs.

In summary, the above test scenario shows that SLEMI provides more accurate estimates of

the information capacity, C�, than the KNN method, especially for small sample size. Impor-

tantly, estimates are parameter-free, which contributes to robust estimation. Also, computa-

tional time scales linearly with respect to the number of input values. The test scenario

presented above considered one-dimensional output, Y, as the demonstration of key benefits

resulting from using SLEMI did not require a multidimensional complex model. The presented

advantages, however, are of particular importance when systems with multivariate output, Y,

are studied. For multivariate systems robust estimation of the information capacity, C�, with

KNN method can be problematic due to the choice of the parameter k and numerical optimiza-

tion. Therefore, in the test Scenario 2, in S1 Text, we have confirmed that, unlike for the KNN

method, high accuracy of information capacity estimates persist for multidimensional data.

Supporting information

S1 Text. Supplementary information PDF file contains expanded description of theoretical

and experimental methods.

(PDF)
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