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In the mathematical model of melt spinning of fibres from crystallizing polymers
the set of conservation equations is completed with structure-controlled constitu-

tive equations and structure evolution equations describing kinetics of stress-induced
crystallization. In a definite range of conditions, bifurcation of solutions is observed.
Maximum filament velocity is limited and the same boundary conditions yield differ-
ent steady-state dynamic and structure profiles. Bifurcation is observed when stress-
induced crystallization leads to rapid solidification of the material. Critical conditions
for bifurcation in melt spinning are analyzed and physical mechanism of such a be-
haviour is discussed.

1. Introduction

Computer modelling became a standard technique in polymer technology.
Complexity of polymer behaviour including structure-dependent physical prop-
erties requires thorough adjustment of information to be input into governing
equations. A model is as good (as bad) as the input information about the ma-
terial behaviour.

In the course of simulation melt spinning of polyethylene terephthalate (PET),
bifurcation of steady-state solutions was observed [1–3]. The same boundary con-
ditions corresponded to two or more stress profiles and different structures of the
resulting fibres. Multi-valued solutions appeared when polymer was crystallized
under stress. Bifurcation of solutions may be important for the design and op-
timisation of industrial processes and determines the range of conditions under
which stable formation of fibres is possible. In this paper we will analyse the
physical source and mechanism of this phenomenon.
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2. Description of the process

Figure 1 presents a scheme of single-filament, steady-state melt-spinning.
Polymer melt is extruded at constant temperature, T0, through a die of ra-
dius, R0, at constant mass flow rate W , which determines constant extrusion
velocity V0. Fluid polymer jet is subjected to elongation in the direction z,
and cooling by air with constant temperature T∞ ≪ T0. At the distance L

from the extrusion point, solidified filament is collected with constant take-up
velocity VL.

Fig. 1. Scheme of melt spinning.

3. Numerical simulation of melt spinning

Our simulations of polyethylene terephthalate spinning [1–4] were based on
thin filament approximation neglecting radial distribution of kinematic and dy-
namic characteristics (velocity, V , temperature, T , axial tension, F ) and replac-
ing them with those averaged over the filament cross-section. This reduces the
problem to one dimension – the coordinate z – measured along the filament
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from the extrusion point (spinneret), z = 0, to take-up point, z = L. The dy-
namic model involves structure-controlled rheological behaviour and evolution of
polymer structure. It has been observed [1–3] that some solutions indicate bifur-
cation. Take-up velocity, VL, plotted vs. initial tension, F0, exhibits a maximum
(Figs. 2 and 3). The same boundary condition V (z = L) = VL corresponds to
different tensions and different filament structures. To elucidate the source and
mechanism of this phenomenon we will analyse a simplified model, as compared
to our early simulations.

Fig. 2. The velocity-tension relation at constant mass output, W = const.

Fig. 3. The velocity-tension relation at constant filament thickness, W/VL = const.
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4. Simplified governing equations

Like in the earlier research [1–4], the steady-state, one-dimensional model
based on thin-filament approximation will be analysed. The steady-state mass

conservation equation assumes the form

(4.1) ρ(z) π R2(z)V (z) = const = W,

where W is mass flow intensity, ρ – density, R – radius of the filament at the
distance z from the extrusion point, and V – axial velocity averaged over the
filament cross-section.

In the equation of motion, effects of gravity, surface tension and air drag are
neglected, leaving only the convective inertial term

(4.2) ρV
dV

dz
=

1

πR2

dF

dz
,

where F (z) is local tension at the distance z from the extrusion point.
In the energy conservation equation, heat of crystallization and viscous dis-

sipation are neglected leaving convective heat transfer from the surface of the
filament to the cooling medium. The axial temperature gradient reduces to

(4.3)
dT

dz
= − 2α∗

ρCpRV
(T − T∞) = −2πRα∗

CpW
(T − T∞),

where Cp denotes specific heat of the filament, α* – surface coefficient of heat
transfer, and T∞ – constant temperature of the cooling medium. From Ref. [5]

(4.4)

Nu = 0.42Re1/3,

Rα∗ = 0.42 λs

(
4WV

ν2
sρπ

)1/6

= const W 1/6V 1/6,

where λs and νs denote, respectively, thermal conductivity and kinematic vis-
cosity of the cooling medium (air). Equations (4.3) and (4.4) reduce to

(4.5)
dT

dz
= −constW−5/6V 1/6(T − T∞).

The conservation equations are completed with structure-controlled consti-

tutive equation and structure evolution equation.
The simplest constitutive model is used – incompressible Newtonian fluid

with position-dependent viscosity, η(z). Stress tensor, p, averaged over the fila-
ment cross-section reduces to a diagonal, uniaxial form. Thus the normal stress
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difference, ∆p = pzz − prr, can be expressed through axial tension, F (z)

(4.6)

p + I p0 = 2η (z) ė = η ·
(
∇V + ∇VT

)
,

pzz − prr = ∆p =
F (z)

πR2(z)
= 3η(z)

dV

dz
.

With the above rheological behaviour, axial velocity gradient is obtained in the
form

(4.7)
dV

dz
=
ρV [F0 +W (V − V0)]

3Wη(z)
.

The apparent shear viscosity, η, is a function of position-dependent tempera-
ture, T , and local filament structure, characterized by the degree of crystallinity

(volume fraction of crystalline phase) X:

(4.8) η(z) = η [T (z), X(z)] .

The fact that rheological properties of the filament depend on crystallinity,X,
introduces the necessity of considering the rate at which the structure is devel-
oped. The system of governing equations has to be completed with a structure

evolution equation. Crystallization equation is assumed in the form of a non-
isothermal, quasi-static Kolmogoroff–Avrami–Evans equation [6, 7]

(4.9)

d ln(1 −X)

dz
= −dE

dz
,

E =




z∫

0

K(z)

V
dz




n

,

dE

dz
= n




z∫

0

K(z)

V
dz




n−1

K(z)

V
,

d ln(1 −X)

dz
= −nE (n−1)/nK[T (z),∆p(z)]

V
.

Crystallization rate characteristic K is controlled by local temperature, T (z) and
local normal stress difference ∆p(z).

5. Boundary conditions

The problem involves four first-order differential equations, respectively, for
V (z), F (z), T (z), and X(z) and algebraic equation for radius R(z), Eq. (4.1).
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The conditions at the extrusion point, z = 0 read

(5.1)

R(z = 0) = R0,

V (z = 0) = V0,

F (z = 0) = F0,

T (z = 0) = T0,

X(z = 0) = 0.

The initial tension, F0, however, is not defined a priori. On the other hand,
the process of spinning imposes another constraint on velocity at z = L. To
obtain the take-up velocity VL as a function of tension F0, an inverse problem is
solved. The values of F0 are assumed and the corresponding take-up velocities,
VL, are calculated. The set of boundary conditions reduces to

(5.2)

R(z = 0) = R0,

V (z = 0) = V0,

V (z = L) = VL ⇔ F0,

T (z = 0) = T0,

X(z = 0) = 0.

This is where the bifurcation appears: in some conditions the take-up velocity
VL as a function of tension F0 passes through a maximum (Figs. 2, 3).

6. Velocity profile and the criterion of bifurcation

Integration of Eq. (4.7) with boundary conditions (5.2) yields the axial ve-
locity profile V (z)

(6.1) ln
F0V (z)

[F0 +W (V − V0)]V0
=
ρ (F0 −WV0)

3W

z∫

0

dz

η(z)

and, at the end of the filament (z = L),

(6.2) ln
F0VL

[F0 +W (VL − V0)]V0

=
ρ (F0 −WV0)

3W

L∫

0

dz

η(z)
=
ρ (F0 −WV0)

3W
· IL (F0, VL) ,
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where IL is a functional describing effective fluidity (deformability) of the spin-
ning line. Eq. (6.2) presents relationship between the two alternative boundary
conditions V (z = L) = VL and F (z = 0) = F0.

Bifurcation appears when the take-up velocity, VL, plotted vs. initial tension,
F0, is maximum . Putting

(6.3)
dVL

dF0
= 0

we obtain the condition of bifurcation in the form

(6.4)
∂ ln IL
∂ lnF0

∣∣∣∣
bifur

=
W (VL − V0)

[F0 +W (VL − V0)] ln
F0VL

V0 [F0 +W (VL − V0)]

− F0

(F0 −WV0)

or:
∂ ln IL
∂ lnF0

∣∣∣∣
bifur

=
ξ (S − 1)

[1 + ξ (S − 1)] ln
S

1 + ξ (S − 1)

− 1

(1 − ξ)

where S = VL/V0 is total elongation of the filament and ξ = WV0/F0 is the ratio
of inertial force to viscous tension. Asymptotically

(6.5)

ξ → 0 :
∂ ln IL
∂ lnF0

∣∣∣∣
bifur

= −1,

ξ → ∞ :
∂ ln IL
∂ lnF0

∣∣∣∣
bifur

= 0.

The necessary condition of bifurcation is reduction of the fluidity integral IL
with increasing tension F0, or tension-induced solidification . For slow, inertialess
deformation (ξ = 0) IL must be inversely proportional to F0. It can be shown that
the critical derivative [∂ ln IL/∂ lnF0] bifur monotonically increases with total
deformation, S, and inertia, ξ, from −1 to zero. In real spinning conditions the
inertia ratio is rather small (ξ < 1) and the condition of bifurcation is confined
to the range (−0.5, −1.0).

7. Physical sources of tension-dependent fluidity

Reduction of the fluidity integral, IL, with tension, F0, results from variable
shear viscosity. For the sake of simplicity we will present η as a product of
temperature-dependent and crystallinity-dependent functions

(7.1) η(T,X) = ηT (T ) ηX(X).
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The expected variation of the integral IL may thus be controlled by the effects
of temperature and/or crystallinity

IL ≡
L∫

0

dz

ηT [T (z)] · ηX [X(z)]
,

(7.2) ∂ ln IL
∂ lnF0

= −F0

IL

L∫

0

1

η

[
∂ ln ηT

∂T

∂T

∂F0
+
∂ ln ηX

∂X

∂X

∂F0

]
dz

=
∂ ln IL
∂ lnF0

∣∣∣∣
temp

+
∂ ln IL
∂ lnF0

∣∣∣∣
stress

.

Before investigating various effects we will note that our early simulations
which revealed bifurcation [1–3] were concerned with a specific material, linear
polyethylene terephthalate. Standard material characteristics chosen from avail-
able data are listed in Table 1. In the course of analysing individual effects some
of the standard characteristics were varied.

Table 1. Standard material characteristics used.

Parameter
Equation Standard Alternative

No. value values
studied

Extrusion temperature, T0, K 557

Maximum thermal crystallization (7.6) 463
rate temperature, Tmax, K

Melting temperature, Tm, K (7.6) 553

Glass-transition temperature, Tg, K (7.6) 340

Maximum thermal crystallization (7.6) 1.6 × 10−2 1.6 × 101,
rate, K0, s−1 1.6 × 104

Half-width of crystallization rate, D, K (7.6) 32

Stress-induced crystallization parameter, A (7.6) 500 100, 50, 10, 5, 1, 0

Activation energy for viscous flow, E/k, K (7.4) 6923.7 13847.4, 20771.1

Viscosity-temperature function, (7.4) Arrhenius
ηT (T ;E)

Viscosity-crystallinity function, (7.5) hyperbolic,
ηX(X;Xcrit) Xcrit = 0.1,

α = 1

7.1. Effects of temperature-controlled viscosity

Polymer viscosity is a decreasing function of temperature, T . In the absence
of crystallization reduction of the integral IL with increasing tension F0, re-
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quires such a change in the dynamics of the process that in the average, local
temperature is reduced by tension F0.

(7.3) ηX = 1,
∂IL
∂F0

< 0 ⇒
L∫

0

1

η

[
∂ ln ηT

∂T

∂T

∂F0

]
dz > 0.

Viscosity of polymer melts can be described with the simple Arrhenius model

(7.4) ηT (T ) = η0e
E/kT ,

where E is activation energy. The higher is E, the more steep will be the in-
crease of viscosity with reciprocal temperature. To analyse the effects of ηT on
bifurcation we will compare three functions with different parameters E and η0.
The functions are normalized to produce the same viscosity at the extrusion
temperature T0 = 573 K (Table 2).

Table 2. Parameters of the Arrhenius viscosity-temperature function.

Activation energy, η0 η(573 K), Pas η(340 K), Pas

E/k, K Pas extrusion glass transition

6923.7 6.547 × 10−4 1.158 × 102 4.570 × 105

13847.4 3.701 × 10−9 1.158 × 102 1.803 × 109

20771.1 2.092 × 10−14 1.158 × 102 7.116 × 1012

Figure 4 presents VL vs. F0 plots for three viscosity-temperature functions
controlled by different activation energies. It is evident that in the range studied,
no bifurcation was observed.

Fig. 4. Velocity-tension relations for polymer melts with temperature-controlled viscosity
(ηX = 1). Reduced activation energies, E/k, indicated.
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7.2. Effects of crystallization

7.2.1. Viscosity vs. crystallinity. Rheological properties of polymer melts are
known to be sensitive to crystallization. In contrast to rigid-particle suspen-
sions, small amounts of crystalline phase can make viscosity of polymer melts
higher by some orders of magnitude, ultimately converting viscous fluid into a
plastic solid [8–10]. This effect is often visualised [8, 10, 11] as crosslinking of lin-
ear polymer chains. Small crystals (nuclei?) bind polymer chains together acting
as physical crosslinks. When the number of such interchain bonds reaches the
critical level (approximately two bonds per primary chain), a solid rubberlike
network is obtained.

In the course of crystallization, the polymer melt consisting of entangled
chains is gradually converted into a system of aggregates and, when density of
crystals reaches the critical level, Xcrit, into a rubberlike network (Fig. 5).

Fig. 5. Model of crystallization-affected viscosity of polymer melt.

Simple model describing such a behaviour has been proposed in Ref. [11]

(7.5) ηX =





1 X = 0,

[
Xcrit

Xcrit −X

]α

X < Xcrit,

∞ X ≥ Xcrit.
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Hyperbolic function Eq. (7.5) predicting abrupt viscosity increase nearX = Xcrit

was used in our earlier simulations for PET [1–4]. Similar function was used by
Krieger and Dougherty [12] for viscosity of concentrated suspensions.

7.2.2. Crystallization rates. Crystallization of long-chain polymers is very sen-
sitive to temperature and stress. Moderate stresses elevate the crystallization
temperature and crystallization rates. The latter may increase by several orders
of magnitude compared to unstressed systems [13, 14].

The crystallization rate function K in Eq. (4.9) is considered in the form [15]

K[T,∆p] = KT (T ) ·Kstress(∆p),

(7.6) KT (T ) =




K0e

−4 ln 2(T−Tmax)2/D2
for Tg < T < Tm,

0 for T ≤ Tg or T ≥ Tm,

Kstress(∆p) = exp

[
A

(
∆p

∆pi

)2
]
.

The temperature-controlled partKT (T ), is assumed in the form of a Gaussian
function with maximum value K0 at T = Tmax and half-width D. The function
is truncated on both ends of the crystallization interval. The lower temperature
limit is determined by vanishing translational mobility at the glass transition
temperature, Tg; above the upper limit (melting temperature, Tm) crystallization
is excluded thermodynamically. The exponential form of the stress-controlled
function Kstress was found useful in interpretation of experimental data [14]. ∆pi

denotes the stress level required for practically complete extension of polymer
chains.

Variation of crystallization rate in the evolution equations (4.9) and, conse-
quently, the degree of crystallinity, X, and viscosity, η, with tension F0, is

K(T,∆p) = KT (T ) ·Kstress(∆p),

(7.7)
∂K

∂F0
= K(T,∆p)

[
∂ lnKT

∂T

∂T

∂F0
+
∂ lnKf

∂f

∂f

∂F0

]

=
∂K

∂F0

∣∣∣∣
therm

+
∂K

∂F0

∣∣∣∣
stress

and includes thermal and stress effects.
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7.2.3. Thermal crystallization. Consider the crystallization rate controlled by
temperature only. Using the model equations (7.5), the dependence of thermal
crystallization rate on tension is obtained in the form

(7.8)

Kstress(∆p) = 1,

∂K

∂F0

∣∣∣∣
therm

=
∂KT

∂T

∂T

∂F0
=

−8 ln 2(T − Tmax)

D2
K0e

−4 ln 2(T−Tmax)2/D2 ∂T

∂F0
.

Thermal crystallization rate passes through a maximum and the sign of
∂T/∂F0 can be different at different positions z in the melt. To analyse the effect
of thermal crystallization on bifurcation, we have plotted VL vs. F0 functions for
three different K0 values. The Gaussian-type thermal crystallization rate func-
tion (Eq. (7.7)) was combined with hyperbolic viscosity-crystallinity function
(Eq. (7.6)). The results presented in Fig. 6 show that in the absence of stress-
induced crystallization, the take-up velocity VL monotonically increases with
tension F0.

Fig. 6. Velocity-tension relations for crystallizing polymer melts. Standard hyperbolic
viscosity-crystallinity function, ηX , is combined with thermal crystallization. Crystallization

rates, K0 indicated.

With increasing crystallization rate, K0, the upturn of the velocity-tension
functions is shifted to higher tensions, F0, but their monotonic shape is un-
changed.
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7.2.4. Stress-induced crystallization. Last but not least, we will discuss poly-
mer crystallization induced by stress. Crystallization rate controlled by stress
reads

(7.9)

∂K

∂F0

∣∣∣∣
stress

= KT (T )
∂Kstress

∂∆p

∂∆p

∂F0
=

2A∆p

(∆pi)
2KT (T ) e

A
�

∆p

∆pi

�2
∂∆p

∂F0
,

∆p =
ρV [F0 +W (V − V0)]

W
,

∂∆p

∂F0
=

∆p

F0 +W (V − V0)

[
1 + (F0 +W (2V − V0))

∂ lnV

∂F0

]
.

Now tension, F0, and normal stress, ∆p, appear explicitly in the expressions
for crystallization rate and obviously will contribute to crystallinity, X. Figu-
res 7–9 present VL vs. F0 plots at three different thermal crystallization rates
combined with different stress-induced crystallization coefficients, A. The calcu-
lations have been performed using standard Arrhenius viscosity and standard
hyperbolic viscosity-crystallinity relation (Table 1).

At small and medium values of K0, bifurcation is evidently starting with
some critical A.

Fig. 7. Velocity-tension relations for crystallizing melts. Standard hyperbolic viscosity-
crystallinity function combined with stress-induced crystallization. Thermal crystallization

rate, K0 = 0.016 s−1, stress-induced crystallization rate coefficients, A, indicated.
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Fig. 8. Velocity-tension relations for crystallizing melts. Standard hyperbolic viscosity-
crystallinity function combined with stress-induced crystallization. Thermal crystallization

rate, K0 = 16000 s−1, stress-induced crystallization rate coefficients, A, indicated.

Fig. 9. Velocity-tension relations for crystallizing melts. Standard hyperbolic viscosity-
crystallinity function combined with stress-induced crystallization. Thermal crystallization

rate, K0 = 16 s−1, stress-induced crystallization rate coefficients, A, indicated.
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Different behaviour is observed when thermal crystallization rate is very high
(Fig. 9). At K0 = 1600 s−1 the VL − F0 plots are monotonically increasing. At
A = 0 the plot is concave, at small A = 1− 10 it is S-shaped with two inflexion
points, and at high A = 50 − 500 it is S-shaped with one inflexion point.

The behaviour at high crystallization rates (both thermal and stress-induced)
seems to result from rapid solidification requiring higher and higher tensions for
flow deformation. It is interesting to note that S-shaped VL − F0 characteris-
tics restrict admissible spinning conditions (maximum), although no bifurcation
appears.

8. Discussion

We have demonstrated that in some conditions, solutions of the dynamic
equations of melt spinning show bifurcation. Bifurcation results from stress-
controlled solidification of the fluid polymer. Temperature effects seem to be
of secondary, if any, importance. The decisive role is played by crystallinity-
controlled viscosity combined with stress-induced crystallization. In some regimes
(moderate thermal crystallization rates, strong stress-induced crystallization ef-
fects) maximum take-up velocity cannot be surpassed. In other regimes (high
thermal and stress-induced crystallization rates), small increase of spinning ve-
locity requires extremely high tensions and may result in fracture of the solidi-
fying polymer jet.

It is interesting to note that other authors who studied dynamics of melt
spinning in crystallizing polymers [16–19] did not report bifurcation. The reasons
may be different polymers and different material characteristics considered. Our
model was designed primarily for polyethylene terephthalate known to crystallize
very slowly in the absence of stress (low K0) and change the crystallization rates
by many orders of magnitude under small and moderate stress. These are typical
requirements for the bifurcation shown in Figs. 2, 3, 7, and 8. On the other
hand, behaviour of polymers crystallizing rapidly without stress (high K0), like
polyethylene or polyamides, may correspond to the pattern presented in Fig. 9.

The nature of the bifurcation phenomenon deserves some reflection. Bifur-
cation in strictly steady conditions does not necessarily imply instability. In
some range of spinning conditions the system of nonlinear equations has two
stable solutions. It is difficult to say which of the two solutions is physically
more justified. One might be inclined to choose the solution with lower energy.
Perturbation of spinning conditions and/or material properties may induce in-
stability consisting in jumping from one solution to the other one. An important
consequence of bifurcation is limitation of the accessible spinning conditions.
In absence of the crystallization-induced bifurcation, non-isothermal spinning
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of a Newtonian polymer can be performed in any conditions (up to cohesive
fracture of the material).

In contrast to isothermal spinning exhibiting draw-resonance instability, non-
isothermal spinning of a Newtonian fluid is inherently stable [20, 21]. The New-
tonian model is oversimplified and introduction of viscoelasticity may induce in-
stability in the conditions where bifurcation of steady solutions does not appear.
The onset of viscoelastic instability is controlled by critical value of deformation
rate and relaxation time combined into the dimensionless product, the Deborah

number e.g. [21, 22].
Practical significance of the observed phenomenon consists in limitation of

the accessible spinning conditions. Experimental observations on melt spinning
of PET fibres are qualitatively consistent with predictions following from the bi-
furcation analysis. Maximum take-up velocity increases with increasing filament
thickness and reduced by increasing polymer viscosity. In a recent PhD Thesis
in our laboratory [23], the calculated maximum take-up velocity for spinning 5
dtex PET filaments vs. molecular weight Mη in the range of 20000–40000 were
compared with experimental data [24]. The results showing three regions: low-
speed-spun spinning of amorphous fibres, intermediate-speed-spun crystalline fi-
bres and supercritical speeds inaccessible to spinning, were reasonably consistent
with Huisman et al. observations.

In a recent paper [25] instability of viscoelastic spinning of isotactic polypropy-
lene was studied. It was found that the onset of instability leads to limitation
of accessible spinning conditions in a way similar to that caused by bifurcation.
The inaccessible range of spinning conditions was predicted with, or without
crystallization. However, introduction of flow-induced crystallization consider-
ably enhanced the inaccessible range.
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