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Abstract
To understand how anatomy and physiology allow an organism to perform its function, it is important to know how information
that is transmitted by spikes in the brain is received and encoded. A natural question is whether the spike rate alone encodes
the information about a stimulus (rate code), or additional information is contained in the temporal pattern of the spikes
(temporal code). Here we address this question using data from the cat Lateral Geniculate Nucleus (LGN), which is the
visual portion of the thalamus, through which visual information from the retina is communicated to the visual cortex. We
analyzed the responses of LGN neurons to spatially homogeneous spots of various sizes with temporally random luminance
modulation.We compared the Firing Rate with the Shannon Information Transmission Rate , which quantifies the information
contained in the temporal relationships between spikes. We found that the behavior of these two rates can differ quantitatively.
This suggests that the energy used for spiking does not translate directly into the information to be transmitted. We also
compared Firing Rates with Information Rates for X-ON and X-OFF cells. We found that, for X-ON cells the Firing Rate
and Information Rate often behave in a completely different way, while for X-OFF cells these rates are much more highly
correlated. Our results suggest that for X-ON cells a more efficient “temporal code” is employed, while for X-OFF cells a
straightforward “rate code” is used, which is more reliable and is correlated with energy consumption.
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1 Introduction

A major challenge for modern neuroscience is to gain some
insight into the mechanisms that underlie information pro-
cessing in the brain, where spiking neurons communicate
via discrete signals, called action potentials or spikes (Rieke
et al. 1997). Since spiking activity is energy-intensive, energy
use is associated with the efficiency of information transfer
(Levy and Baxter 1996, 2002; Laughlin et al. 1998; Har-
ris et al. 2015). A natural question then is how efficient are
the various spiking schemes employed by neurons. Attwell
and Laughlin (2001) analyzed the metabolic cost of differ-
ent components of excitatory signaling and suggested that
signaling-related energy consumption increases linearlywith
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spiking frequency. More recent detailed models and experi-
mental results [for example, Harris et al. (2015)] extend these
calculations into the nonlinear regime. Harris et al. (2015),
based on data from retinal ganglion cells (RGC) and thalamic
synapses, fitted the relationship between firing frequency and
information rate using exponential functions, although at low
firing rate the relationship can be fit well with a linear func-
tion. Clearly, neuronal codes have a complex relationship
with energy demands.

The structure and mechanisms of neuronal codes remain
an open question (van Hemmen and Sejnowski 2006). Two
main views, not mutually exclusive, have been discussed in
the literature [for example, Shadlen and Newsome (1998)].
The first is based on the idea of a “rate code”, and it views the
neural code as embedded in the spike frequency, while the
second view, that of a “temporal code”, focuses on the tempo-
ral structure of spike trains.While the “temporal code” can be
viewed as an advanced code, the “rate code” is directly linked
to energy consumption, and depends linearly on spiking fre-
quency (at least for low firing rates). To study the “temporal
code,” we make use of Shannon’s information theory, using
entropy rate estimators to quantify output information. It is
known that an approximation of the entropy rate requires
taking into account the temporal structure of the spike trains
(Lempel and Ziv 1976; Amigo et al. 2004; Szczepanski et al.
2004; Gao et al. 2008; Crumiller et al. 2013; Pregowska et al.
2016; Bossomaier et al. 2016).

Modern attempts to quantify information transmission in
the nervous system concentrate on treating neural commu-
nication processes in the spirit of Shannon’s Information
Theory, with neuronal networks treated as communication
channels (Shannon 1948; Cover and Thomas 1991; Rieke
et al. 1997), along which spike trains transmit informa-
tion. Since information is formally a difference of entropies
(Bialek et al. 1991; Borst and Theunissen 1999; Nemenman
et al. 2004; Paprocki and Szczepanski 2013a; Pregowska
et al. 2015), entropy estimation has received a great deal of
attention (Paninski 2003; Amigo et al. 2004; Kennel et al.
2005; Gao et al. 2008; Lesne et al. 2009). In this paper,
we use the entropy rate estimator described by Strong et al.
(1998), because of its high accuracy and low computational
complexity, although other methods, which can be applied
to large neuronal populations, have been advanced recently
(Crumiller et al. 2011).

In this work, we study neuronal coding in the Lateral
Geniculate Nucleus (LGN), which is the visual region of
the thalamus. The LGN plays a key role in visual informa-
tion transmission, as it is the main central connection from
the optic nerve to the visual cortex. Hartline (1938) discov-
ered that some visual neurons are excited by light onset (ON
cells), while others are excited by light offset (OFF cells).
Kuffler (1953) later showed that ganglion cells have concen-
tric receptive fields, with anON-center and anOFF surround,

or vice versa. The signal paths generated by ON and OFF
retinal ganglion cells continue in the LGN and converge on
the same cortical cells (Schiller 1992). Both types of cells
have similar dynamics, but they differ in several other phys-
iological properties beyond a simple sign-inversion (Kaplan
et al. 1987; Benardete and Kaplan 1999; Chichilnisky and
Kalmar 2002; Zaghloul et al. 2003). The question of how
stimulus contrast affects the communication of visual sig-
nals between retinal ganglion cells and LGN cells has been
investigated by several groups. It was shown that increased
stimulus contrast improves transmission from retina to LGN
(Kaplan et al. 1987), and that LGN neurons exhibit greater
contrast-dependent phase advance than their retinal inputs
(Rathbun et al. 2016). Recently, there have been additional
comparisons between the responses of ON and OFF cells in
the mammalian visual system (Im and Fried 2015; Caran-
dini 2016), but none has examined these differences from
the perspective of information processing.

In this study , we investigate the role of the antagonistic
surround of the receptive field on information processing and
Firing Rates in X-ON and X-OFF LGN cells. We recorded
spike trains from individual neurons in the cat LGN while
presenting visual stimuli that consisted of spatially homoge-
neous, temporally noisy flashing spots across a range of sizes,
which engaged more or less of the circuitry that produces the
surround of the receptive field. Eleven cells have been ana-
lyzed in detail in this paper: 5 X-OFF and 6 X-ON cells.
They were recorded in the LGN and were stimulated by the
same spot sizes. Stimulus-dependent information was quan-
tified directly from the entropy rates of these neural responses
(Uglesich et al. 2009). Using the high-quality entropy esti-
mators (Strong et al. 1998; Gao et al. 2008), we show that
for small spots the information rate was clearly higher for
X-ON cells than for X-OFF cells, while for larger spots the
information transmission efficiencieswere similar for the two
cell types. Moreover, our results suggest that for X-ON cells
a more efficient “temporal code” is employed, while for X-
OFF cells a straightforward “rate code” is used.

The paper is organized as follows. In Sect. 2, the basic
concepts of Information Theory and spike train characteris-
tics are briefly reviewed. In Sect. 2.6, details concerning the
experiments are described. The results of Information and
Firing Rates comparisons are presented in Sect. 3. Section 4
contains a brief discussion and some concluding remarks.

2 Methods andmaterials

After Adrian’s experiments (Adrian 1926) established that
sensory neurons produce action potentials (spikes), it has
been generally accepted that a spiking neuron communicates
information through sequences of spikes called spike trains
(Bialek et al. 1991; Nemenman et al. 2004). The entropy of
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spike trains was first estimated by MacKay and McCulloch
(1952), which was probably the first application of Informa-
tion Theory to the nervous system. Importantly, they viewed
the spike train as being observed with some limited time res-
olution, which affects the transmission quality.

2.1 Information processing and encoding

Spikes are a convenient way to transmit analog output vari-
ables over long distances, and much effort has been spent
recently to analyze neuronal coding of spike sequences, espe-
cially its efficiency and the mechanisms and rules governing
it (Rieke et al. 1997; Fairhall et al. 2001; Rokem et al.
2006; vanHemmenandSejnowski 2006;Rolls 2007;London
et al. 2008; Paprocki and Szczepanski 2011, 2013a, b; Urner
et al. 2013; Lengler and Steger 2017; Voronenko and Lindner
2018). The problem of coding and decoding spike trains is
central both to understanding how neurons process informa-
tion (Rieke et al. 1997), and to neural prosthetic engineering,
which links devices directlywith the brain (Donoghue 2002).
“Decoding” refers to the issue of how to “read out” the infor-
mation contained in a set of neural spike trains. Hereafter
we will consider the most popular and natural binary cod-
ing (Rieke et al. 1997; Pillow et al. 2011). This treatment
is physically justified, since spike trains are recorded with a
limited time resolution Δτ , so that in each time slice (bin)
a spike is either present or absent. If we think of a spike in
a bin as representing a “1” and no spike as representing a
“0”, then, if we look at some time interval of length T , each
possible spike train is equivalent to T

Δτ
= L binary digits.

Such a sequence of bits zL can then be treated as an output
of a stochastic process. To study the information rate over
time, we apply amoving window approach. The information
rate at the moment of time t is obtained by using a specific
entropy rate estimator applied just to the signal data in the
time interval [t, t + T ]. In the selection of window length T ,
two conflicting constraints are important. The first is that T
must be long enough to estimate the entropy rate with good
accuracy (this depends on the estimation method used). The
second requires the window T to be short enough to guaran-
tee the local stationarity of the signal. This trade-off has to
be checked on a case-by-case basis. Given the window and
the encoding frequency f = 1

Δτ
, a spike train is represented

at time t by a bit sequence of length f T . In order to obtain
the Information Rate conveyed by the neurons, the encoding
frequency f must also be chosen appropriately. In Szczepan-
ski et al. (2003), we analyzed the influence of the number of
bins used for encoding on the Information Transmission Rate
(ITR), using responses of neurons of the primary visual cor-
tex to visual stimulation (sinusoidal drifting gratings). We
observed that starting from an encoding parameter of about
80 bin/s, the ITR saturates, i.e., increasing the number of bins
did not significantly change the ITR. Therefore, in this arti-

cle, a bin width of 1/80 = 12.5 ms was adapted as the coding
parameter. Moreover, our numerical calculations (Szczepan-
ski et al. 2004) show that T = 5 s represents a good trade-off
between the two conflicting requirements mentioned above,
and our analysis of other experimental data corroborates this
choice (Amigo et al. 2004).

2.2 Firing rate estimation

High level of variability and irregularity are typical of in vivo
recordings of brain activity. Even when the conditions of the
experiment are exactly repeated, the same neuronmay gener-
ate quite different outputs from trial to trial. This variability
can be caused by randomness in spike generation, and dissim-
ilarity in neuronal processing during each trial. In classical
physiology, the Firing Rate depends on the intensity of the
stimulus. In general, the FiringRate increaseswith increasing
stimulus strength. Thus, understanding the relation between
Firing and Information Rate is of high importance (Rieke
et al. 1997; Churchland et al. 2010). The commonly applied
Firing Rate definition involves the temporal average (Gerst-
ner et al. 2014) and is given by:

FR = nT

T
(1)

where nT denotes spike count and T is the length of the time
window. In practice, in order to get sensible averages, some
reasonable number of spikes should occur within the time
window. Since themessages are treated as outputs of a locally
stationary stochastic process, the Firing Rate as defined by
(1) is specific for a given information source, provided T is
large enough. Thus, nT · Δτ can be related to the probability
p of spike appearance, where Δτ is the time resolution or
bin size.

2.3 Entropy and information in the Shannon sense

From a mathematical point of view, the information con-
tained in a given spike train, after the encoding (binning)
process, is represented as an output of a stochastic process,
being in fact a sequence of symbols. It is assumed that the
set of symbols (alphabet) is finite, and that the stochastic
process representing the spike train has a stationary distribu-
tion (Ash 1965; Cover and Thomas 1991). Consider first a
general case, in which X is a discrete random variable with
probability function p(xi ), i = 1, 2, . . . , n. Then, according
to Shannon, the information transmitted by the event X = xi

is equal to − log2 p(xi ). In this sense, less probable events
carrymore information. The average information transmitted
by all realizations of X is called entropy and is given by:

123



456 Biological Cybernetics (2019) 113:453–464

H(X) := −
n∑

i=1

p(xi ) log2 p(xi ) . (2)

Now, let Z L be the set of all words (i.e., blocks, for example
binned spike trains) of length L , built of symbols (letters)
from the finite alphabet Z = {z1, z2, . . . , zm}. Each word
zL can be treated as a message carried by the corresponding
spike train. If P(zL) denotes the probability that the word
zL ∈ Z L occurs, then the information carried by this word,
according to Shannon’s Theory, is equal to

I (zL) := − log2 P(zL) . (3)

Thus, the expected or average information, called Shannon
block entropy, of random variable {Z L} corresponding to the
words of length L according to (2) is

H(Z L) = −
∑

zL∈Z L

P(zL) log2 P(zL) , (4)

The entropy of spike trains quantifies howmuch information
these spikes could provide. The adequatemeasure for estima-
tion of efficiency of an information source is the information
transmitted, on average, by a single symbol. This measure is
called Entropy Rate or Information Transmission Rate , and
is defined (Ash 1965) as:

ITR({Z}) = lim
L→∞

1

L
H(Z L) . (5)

Entropy rate is an important invariant for ergodic stochastic
processes (Cover and Thomas 1991) and is often applied
in the analysis of biological signals. Based on the equation
H(X , Y ) = H(X)+ H(Y |X) = H(Y )+ H(X |Y ), which is
valid for any random variables X , Y , it was proven in (Ash
1965) that for any Information Source Eq. (5) can be applied
to estimate the Mutual Information (6) between input and
output signals.

The fundamental concept of Shannon‘s Theory (Shannon
1948) is Mutual Information MI(X , Y ), which quantifies the
information dependence of random variables or stochastic
processes. The MI(X , Y ) between input and output signals
is defined as

MI(X , Y )=H(X)−H(X |Y ) = H(X) + H(Y ) − H(X , Y )

= H(Y ) − [H(X , Y ) − H(X)] ,

(6)

where H(X |Y ) is a conditional entropy of X under the
assumption Y is known and H(X , Y ) is the joint entropy
of X and Y . Since H(X , Y ) − H(X) > 0, by equation
(6) the H(Y ) is, in fact, the upper bound of MI(X , Y ), and
it is closely related to the capacity (being maximal Mutual

Information over input probability distributions) of the com-
munication channel. Capacity is the most important quantity
describing a communication channel because it characterizes
possibilities of decoding with assumed error. Clearly, H(Y )

itself also depends on the input signal X , i.e., for two differ-
ent signals X1 and X2 the output entropies H(Y1) and H(Y2)

will be, in general, also different. Thus, measuring H(Y ) we
have information about the behavior of MI(X , Y ).

2.4 Entropy rate estimators

Over the past two decades, entropy estimation has received
a lot of attention (Paninski 2003; Amigo et al. 2004; Kennel
et al. 2005; Gao et al. 2008; Lesne et al. 2009; Crumiller et al.
2011). Several entropy rate estimators have been proposed
(Gao et al. 2008). The basic requirements of these estimators
are, at least, local stationarity and ergodicity of the under-
lying stochastic process. In Szczepanski et al. (2003) and
Amigo et al. (2004), we have used the Lempel–Ziv Com-
plexity (LZC) (1976). These estimators are known to be
consistent only under certain restrictive conditions on the
data, i.e., to converge quickly enough to the entropy value.
Here, we apply the estimator of Strong et al. (1998) due to
its low computational complexity and high accuracy. This
approach, commonly called the Direct Method, is based on
calculating block entropies using observed frequencies of
words zL for a few consecutive and relatively small lengths

L . Then a line h, which best fits the points ( 1
L ,

H(Z L )
L ), is

determined. Finally, with 1
L → 0, h is extrapolated to the

point of (0, H({Z})). Using this method, we are able to get
fast and reliable entropy rate estimations. Our simulations for
Markov processes confirmed the high quality of this method
(Paprocki and Szczepanski 2013a; Szczepanski et al. 2004),
while the quality of Lempel–Ziv estimator was verified in
Szczepanski et al. (2003) and Amigo et al. (2004). In these
papers, we presented simulations showing the convergence
rate of entropy estimators we used as a function of word
length. It turned out that the estimation error was relatively
low (about 4% for the sequences of 400 bits).

2.5 Relation between firing rate and entropy rate

As mentioned in Sect. 1, an important question when study-
ing information processing in the context of brain physiology
is the relationship between Information Transmission and
Firing Rates. It is known that Information Transmission
Rate is sensitive to the variability of the encoded spike train
(Szczepanski et al. 2004; Lempel and Ziv 1976; Paprocki
and Szczepanski 2011, 2013a, b). The way of generat-
ing spike trains is usually modeled by (homogeneous or
non-homogeneous) Poisson or Markov stochastic processes
(Bialek et al. 1991; vanHemmen andSejnowski 2006;Brown
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Fig. 1 Information Transmission Rate and Firing Rate for one cell (X-
ON1) for four different spot sizes a 0.39◦; b 0.98◦; c 2.34◦; d 2.54◦.
Here, the center size was approximately 1.176◦. Only the averages are
shown, since the standard deviation values are relatively small com-
paredwith the averages (0.8%), and the deviation curves largely overlap

with the curves for the averages. At the bottom of each panel, the PCC
between ITR and FR is also shown (in green). Note that there are peri-
ods where the ITR decreased while at the same moment FR decreased
and vice versa. This is confirmed by PPC values, which mostly oscillate
around zero. For details see Sect. 3 (colour figure online)

et al. 2002). For such processes, there is no straightfor-
ward correlation between firing rate and information rate.
For example, for an Information Source which is governed
by a Markov process with high transition probabilities from
the state “no spike” to the state “there is spike” and vice versa
(e.g., above 0.9), typical sequences generated are almost peri-
odic, like 010101 . . . . Thus, in such cases the firing rate
is high (since the probability of spike in a bin is close to
0.5), while the information carried by such almost periodic
sequences is close to 0. Therefore, our approach concern-
ing the interpretation of coding strategy is based primarily
on the analysis of the Pearson Correlation Coefficient (PCC)
between Information Transmission Rate and Firing Rate. It
is known that PCC does not depend on the inner properties of
the random variables. It depends only on the joint probabili-
ties of these random variables and compares their variability.

2.6 Experiments

The experimental methodswe usedwere similar to those pre-
viously described in (Kaplan and Shapley 1984; Ozaki and

Kaplan 2006; Casti et al. 2008; Uglesich et al. 2009). They
conformed to the requirements and regulations of the NIH,
and were approved by the Mount Sinai IACUC. Nine adult
cats were anesthetized initially with an intramuscular injec-
tion of xylazine (Rompun, 2 mg/kg) followed by ketamine
hydrochloride (Ketaset, 10 mg/kg), and then given propofol
(diprivan) as needed during surgery. The animalwasmounted
in a stereotaxic apparatus and phenylephrine hydrochloride
(10%) and atropine sulfate (1%)were applied to its eyes. The
animal’s heart rate and blood pressuremonitored the depth of
anesthesia. Signs of distress, such as salivation or increased
heart rate, were watched for, and the infusion rate of the anes-
theticwas adjusted as necessary. The eyeswere refracted, and
correcting lenses focused the eyes for viewing distances of
57–114 cm. The tip of the recording electrode was brought
close to the cell body of an LGN neuron, to ensure a clean
and stable extracellular recording of both the LGN spike and
its retinal input (Bishop 1953; Kaplan and Shapley 1984). In
this paper, we analyze only the LGN spikes.

Once a well-isolated LGN cell was identified, its spa-
tiotemporal receptive field was mapped using a 16 × 16
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Fig. 2 Information Transmission Rate and Firing Rate for one cell (X-
OFF2) for four different spot sizes a 0.83◦; b 1.38◦; c 2.47◦; d 3.3◦.
Here, the center size was approximately 1.1◦. Only the averages are
shown, since the standard deviation values are relatively small com-
paredwith the averages (1.5%), and the deviation curves largely overlap

with the curves for the averages. At the bottom of each panel the PCC
between ITR and FR is also shown (in green). Observe, that ITR and
FR have very similar time courses. For details see Sect. 3 (colour figure
online)

checkerboard, in which each check was modulated by an m-
sequence (Reid et al. 1997), presented on a black and white
CRT (frame rate: 160 Hz), with which we were able to find
the size and location of the receptive field center. We fur-
ther characterized the cell as ON or OFF and X or Y, using
contrast-reversing gratings or a small spot flashing at an opti-
mal temporal frequency.

For the Information and Firing Rate calculations, we used
a visual stimulus that consisted of a spatially homogeneous,
temporally noisy flashing spot centered on the cell’s recep-
tive field. The temporal pattern of this stimulus followed a
“natural” luminance time series, as described by van Hateren
(1997), but without preserving the temporal correlations. A
stimulus set at a given spot size typically consisted of 256
trials, each 8 s long, for which 128 repeat (R) segments of
the same stimulus sample were interleaved with 128 unique
(U) segments, in the pattern RU RU ... RU. During each run,
the spot size was fixed, and only the luminance level was var-
ied. For some recordings, just 32 unique trials were recorded,
with 4 repeat segments between the unique segments in the
pattern RRRRU RRRRU ... RRRRU.

In total we analyzed here 5 X-OFF and 6 X-ON cells,
recorded in 9 cats. The cells analyzed in this work are a sub-

sample of a larger collection of cells recorded from these cats.
Most of the neurons in this larger sample were not recorded
for a sufficiently long time to allow the presentation of several
spot sizes, which was required for our analysis. Although the
number of cells is small, it is comparable to numbers used in
other similar studies, such as Reinagel and Reid (2000). For
three of the X-OFF cells the stimulus presentation order was
RU RU RU, and for two other X-OFF cells it was RRRRU
RRRRU ... RRRRU. For four of the X-ON cells the stimulus
sequencewasRURU ... RU, and for the remaining twoX-ON
cells the stimulus was RRRRU RRRRU ... RRRRU.

3 Results

We analyzed the relation between ITR, the transmission rate
of information (in Shannon sense, Eq. 3) and the correspond-
ing Firing Rate (FR), addressing two questions:

– How does the cell type (ON or OFF) affect this relation?
– How does the size of the stimulus affect the relation
between ITR and FR?
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Fig. 3 Comparison of ITR and FR behavior for the same period of time
for four LGN cells: two ON (left column) and two OFF (right column),
at several spot sizes: a X-ON5, 0.68◦; b X-OFF3, 0.54◦; c X-ON5,
0.95◦; d X-OFF3 1.10◦, e X-ON1, 3.12◦; f X-OFF1, 2.75◦. Only the
averages are shown, since the standard deviation values are relatively
small compared with the averages (0.8–1.5%), and the deviation curves

largely overlap with the curves for the averages. For the X-ON cells, the
courses of ITR and FR are qualitatively different, while for X-OFF cells
these quantities follow a very similar time course. Under each panel, the
corresponding PCC between ITR and FR curves are shown (in green)
(colour figure online)

To answer thefirst question,wecompared signals recorded
from X-ON and X-OFF LGN cells. To address the second
question, we analyzed the time evolution of ITR and FR

across a range of increasing spot sizes that gradually engaged
most or all of the cell’s receptive field surround. In any given
set of repeat (R) and unique (U) stimulus trials, the spot
size was kept fixed. As it is presented in Section Information
Processing and Encoding, at each moment of time t we esti-

mated the Information Rates and Firing Rates from a 5 s time
window moving over the entire duration of the experiment.
We binned spike trains as has been commonly done in the
literature (Rieke et al. 1997).

For X-OFF cells, we estimated ITR and FR within 8 s R
segments in three experiments, and 32 s RRRR segments in
twoother experiments (see details of experiment in Sect. 2.6),
while for X-ON cells we estimated these quantities in two
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experiments for 32-s intervals (RRRR), and in two other
experiments for 8-s intervals (R). For cells with the stimuli-
order RU the time interval of estimation is 3 s long, i.e.,
duration of R (8 s) minus duration of the moving window
(T = 5 s). We repeated these calculations 128 times, once
for each repeat trial R. Next, for each moment of time t
we calculated the average and standard deviation over these
128 estimation results. We performed similar calculations
for cells with the stimuli-order RRRR. In this case, the time
interval of estimation was for one experiment also 3 s, and
for another experiment it was 27 s long (32–5 s = duration of
RRRR-T ).

For both OFF and ON cells, the standard deviation values
were relatively small compared with the average values (0.8–
1.5%). Thus, since the deviation curves largely overlap the
curves for the averages, for clarity we show only the average
values in Figs. 1, 2, and 3.

3.1 Cell type (ON or OFF) influence on ITR and FR

In this section, we present results comparing the Information
Transmission Rate with Firing Rate for ON and OFF cells
for various stimulus spot sizes. The spot sizes ranged from
0.39◦ to 28.00◦ of visual angle (for details see Sect. 2.6). The
visual stimulus parameters were chosen to address the role of
the antagonistic receptive field surround. First, a small spot
was shown on the screen, and then, in the next experiments,
the spot size was successively increased so that the screen
was finally completely filled.

Our calculations show that for the ON cells under consid-
erations there were periods of time for which the ITR and
FR curves behaved quite differently. For all spot sizes, there
are periods where the Transmission Rates increased while at
the same moment the Firing Rates decreased and vice versa.
Typical cases are presented in Figs. 1 and 3 (left column).

Figure 1 shows the ITR and FR for the X-ON cell for
several spot sizes, (a) small (<1.0◦), (b) medium (1.0 ◦–
2.0◦) and (c, d) large (> 2.0◦). The divergences between ITR
and FR are especially visible in Fig. 1 panel (a) 5.0–6.0 s and
6.5–6.8 s, panel (b) 5.0–6.8 s, panel (c) 5.2–5.5 s and 6.2–
6.9 s, and panel (d) 5.0–5.5 s. In Fig. 3 these divergences are
clear in panel (a) 1.7–2.0 s, panel (c) 1.7–2.0 s and panel (e)
1.5–2.0 s and 2.5–2.8 s.

In contrast, in Figs. 2 and 3 (right column) for OFF cells
weobserved a completely different relationship between ITR
and FR. Namely, the two measures have very similar time
courses. This can be seen during the entire time: an increase
in the number of spikes leads to a higher Transmission Rate,
while a decrease of this number causes a decrease in the
Transmission Rate.

The divergences between ITR and FR are reflected in the
corresponding Pearson Correlation Coefficients, which are
also shown in Figs 1, 2 and 3 (green trace). The time course

Table 1 Pearson correlation coefficients between ITR and FR for the
two cell types (ON, OFF) and three spot sizes

Small spot size Medium spot size Large spot size
<1.0◦ 1.0◦–2.0◦ >2.0◦

X-ON 0.35–0.40 0.30–0.45 0.30–0.35

p values 0.01 0.025 0.01

X-OFF 0.60-0.65 0.58–0.62 0.50–0.70

p values 0.025 0.075 0.025

Note that PCC is clearly higher for OFF cells

of the PCC was estimated over a moving time window of
0.25 s duration. The PCC values for X-OFF cells are clearly
high for small and medium spots, while for X-ON cells they
are about two times lower. Table 1 presents the PCCs between
ITR and FR for the ON and OFF cell types for different spot
sizes.

In Table 1, we see that for small, medium and large spot
sizes the correlations are lower for X-ON cells, and |PCC| is
not greater than 0.4, while for X-OFF cells we have higher
correlations, and |PCC| is in the range of 0.5–0.7.An interest-
ing observation is that for X-OFF cells stimulated with very
large spots, i.e., ones that stimulated both center and surround
of the receptive field, we also have higher correlations: the
value of |PCC | is equal to 0.6.

3.2 Stimulus size influence on information and
firing rates

We now address the second question listed above: how does
stimulus size affect the behavior of ITR and FR for both cell
types (ONorOFF) in theLGN, in otherwords,what role does
the antagonistic surround play in the information transfer? In
Fig. 3 we show results of a comparison of ITR and FR for
these two cell types for small (<1.0◦), medium (1.0◦–2.0◦),
and large (>2.0◦) spot sizes. We observed that ON cells
transmit more information than OFF cells, particularly for
smaller spot sizes, where only the receptive field center is
stimulated. In this case, the loss of information by OFF cells
when compared to ON cells is 70% for the cells presented
in Fig. 3, all panels. Moreover, for small spots the Firing
Rates for ON and OFF neurons can also differ significantly
(Fig. 3a). X-ON neurons can fire three times more often than
X-OFF cells (Fig. 3, all panels). Moreover, for X-OFF cells
the ITR and FR time courses, in corresponding time intervals,
are much more correlated then they are for X-ON cells. This
is especially visible in Fig. 3b, d, f.

In Table 2, the ranges of values reached by ITR and FR

are shown as a function of the spot size, i.e., small (<1.0◦),
medium (1.0◦–2.0◦), and large (>2.0◦) for X-ON and X-
OFF cells. For small spot sizes in the case of X-ON cells
ITR is in the range 50.0–58.0 [bit/s], while for X-OFF cells

123



Biological Cybernetics (2019) 113:453–464 461

it is in the range of 16.0–23.0 [bit/s]. For medium stimulus
sizes, the ITR values are also greater for X-ON cells (51.0–
58.0 [bit/s]) than for X-OFF cells (18.5–20.0 [bit/s]). When
we consider large spot sizes, the ITR values are in the range
(38.0–49.0 [bit/s]) and (12.5–25.2 [bit/s]) for X-ON and X-
OFF cells, respectively. Note that a given FR leads to a higher
ITR in X-ON cells than in X-OFF cells. These observations
also support the hypothesis that while X-OFF cells use rate
coding, the X-ON cells use the more sophisticated temporal
coding.

4 Discussion

In this paper, we have investigated two questions related to
the processing of luminance information in the mammalian
visual system, and its relation to the type of cell (ON or
OFF), using methods from Shannon’s Information Theory.
Specifically, we asked:

1. How does the cell type (ON or OFF) affect information
processing? To our knowledge, ours is the first attempt
to compare ON and OFF cells from the perspective of
Shannon information.

2. What role does the antagonistic surround play in the
transfer of information through the LGN? We compared
Firing Rate, FR, with Information Transmission Rate,
ITR, for spots of various sizes: small ones that stimu-
lated only the receptive field center, and large ones that
stimulated both center and surround.

We found that FR and ITR behaved rather differently
(were poorly correlated) for ON- but not for OFF- cells,
as long as the stimulation was confined to the receptive
field center. Once the surround of the receptive field was
stimulated as well, this difference disappeared. This result
suggests that during center stimulation, which is typically the
most effective and induces the highest firing rate, OFF cells
use an energy-expensive rate code to transmit information,
whileON cells employ amore sophisticated, energy-efficient
temporal code. Overall, it appears that the two cell types
are designed to transmit roughly the same amount of visual
information. Since ON cells firemanymore spikes, the infor-
mation per spike is, necessarily, lower.

4.1 Spike-time encoding

When analyzing neural encoding, the characteristics of the
stimulus should be taken into account. Some relevant exam-
ples come from studies in which stimuli were presented
only briefly (VanRullen et al. 2005; Gollisch and Meister
2008; Cerquera and Freund 2011). Such stimuli systemat-
ically influence the first-spike latency following a stimulus

onset. Gollisch and Meister (2008) discovered that the first-
spike latency allowed them to reconstruct the spatial structure
of their stimuli, and argued that the response characteris-
tics they observed resulted from the different kinetics of
the ON and OFF pathways. Similarly, Cerquera and Freund
(2011) found that the information derived from latencies of
the first spikes (supplemented by the second and third spike
times) allowed them to identify the velocities of moving
light patterns projected onto the isolated turtle retina. Lesti-
enne (2001), however, emphasized that millisecond spiking
precision (an essential requirement for a temporal code) typ-
ically requires dynamic stimulation or sharp changes in the
stimuli, a notion that was advanced previously by Mainen
and Sejnowski (1995). We note that conveying information
through the latency of the first spike is a form of a (minimal-
istic) temporal coding (Meister and Berry 1999; Van Rullen
and Thorpe 2001; VanRullen et al. 2005).

Srinivasan et al. (1982) argued that to avoid redundancy
and protect transmission against noise, there are interneurons
that exploit the spatial mean values of signals rather than spe-
cific deviations from them. Since a chemical blockade of the
ON pathway alters the receptive field, especially for stimuli
that are brighter than the background, it seems that ON cells
are mainly responsible for precise processing of mean values
(Zaghloul et al. 2003). Srinivasan et al. (1982) suggested
that the antagonistic surround of the receptive field plays a
role in Redundancy Reduction (Barlow 1961), which allows
the brain to conserve energy by communicating only non-
redundant information. Our findings can be taken as support
for that suggestion, although it is unclear why this should
apply only to ON cells and not to OFF cells, given the essen-
tial similarity of their underlying retinal circuits (but see
below). Perhaps this is due to the fact that, on average, under
the ambient illumination commonly used in visual experi-
ments, the firing rate of ON cells is ∼ 3 times as high as
that of OFF cells [see Table 1 in Kaplan et al. (1987) and
Passaglia et al. (2001)], so their need to conserve energy
is much more pressing. We note that Carandini (2016) has
recently suggested that the difference between ON and OFF
cells has to do with the fact that ON cells responses saturate
at high intensities. Perhaps these cells must resort to energy-
conserving temporal coding when their firing rate resources
are depleted, while OFF cells, which fire at a much lower
rate, can continue to use a more wasteful rate code.

4.2 Firing rate

The threefold difference between the mean firing rates of
ON and OFF cells in our data raises the possibility that the
difference we observed between ON and OFF LGN cells is
actually due to the firing rate, and not to the cell type per se. It
is not obvious how lowering the firing rate of a cell (all other
things being equal) would cause a change in the relationship
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Table 2 Spot size influence on
information and firing rates

Spot size (◦) ITR range (bit/s) FR range (spikes/s)

X-ON X-OFF X-ON X-OFF

Small < 1.0◦ 50.0–58.0 16.0–23.0 14.0–18.0 2.6–4.5

Medium 1.0◦–2.0◦ 51.0–58.0 18.5–20.0 13.0–17.0 3.2–3.6

Large > 2.0◦ 38.0–49.0 12.50–25.2 8.0–12.0 1.8–4.7

between FR and ITR, as quantified by the PCC , although
we might expect a higher mean to lead to higher variability.
To definitely establish the role of firing rate, one would have
to compare ON cells with low firing rate with OFF cells of
similar firing rates, but such a comparison was not possible
with our data set.

4.3 Firing precision

In addition to themean firing rate, an important characteristic
of the spike train is the temporal precision of the firing. Butts
et al. (2007) have shown that the firing precision can change
with the stimulus, to maintain a relatively constant relation-
ship between the time scales of the stimulus and the response
to it. The stimulus used in our experiments was similar to the
one used by Reinagel and Reid (2000) and to one of those
used by Butts et al. (2007), which typically elicits high pre-
cision firing. This precision has a bearing on the appropriate
encoding window (Theunissen and Miller 1995), which is
related to the length of the symbol in the neuron’s alphabet.

4.4 Anatomical considerations

Several studies have described differences in the retinal cir-
cuitry that lead to the ON and OFF cell types (Zaghloul et al.
2003). In particular, Margolis and Detwiler (2007) point out
that the OFF ganglion cells receive more amacrine input, and
as a result manifest different patterns of firing at rest, which
are not seen in cells of the ON pathways. It remains to be
seen whether such anatomical differences could account for
the functional differences uncovered by our analysis.

4.5 Other ON/OFF differences

Recently, Poria and Dhingra (2015) reported that blocking
glycine receptors with strychnine abolished oscillatory activ-
ity in OFF retinal ganglion cells (RGCs) in rd1 mouse retina,
but there was no such change inONRGCs. Jiang et al. (2015)
comparedON andOFF cells in the parvocellular layers of the
LGN of the awake, behaving macaque monkey. They report
contrast sensitivity differences between the two cell types,
and- surprisingly—a close relationship between the mon-
key’s perceptual performance and the responses of ON- but
notOFF- cells.Althoughneurons recorded in the cat LGNare

more similar in their response to contrast to the primate mag-
nocellular, rather than parvocellularLGN cells [see Figure 5
in Shapley andPerry (1986) andKaplan andShapley (1986)],
had worked on anaesthetized, rather than awake animals, our
finding that LGN ON cells transmit more information to the
visual cortex than do OFF cells could, perhaps, account for
the findings of Jiang et al. (2015).

4.6 Energy consideration

Recent studies (Harris et al. 2015) have shown that the prop-
erties of thalamic relay synapses are tuned tomaximize bits of
information transmitted per ATP molecule used, rather than
bits of information transmitted per second.Our data consisted
only of extracellularly recorded spike trains, and we had no
direct access to the synaptic currents that underlie these spike
trains. Thus we could not comment on the metabolic energy
cost of the cellular processes that underlie the neural infor-
mation processing we were studying. However, there is no
reason to believe thatONandOFF thalamic neurons have dif-
ferent synapticmechanisms. Asmentioned above, the crucial
difference between these populations seems to be the aver-
age firing frequency, which is due to the underlying retinal
circuitry. We note, however, that the report in Harris et al.
(2015) of increased information transmission across thalamic
synapses with larger EPSCs could account for the observa-
tion made in Kaplan et al. (1987) of improved transmission
from retina to LGN with increased stimulus contrast.

In conclusion, our results suggest a novel, intriguing dif-
ference between the information coding strategy of the ON
and OFF cell populations, a difference that is designed to
maximize energy efficiency in the transmission of visual
information from the retina to the rest of the brain.
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