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Abstract

Due to the small number of copies of molecular species involved, such as DNA, mRNA and regulatory proteins, gene expression

is a stochastic phenomenon. In eukaryotic cells, the stochastic effects primarily originate in regulation of gene activity. Transcription

can be initiated by a single transcription factor binding to a specific regulatory site in the target gene. Stochasticity of transcription

factor binding and dissociation is then amplified by transcription and translation, since target gene activation results in a burst of

mRNA molecules, and each mRNA copy serves as a template for translating numerous protein molecules. In the present paper, we

explore a mathematical approach to stochastic modeling. In this approach, the ordinary differential equations with a stochastic

component for mRNA and protein levels in a single cells yield a system of first-order partial differential equations (PDEs) for two-

dimensional probability density functions (pdf). We consider the following examples: Regulation of a single auto-repressing gene,

and regulation of a system of two mutual repressors and of an activator–repressor system. The resulting PDEs are approximated by

a system of many ordinary equations, which are then numerically solved.

r 2005 Elsevier Ltd. All rights reserved.
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1. Introduction

Genes code for proteins, but the pathway between the
code and the product involves several distinct processes.
First, in eukaryotes, the majority of genes have to be
activated. This typically happens by binding one or
more transcription factors to the specific promoter
regions. Then, RNA polymerase binds to the gene
promoter, and an open complex is formed which
e front matter r 2005 Elsevier Ltd. All rights reserved.
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initiates transcription. Resulting mRNA is spliced and
polyadenylated. Next, mRNA is exported from the
nucleus to the cytoplasm, where translation occurs. In
many cases, the newly translated protein must be further
processed to form its biologically active form. Some of
the above processes are reversible like binding of
transcription factors, recruitment of RNA polymerase
and formation of an open complex. A simplified
schematic diagram of gene expression is shown in
Fig. 1. In eukaryotes, each gene has two homologous
copies, which can be independently activated and
inactivated. In some cases, one of these copies is
transcriptionally inactive. In addition, transformed cells
may have gene or chromosomal duplications producing
a larger number of homologous gene copies. The
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Fig. 1. Simplified schematic of gene expression.
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number of copies of molecules involved grows as the
process proceeds from DNA to protein. Tens or
hundreds of mRNA molecules of a given type and tens
of thousands of protein molecules are produced using
two gene copies as templates. This implies that
stochastic effects due to gene activation and inactivation
followed by pulses of mRNA production (Femino et al.,
1998; Blake et al., 2003), are much stronger than
stochastic effects caused by production and degradation
of single mRNA or protein molecules. In contrast, in
prokaryotes, where the mRNA molecules are typically
very unstable (half-life of the order of 1min) and
therefore much less abundant, the stochasticity of
formation, degradation and translation of single
mRNAs is of great importance (McAdams and Arkin,
1997; Ackers et al., 1982; Thattai and Oudenaarden,
2001; Kierzek et al., 2001; Swain et al., 2002). As a
result, in prokaryotes there is a competition between
stochastic effects caused by gene activation and mRNA
processing. In this paper we focus on stochasticity in
transcriptional regulation neglecting the mRNA and
protein production/decay noise. We start from the
approximation of single cell kinetics in which processes
involving a large number molecules (i.e., transcription,
translation and degradation of protein and mRNAs) are
considered continuous, and are described by ordinary
differential equations (ODEs). These equations, describ-
ing evolution of mRNA and protein levels in a single
cell, contain a stochastic switch associated with gene
activity. These equations yield a system of first-
order partial differential equations for pdf’s, from
which two-dimensional mRNA-protein distributions,
stationary and time-dependent, will be numerically
calculated. Marginal distribution of protein is com-
pared to the marginal distribution resulting from the
Kepler–Elston model, in which mRNA is disregarded
and direct translation of protein from the gene is
assumed. This gives us the range of applicability of
the Kepler–Elston model. Finally, we use this approx-
imate model to analyse the two-gene systems for which
we will calculate the two-dimensional protein–protein
distributions.
2. Model

2.1. Preliminaries

Since gene activation and inactivation is due to
binding and dissociation of regulatory factors to and
from DNA, it is natural to assume that activation and
inactivation rates depend on amounts (concentrations)
of regulatory proteins. As a simplest example, let us
consider regulation of a gene by an activating regulatory
protein, the level (y) of which is constant in time. It is
assumed that each gene copy may exist only in two
states (Ko, 1991; Walters et al., 1995; Kepler and Elston,
2001; Pirone and Elston, 2004; Raser and O’Shea, 2004).
The state of the i-th gene copy is denoted by gi 2 f0; 1g.
We assume that the i-th gene copy is activated with rate
py, and inactivated with rate q. The mRNA production
efficiency from gene copy i-th is assumed to be equal to
a gi, where a is transcription rate of the active gene
copy. Thus the amount of transcript, x, follows the
equation below:

dx

dt
¼ �hxþ aGðt; yð�ÞÞ, (1)

where h is the mRNA degradation rate and
Gðt; yð�ÞÞ ¼

Pn
i¼1 gi, where n is number of homologous

gene copies. The approximation in which the amount of
transcript is described by continuous variable x is
justified only when number of mRNA molecules is
sufficiently large. For prokaryotes, in which number of
mRNA is typically small, it is not justified. Eq. (1) is
similar to a stochastic differential equation except that
in our case the stochastic term is not an additive white
noise, but a time continuous Markov process of gene
activation and inactivation. First, let us calculate the
mean (expected) mRNA level E½x� in the population. If
y is assumed constant, the probability P that the i-th
gene copy is active equals to P ¼ py=ðqþ pyÞ, which is
constant in time. The expected mRNA production rate
is the product of Pn and the transcription rate a, hence
the expected amount of transcript equals

E½x� ¼
napy

hðqþ pyÞ
. (2)

Although the expected level agrees with the classical
result, the mRNA level in each cell, given by Eq. (1),
oscillates, as shown in Fig. 2. The deterministic limit is
attained under very frequent binding and dissociation of
the regulatory factor, when py�!1, q�!1, with
py=q ¼ const. In this latter case, P½yðtÞ� ¼ pyðtÞ=ðqþ
pyðtÞÞ determines the expected transcription rate
naP½yðtÞ�. However, experimental data indicate that
mRNA is produced in bursts, which suggests that py

and q are small (Femino et al., 1998). There are two
characteristic regimes; (1) py� h; q� h and (2)
py� h; q� h. In the first regime, the dynamics
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Fig. 2. A sample solution of Eq. (1), n ¼ 2, a ¼ 0:1, py ¼ 10�4,

q ¼ 5 � 10�4, h ¼ 10�3. Although each cell oscillates the averaged

mRNA level in population remains constant at 33 mRNA/cell.
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resembles that of the thermodynamic equilibrium limit,
in the second regime, we have long bursts of mRNA
from active gene copies and the level of mRNA varies
significantly, shown in Fig. 2. The assumption that gene
promoters are in thermodynamic equilibrium with
regulatory protein molecules, was proposed over 20
years ago by Ackers et al. (1982) and Shea and Ackers
(1985). It was used by Arkin et al. (1998) and Gilman
and Arkin (2002) in analysis of prokaryotic gene
expression, in which stochastic effects are due to a small
number of mRNA molecules. In this work we will
exploit the second regime, where changes in gene status
are relatively infrequent.

2.2. Regulation of auto-repressive gene—single cell

analysis

In this section we present a heuristic analysis of
stochastic regulation of an auto-repressive gene in a
single cell, whereas the corresponding probability
distributions will be analysed in next section. Let x

and y denote mRNA and protein levels, respectively.
Since the gene is auto-repressive, we assume that the i-th
gene copy is activated at a constant rate p, and
inactivated at a rate qy. The resulting dynamics is given
by the following system:

dx

dt
¼ �hxþ aGðt; yð�ÞÞ, (3)

dy

dt
¼ ax� ky, (4)

I!
p

A; I  
qyðtÞ

A, (5)

where a is the translation rate, k the protein degradation
rate, I denotes the gene inactive state, A denotes the
active state, and Gðt; yð�ÞÞ ¼
Pn

i¼1 gi, where giðIÞ ¼ 0;
giðAÞ ¼ 1. We introduce rescaled variables for problem
(3)–(5):

xn ¼
h

a
x; yn ¼

kh

aa
y; tn ¼ th. (6)

Substituting new variables into Eqs. (3)–(5) and drop-
ping the asterisks, we obtain the following system:

dxðtÞ

dt
¼ �xþ G, (7)

dyðtÞ

dt
¼ rðx� yÞ, (8)

I �!
c

A; I �
byðtÞ

A, (9)

where

c ¼
p

h
; b ¼

qaa

kh2
; r ¼

k

h
. (10)

For a given state of n gene copies, which determines
G ¼

Pn
i¼1 gi, the system is analytically solved as an

initial value problem xð0Þ ¼ x0, yð0Þ ¼ y0, assuming that
G remains constant,

xðtÞ ¼ x0e
�t þ Gð1� e�tÞ, (11)

yðtÞ ¼ y0e
�rt þ Gð1� e�rtÞ þ

ðG � x0Þr

1� r
ðe�t � e�rtÞ.

(12)

The risk that G changes its value is equal to
rðtÞ ¼ ðn� GÞcþ GbyðtÞ, where n� G, G denote the
number of inactive and active gene copies, respectively.
This yields the cumulative distribution F ðtÞ,

F ðtÞ ¼ 1� exp �

Z t

0

rðsÞds

� �
. (13)

We draw z from the uniform distribution on ½0; 1� and
calculate tf , the time at which G changes its value as
tf ¼ F�1ðzÞ, where F�1ð�Þ is the inverse function of F ð�Þ.
Finally, we decide whether G switches to G þ 1 or to
G � 1. The conditional probability that it switches to
G þ 1, i.e. that one of homologous gene copies changes
its status from inactive to active, is equal to

pþ ¼
rþ

rðtf Þ
¼

n1c

n1cþ n2byðtf Þ
. (14)

Finally, we evaluate G, and use xðtf Þ; yðtf Þ as the initial
condition for next step. Inversion of F ðtÞ cannot be
carried out analytically, since logð1� F ðtÞÞ is a trans-
cendental function.

In the limit c!1, b!1, with c=b ¼ const:, the
promoter of each gene copy is in statistical equilibrium
and the function G ¼

Pn
i¼1 gi may be replaced by its

expected value E½GðyÞ� ¼ nc=ðcþ byÞ. As a result,
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Fig. 3. A sample solution of system (7)–(9) for n ¼ 1 (single gene

copy), represented by a thin line. The initial condition is xð0Þ ¼ yð0Þ ¼

Gð0Þ ¼ 0 and parameters are c ¼ 0:5, b ¼ 0:5, r ¼ 0:2. Since co1, bo1

the solution is far from the solution of the limit system (15)–(16),

represented by a bold line.

Fig. 4. A sample solution of system (7)–(9) for n ¼ 1 (single gene

copy), represented by a thin line. The initial condition is xð0Þ ¼ yð0Þ ¼

Gð0Þ ¼ 0 and the parameters are c ¼ 6, b ¼ 3, r ¼ 0:2. Since c41, b41

the solution is relatively close to the solution of the limit system

(15)–(16), represented by a bold line.
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system (7)–(8) converges to the following,

dx

dt
¼ �xþ

nc

cþ by
, (15)

dy

dt
¼ rðx� yÞ. (16)

In Fig. 3 we show the evolution of system, for co1,
bo1, i.e., when system is far from its thermodynamic
equilibrium limit. Large fluctuations in both mRNA and
protein levels are present. In Fig. 4 we show the
evolution of the system in proximity of the thermo-
dynamic limit ðc ¼ 6; b ¼ 3Þ. Substantial fluctuations of
the mRNA level still persist but the protein level exhibits
relatively small fluctuations. Moreover, the solution is
close to the solution of the limit system (15)–(16).
However, we expect that the situation depicted in Fig. 3
is more common.
2.3. Equations for probability distributions of model

variables

From now on, to simplify the analysis, we focus on
the case, where the autoregulatory gene has only one
potentially active copy. This implies that its state G can
be 0 or 1. Eqs. (7) and (8) generate stochastic
trajectories, which can be described as a continuous-
time Markov process. At each time t, the realizations of
mRNA and protein levels xðtÞ and yðtÞ, and of the
transcription switch GðtÞ are a triple of random
variables, the first two of which are continuous and
the third is binary. Therefore, their joint distribution can
be described by a pair of pdf f ðx; y; tÞ and gðx; y; tÞ. The
interpretation is that for given time t,

Pr½xðtÞ 2 ðx;xþ DxÞ; yðtÞ 2 ðy; yþ DyÞ and GðtÞ ¼ 0�

¼ f ðx; y; tÞDxDy,

Pr½xðtÞ 2 ðx;xþ DxÞ; yðtÞ 2 ðy; yþ DyÞ and GðtÞ ¼ 1�

¼ gðx; y; tÞDxDy.

One interpretation of these distributions is in the terms
of frequencies of the mRNA and protein levels and of
the state of the transcription switch in a large population
of cells.

The equations describing evolution of densities f and
g were first derived by us using an analogy between
probability and compressible fluid. Using this approach,
one writes the continuity equations with source terms
following from change of gene status (transformation
between f and g), Eq. (9). Velocity fields ðdx=dtÞjG¼0 and
ðdx=dtÞjG¼1 transforming f and g, are given by Eqs. (7)
and (8), for G ¼ 0 and G ¼ 1, respectively:

qf

qt
þ div

dx

dt jG¼0
;
dy

dt

� �
f

� �
¼ byg� cf , (17)

qg

qt
þ div

dx

dt jG¼1
;
dy

dt

� �
g

� �
¼ �bygþ cf . (18)

The above system of first-order partial differential
equations (PDE) is analogous to the Fokker–Planck
equation which describes evolution of pdf in the process
governed by the stochastic differential equation (Lange-
vin equation), (Rao et al., 2002; Emch and Liu,
2002; Kepler and Elston, 2001). The difference is in
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Fig. 5. The boundary of the domain DðrÞ—bold line, and a typical

trajectory of system (7)–(9)—thin line. Panel A: r ¼ 0:2, c ¼ 0:5,
b ¼ 0:5, Panel B: r ¼ 3, c ¼ 2, b ¼ 2.
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the right-hand term, which in the case of Fokker–Planck
equation is a diffusion term resulting from the white
noise term in Langevin equation. A derivation of
a generalized version of Eqs. (17) and (18) is provided
in Appendix A. Similar equations have been used
in physics to describe noise-induced transitions
(Horsthemke and Lefever, 1984) and in theoretical
mechanics to describe dynamics of rigid bodies under
random shocks (Iwankiewicz and Nielsen, 2000). A
system analogous to our system (7)–(9) in which the
transition intensities of the random forcing process GðtÞ

depend on state variables xðtÞ and yðtÞ was considered by
Basak et al. (1999). Let us note that the solutions of
system (7)–(8) for G ¼ 0 and G ¼ 1 are identical with
the two characteristics of the PDE system. Using
Eqs. (7) and (8) we obtain

qf

qt
þ div½ð�x; rðx� yÞÞf � ¼ byg� cf , (19)

qg

qt
þ div½ð1� x; rðx� yÞÞg� ¼ �bygþ cf , (20)

and then

qf

qt
�

q
qx
ðxf Þ þ r

q
qy
½ðx� yÞf � ¼ byg� cf , (21)

qg

qt
þ

q
qx
½ð1� xÞg� þ r

q
qy
½ðx� yÞg� ¼ �bygþ cf . (22)

Since Eqs. (21) and (22) are of first order and are
coupled only by the free terms, the system is hyperbolic.
Functions f ðx; yÞ and gðx; yÞ may be considered on
domain D0 ¼ ½0;1Þ � ½0;1Þ. However, we can restrict
our considerations to a bounded domain D � D0,
defined below. Let us consider two following solutions
of the system described by Eqs. (7) and (8), see Fig 5.
The first ðx1ðtÞ; y1ðtÞÞ assumes G ¼ 0 and the initial
condition ðx1ð0Þ; y1ð0ÞÞ ¼ ð1; 1Þ, which results in

x1 ¼ e�t; y1 ¼ �
r

1� r
e�t þ

1

1� r
e�rt. (23)

The second ðx2ðtÞ; y2ðtÞÞ assumes G ¼ 1 and initial
condition ðx2ð0Þ; y2ð0ÞÞ ¼ ð0; 0Þ, which results in

x2 ¼ 1� e�t; y2 ¼ 1þ
r

1� r
e�t �

1

1� r
e�rt. (24)

These two solutions parametrically define two curves in
the x; y plane intersecting at points ð0; 0Þ and ð1; 1Þ. Let
us define the domain DðrÞ, as a subset of D0 bounded by
these two curves. If the kinetics of the cell is determined
by system (7)–(8) then
1.
 if ðxð0Þ; yð0Þ 2 DðrÞ then ðxðtÞ; yðtÞ 2 DðrÞ for any t40,

2.
 trajectories xðtÞ; yðtÞ of system (7)–(8) starting from

an arbitrary point ðxð0Þ; yð0ÞÞ converge to the domain
DðrÞ as t!1.
In addition, DðrÞ is the smallest domain satisfying these
two conditions. In Fig. 5 we show domain DðrÞ for r ¼

0:2 and 3 together with the trajectories of system (7)–(9).
After the trajectory enters domain DðrÞ it remains there.

For stationary density functions we have qf =qt ¼

qg=qt ¼ 0 and, consequently,

�
q
qx
ðxf Þ þ r

q
qy
½ðx� yÞf � ¼ byg� cf , (25)

q
qx
½ð1� xÞg� þ r

q
qy
½ðx� yÞg� ¼ �bygþ cf . (26)

The above system, like (21)–(22), is hyperbolic. It has
two families of characteristics, the first family (for
function f) is determined by the solutions of system
(7)–(8) for G ¼ 0, the second family (for function g) is
determined by the solutions of system (7)–(8) for G ¼ 1.
According to the definition, boundary of DðrÞ consists of
two characteristics of (25) and (26) given by Eqs. (23)
and (24). Stationary distributions f ðx; yÞ and gðx; yÞ
must satisfy

suppðf ðx; y; c; b; rÞÞ ¼ suppðgðx; y; c; b; rÞÞ ¼ DðrÞ, (27)

where the notation used underscores the parametric
dependence of f ð�Þ and gð�Þ on c; b and r, and suppðf Þ is
the closure of the set on which f ð�Þa0. The fact that the
domain DðrÞ is bounded by characteristics, makes the
problem difficult for analytical and numerical analysis.

2.4. Numerical results

Numerical solutions of system (25)–(26) are calculated
based on the discrete approximation introduced in
Appendix B. This discretization technique results in a
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Fig. 6. Stationary distributions f ðx; yÞ (Panel A), gðx; yÞ (Panel B) and rðx; yÞ ¼ f ðx; yÞ þ gðx; yÞ (Panel C) calculated on grid 100� 100. The

parameters are c ¼ 6, b ¼ 3, r ¼ 0:2.
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reduction of system (21)–(22) to a system of linear
ODEs, while system (25)–(26) for stationary distribu-
tions is reduced to a system of linear algebraic
equations. (Fig. 6)

In Figs. 6 and 7, using the same set of parameters as in
Fig. 4, we compare stationary distributions f ðxÞ and gðxÞ

given by system (25)–(26), with the distribution calcu-
lated directly from simulations of system (7)–(9). To
draw Fig. 7, we simulate system (7)–(9) up to tf ¼ 15,
N ¼ 500; 000 times, starting each simulation from the
same initial condition xð0Þ ¼ yð0Þ ¼ Gð0Þ ¼ 0. The
initial conditions for the simulation are f ðx; y; 0Þ ¼
dðx; yÞ (Dirac impulse at ð0; 0Þ), and gðx; y; 0Þ ¼ 0. As a
result of simulation at any time t 2 ½0; 15�, we obtain N

points ðxðtÞ; yðtÞ;GðtÞÞ. Points ðxðtÞ; yðtÞ; 0Þ approximate
the distribution f ðx; y; tÞ, and points ðxðtÞ; yðtÞ; 1Þ
approximate gðx; y; tÞ. In Fig. 7, we present numerical
distributions for t ¼ tf , calculated using a relatively
coarse grid ðN ¼ 20Þ to avoid noise. Since, for a typical
trajectory ðxðtÞ; yðtÞ;GðtÞÞ, the status of gene G changes
several times prior to tf (see Fig. 4) we may expect that
distributions f ðx; y; tf Þ and gðx; y; tf Þ are close to
stationary. The marginal distribution rðx; yÞ ¼ f ðx; yÞ þ
gðx; yÞ reflects the behavior of a single cell. The larger the
single cell fluctuations are, the broader is the marginal
distribution rðx; yÞ. Since in Fig. 4 the fluctuations in y

(protein level) are much smaller than those in x (mRNA
level) the corresponding distribution shown in Fig. 6 is
much broader in the x than in the y direction.

In the case of Fig. 8, where the same parameters are
used as in Fig. 3 the marginal distribution is much
broader than in the previous case. Moreover, the profiles
of distributions f and g are qualitatively different, the
distribution f having a maximum at x close to 0, while g

having a maximum at x close to 1. This property is in
agreement with the single cell trajectory shown in Fig. 3.
In Fig. 3 fluctuations in gene status are infrequent and
therefore the mRNA transcript level is strongly corre-
lated with gene status. As a result, the marginal
distribution rðx; yÞ has not one, but two, maxima. This
property can be helpful in experimental verification of
the model and in estimation of parameters c and b.
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Fig. 7. Distributions f ðx; y; tÞ (Panel A), gðx; y; tÞ (Panel B) and rðx; y; tÞ ¼ f ðx; yÞ þ gðx; yÞ (Panel C) calculated for t ¼ 15 by running 500,000 single

cell simulations of system (7)–(9). The same parameters c ¼ 6, b ¼ 3, r ¼ 0:2 as in Fig. 6 are used. The data is shown using a relatively small grid

20� 20 to avoid noise.
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In Fig. 9 we analyse the case of large r ¼ 3. As already
said, for r!1, x� y! 0, and as a result large r

implies that x and y are close. This is visible in
distributions presented in Fig. 9, which are concentrated
close to the x ¼ y line.

Finally in Fig. 10 we show time evolution of
distributions f ðx; y; tÞ and gðx; y; tÞ. Parameter values
are the same as in Figs. 6 and 7, and the initial
conditions are f ðx; y; 0Þ ¼ dðx; yÞ, and gðx; y; 0Þ ¼ 0,
same as for Fig. 7. Note that for t ¼ 10, distributions
are close to the stationary ones shown in Fig. 6. This
could be expected from a single cell trajectory shown in
Fig. 4, which reaches the stationary distribution (loses
memory of the initial condition) about t ¼ 10–15.

2.5. Kepler– Elston approximation

Analysing system (7)–(8), we may note that for r� 1,
Eq. (7) is much faster than Eq. (8), which allows us to
replace Eq. (7) by the equality x ¼ G. As a result system
(7)–(9) is transformed into

dyðtÞ

dt
¼ rðG � yÞ, (28)

I �!
c

A; I �
byðtÞ

A. (29)

The above approximation is equivalent to the
assumption made by Kepler and Elston (2001) that
the protein is directly translated from the gene.
Equations for the probability density functions f ðy; tÞ,
gðy; tÞ, corresponding to the simplified system (28)–(29)
read

qf

qt
� r

q
qy
ðfyÞ ¼ byg� cf , (30)

qg

qt
þ r

q
qy
ðð1� yÞgÞ ¼ �bygþ cf . (31)
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Fig. 8. Stationary distributions f ðx; yÞ (Panel A), gðx; yÞ (Panel B) and rðx; y; tÞ ¼ f ðx; yÞ þ gðx; yÞ (Panel C) calculated on grid 100� 100. The

parameters are c ¼ 0:5, b ¼ 0:5, r ¼ 0:2.
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For the stationary solutions f ðyÞ, gðyÞ we have

�
d

dy
ðfyÞ ¼ bryg� crf , (32)

d

dy
ðð1� yÞgÞ ¼ �brygþ crf , (33)

where cr ¼ c=r and br ¼ b=r. The above system can be
solved analytically for y 2 ð0; 1Þ. Adding Eqs. (32) and
(33), we obtain the first integral

d

dy
½�yf þ ð1� yÞg� ¼ 0. (34)

This implies

�yf þ ð1� yÞg ¼ �f ð1Þ ¼ gð0Þ. (35)

Since we require that f ð�Þ and gð�Þ are nonnegative, the
condition �f ð1Þ ¼ gð0Þ implies f ð1Þ ¼ gð0Þ ¼ 0. There-
fore from Eq. (35) we have g ¼ yf =ð1� yÞ. Inserting this
into Eq. (32) we obtain

br

y2

ð1� yÞ
f � crf ¼ �

d

dy
ðfyÞ, (36)

which implies

f ðyÞ ¼ Aebryycr�1ð1� yÞbr , (37)

and further

gðyÞ ¼ Aebryycr ð1� yÞbr�1, (38)

where A ¼ ½
R 1
0 e

bryycr�1ð1� yÞbr�1 dy��1, since for cr40;
br40 both f ðyÞ and gðyÞ are integrable on ð0; 1Þ. For
cro1; limy!0 f ðyÞ ¼ 1 and for bro1; limy!1 gðyÞ ¼ 1,
while for cr41; br41 we have f ð0Þ ¼ gð0Þ ¼ f ð1Þ ¼
gð1Þ ¼ 0. The marginal distribution rðyÞ :¼ f ðyÞ þ gðyÞ,
has the form of

rðyÞ ¼ Aebryycr�1ð1� yÞbr�1. (39)

It describes the protein level with no regard to gene
status, and may be more adequate to compare the
theory with experimental data based on flow cytometry.
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Fig. 9. Stationary distributions f ðx; yÞ (Panel A), gðx; yÞ (Panel B) and rðx; y; tÞ ¼ f ðx; yÞ þ gðx; yÞ (Panel C) calculated on grid 100� 100. The

parameters are c ¼ 2, b ¼ 2, r ¼ 3.
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For cro1 and bro1, which corresponds to a low
frequency of gene status switching, function rðyÞ has a
minimum between 0 and 1, whereas limy!0rðyÞ ¼ 1
and limy!1 rðyÞ ¼ 1. For cr41 and br41, rðyÞ has one
maximum. The larger cr and br are, the more
concentrated is the distribution rðyÞ. This is not
surprising, since large cr and br imply that gene status
is frequently changed, and cell to cell fluctuations in the
mRNA level are small. To verify the Kepler–Elston
approximation, distributions f ðyÞ; gðyÞ and rðyÞ given by
Eqs. (37)–(39) should be compared with the marginal
distributions

R
f ðx; yÞdx;

R
gðx; yÞdx;

R
rðx; yÞdx calcu-

lated numerically from the two-dimensional distribu-
tion. As one may expect, the Kepler–Elston
approximation is accurate for small r (Fig. 11A–F,
where r ¼ 0:2), especially for large c and d. However, it
is unacceptable for r41: In Fig. 11I we show that for
c ¼ 2; b ¼ 2 and r ¼ 3, the stationary distribution rðyÞ
calculated from Eq. (39) has two maxima, while the
marginal distribution

R
rðx; yÞdx has one. This is due to

the fact that c41; b41 but cro1; bro1. In this latter
case, assumption that Eq. (8) is fast, i.e., y ¼ x and thus
rðyÞ ¼ Aebyyc�1ð1� yÞb�1, is more appropriate. The case
r� 1, where the Kepler–Elston approximation is
accurate, corresponds to the situation, where the protein
is much more stable than the mRNA. Typically, this is
the case, however in some situations the protein is
actively degraded and its half-life can be shorter than
that of the mRNA. We encountered this situation
analysing the NF-kB regulatory module (Lipniacki et
al., 2004); the NF-kB inhibitor IkBa is catalytically
degraded with a half-life of about 10min, while its
mRNA has a half-life on the order of 30min. In this
case, the amount of IkBa protein is not proportional to
the amount of mRNA. To the contrary, we found that
the higher level of the IkBa protein produces stronger
inhibition of NF-kB, and thus a lower level of IkBa
mRNA which is under NF-kB control (Lipniacki et al.,
2004, 2005). This implies that the two-dimensional IkBa
mRNA-protein distribution is important for under-
standing the NF-kB regulatory module. Another
important example of regulation by rapid proteolysis
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Fig. 10. Time evolution of distributions f ðx; y; tÞ-left, and gðx; y; tÞ-right calculated on grid 40� 40. The parameters are c ¼ 6, b ¼ 3, r ¼ 0:2, as in
Figs. 6 and 7. The initial condition is f ðx; y; 0Þ ¼ Dirac function, gðx; y; 0Þ ¼ 0.
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we want to mention is cell cycle regulation in
Caulobacter (McAdams and Shapiro, 2003). In a
narrow window of the cell cycle, just prior to cell
division, most of the master regulatory protein called
CtrA is degraded in the stalked compartment, while in
the swarmer compartment, its level remains unchanged.
This time and space-specific protein degradation is
crucial for the fates of the two daughter cell fates since
CtrA controls 26% of the Caulobacter cell-cycle-
regulated genes.

Nevertheless, since the Kepler–Elston approximation
is, for r� 1, well justified and quite accurate, and
constitutes a great simplification to the analysis, we use
it to analyze the system of two interacting genes and
calculate two-dimensional protein–protein distributions.
Without this assumption, the analysis of two-gene
system would require calculation of four-dimensional
distributions.
2.6. The systems of two interacting genes

Let us consider the system of two genes. We use the
Kepler–Elston approximation, assuming a direct trans-
lation from DNA into protein. Let x and y now denote
the amounts of protein related to the first and second
genes, respectively. The system has the form

dxðtÞ

dt
¼ �xþ Gx, (40)

dyðtÞ

dt
¼ �r y� Gy, (41)
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Fig. 11. Marginal distributions f ðyÞ, gðyÞ, rðyÞ calculated based on Eq. (39) — and numerically from two-dimensional distributions presented in

Figs. 6, 8 and 9—. Panels A, B and C correspond to c ¼ 6, b ¼ 3, r ¼ 0:2; Panels D, E and F correspond to c ¼ 0:5, b ¼ 0:5, r ¼ 0:2; Panels G, H and

I correspond to c ¼ 2; b ¼ 2; r ¼ 3.
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where Gx, Gy are the transcription switches of the first
and second genes, respectively. We denote

f ijðx; y; tÞDxDy ¼ Pr½xðtÞ 2 ðx;xþ DxÞ; yðtÞ 2 ðy; yþ DyÞ,

Gx ¼ i; Gy ¼ j�; i; j ¼ 0; 1. ð42Þ

2.6.1. Activator– repressor system

In the case of an activator x–repressor y system, we
assume the following transition rules:

Ix�!
p

Ax; Ix �
qyðtÞ

Ax; GxðIxÞ ¼ 0; GxðAxÞ ¼ 1,

(43)

Iy�!
kxðtÞ

Ay; Iy �
h

Ay; GyðIyÞ ¼ 0; GyðAyÞ ¼ 1.

(44)
The above relations imply that inactivation of the
activator x is proportional to the amount of the
repressor y, and that the activation of the repressor is
proportional to the amount of activator. Using Eqs. (43)
and (44), we transform Eqs. (40) and (41) into a system
of 4 PDEs for f ijðx; y; tÞ:

qf 00

qt
þ div f 00

dx

dt jGx¼0
;
dy

dt jGy¼0

� �� �

¼ �ðpþ kxÞf 00 þ f 01hþ f 10qy,
ð45Þ

qf 10

qt
þ div f 10

dx

dt jGx¼1
;
dy

dt jGy¼0

� �� �

¼ �ðqyþ kxÞf 10 þ pf 00 þ hf 11,
ð46Þ
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qf 01

qt
þ div f 01

dx

dt jGx¼0
;
dy

dt jGy¼1

� �� �
¼ �ðpþ hÞf 01 þ f 00kxþ f 11qy, ð47Þ

qf 11

qt
þ div f 11

dx

dt jGx¼1
;
dy

dt jGy¼1

� �� �
¼ �ðqyþ hÞf 11 þ kxf 10 þ pf 01. ð48Þ

In the steady state this assumes the form:

q
qx
ð�xf 00Þ þ

q
qy
ð�ryf 00Þ

¼ �ðpþ kxÞf 00 þ f 01hþ f 10qy, ð49Þ
Fig. 12. Protein–protein distributions for the activator–repressor system fo

functions f 0;0, f 1;0, f 0;1, f 1;1 and the marginal distribution f ¼ f 0;0 þ f 1;0 þ f

same set of parameters.
q
qx
½ð1� xÞf 10� þ

q
qy
ð�ryf 10Þ

¼ �ðqyþ kxÞf 10 þ pf 00 þ hf 11, ð50Þ

q
qx
ð�xf 01Þ þ

q
qy
½ð1� ryÞf 01�

¼ �ðpþ hÞf 01 þ f 00kxþ f 11qy, ð51Þ

q
qx
½ð1� xÞf 11� þ

q
qy
½ð1� ryÞf 11�

¼ �ðqyþ hÞf 11 þ kxf 10 þ pf 01. ð52Þ

In Figs. 12 and 13 we show the solutions of the
activator–repressor system for two sets of parameters.
r p ¼ 3, q ¼ 3, k ¼ 5, h ¼ 2, r ¼ 1. Panels A, B, C, D and E show

0;1 þ f 1;1. In Panel F we show the example single cell trajectory for the
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Fig. 13. Protein–protein distributions for the activator-repressor system for p ¼ 1, q ¼ 2, k ¼ 1:5, h ¼ 1, r ¼ 1. Panels A, B, C, D and E show

functions f 0;0, f 1;0, f 0;1, f 1;1 and the marginal distribution f ¼ f 0;0 þ f 1;0 þ f 0;1 þ f 1;1. In Panel F we show the example single cell trajectory for the

same set of parameters.
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Transition parameters p; q; k and h used to obtain the
distribution shown in Fig. 12 are relatively large and
thus the resulting protein–protein distribution f ¼ f 00þ

f 10 þ f 01 þ f 11 has one maximum. For smaller values of
transition parameters, as shown in Fig. 13, partial
distributions f i; j are much different and, as a result,
their sum f ¼ f 00þ f 10 þ f 01 þ f 11has three maxima
located close or at the points (0,1), (0,0) and (1,0), and a
quite complicated profile.

2.6.2. Repressor– repressor system

A simplified system of two repressors has been
analysed by Kepler and Elston (2001). To reduce the
number of possible states these authors assume that the
two genes coding for x and y share the same operator,
thus the state f 11 is excluded. Moreover, they assume the
same parameter values describing the kinetics of the two
genes and their products. With these simplifications they
calculate the histogram for the marginal distribution
f ðxÞ ¼ f ðyÞ using the Monte Carlo method.

As in the previous case, our approach allows us to
calculate two-dimensional (protein–protein) distribu-
tions. We assume the following transition rules:

Ix�!
p

Ax; Ix �
qyðtÞ

Ax; GxðIxÞ ¼ 0; GxðAxÞ ¼ 1,

(53)

Iy�!
k

Ay; Iy �
hxðtÞ

Ay; GyðIyÞ ¼ 0; GyðAyÞ ¼ 1.

(54)

The resulting system of PDE’s describing the stationary
distribution is analogous to system (49)–(52) and has the
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Fig. 14. Protein–protein distributions for the repressor–repressor system for p ¼ 1:7, q ¼ 2, k ¼ 1:5, h ¼ 2, r ¼ 2. Panels A, B, C, D and E show

functions f 0;0, f 1;0, f 0;1, f 1;1 and the marginal distribution f ¼ f 0;0 þ f 1;0 þ f 0;1 þ f 1;1. In Panel F we show the example single cell trajectory for the

same set of parameters.
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form of

q
qx
ð�xf 00Þ þ

q
qy
ð�ryf 00Þ

¼ �ðpþ kÞf 00 þ f 01hðxÞ þ f 10qy, ð55Þ

q
qx
½ð1� xÞf 10� þ

q
qy
ð�ryf 10Þ

¼ �ðqyþ kÞf 10 þ pf 00 þ hðxÞf 11, ð56Þ

q
qx
ð�xf 01Þ þ

q
qy
½ð1� ryÞf 01�

¼ �½pþ hðxÞ�f 01 þ f 00k þ f 11qy, ð57Þ

q
qx
½ð1� xÞf 11� þ

q
qy
½ð1� ryÞf 11�

¼ �½qyþ hðxÞ�f 11 þ kf 10 þ pf 01. ð58Þ
Figs. 14 and 15 depict the solutions of the repressor–
repressor system for two sets of parameters. In Fig. 14, we
observe that the repressor–repressor system is unstable in
the sense that relatively small differences in the activation
constants of two repressors (p ¼ 1:7; k ¼ 1:5) lead to a
substantial asymmetry in the resulting protein–protein
distribution. In Fig. 15 the values of activation and
inactivation coefficients are the same, and the asymmetry
between the two repressors results from the assumption
that the first repressor has half the degradation rate of the
second one, and thus its level is higher.
3. Discussion and conclusions

The intrinsic stochasticity in gene expression may
result from small number of mRNA and protein
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Fig. 15. Protein–protein distributions for the repressor–repressor system for p ¼ 3, q ¼ 3, k ¼ 3, h ¼ 3, r ¼ 2. Panels A, B, C, D and E show

functions f 0;0, f 1;0, f 0;1, f 1;1 and the marginal distribution f ¼ f 0;0 þ f 1;0 þ f 0;1 þ f 1;1. In Panel F we show the example single cell trajectory for the

same set of parameters.
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molecules, and from intermittent gene activity. It is
expected that the first source is the most important in
prokaryotes, in which the number of mRNA and even
protein molecules per cell is very small. In eukaryotes,
and especially in higher eukaryotes, where the number
of mRNAs is fairly large, the main source of stochas-
ticity is intermittent gene activity. Typically, to activate
the eukaryotic gene, several transcription factors are
needed together with chromatin remodeling, and there-
fore longer periods of gene inactivity and activity
resulting in large bursts of mRNA molecules are
expected.

Depending on the biology of the phenomena, various
methods for the intrinsic noise analysis in genetic
regulatory networks have been proposed. The approach
of McAdams and Arkin (1997), Arkin et al. (1998) and
Gilman and Arkin (2002) was designed to explore the
effects of small number of mRNA and protein molecules
in bacteria. McAdams and Arkin (1997) follow the
assumption made by Ackers et al. (1982), and Shea and
Ackers (1985) that there is a rapid equilibrium between
regulatory proteins and corresponding gene promoters.
The same assumption was made by Arkin et al. (1998)
who applied the stochastic formulation of chemical
kinetics proposed by Gillespie (1977) to analyse the
phage l lysis-lysogeny decision circuit in Esherichia coli.
Recently, Tao (2004a) analysed a single auto-regulatory
gene, considering both negative and positive feedback.
He employs the Chapman–Kolmogorov equation for
the probability distribution Pðx; y; tÞ, where x and y

denote numbers of mRNA and protein molecules,
respectively, to calculate the first two moments
ofPðx; y; tÞ. Assuming that the transcription rate de-
pends on the amount of protein, he also neglects
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stochasticity caused by switching of the gene status.
When analysing a two-gene network Tao (2004b)
disregards mRNA, assuming that the rate of protein
synthesis does not depend explicitly on the amount of
the corresponding mRNA. The noise in one- and two-
gene regulatory networks also has been analysed by
Tomioka et al. (2004). These authors assumed that the
regulatory network is close to a deterministic stable
equilibrium state and applied linear noise approxima-
tion of a chemical master equation in order to evaluate
the system fluctuations around this state.

Stochasticity due to switching of the gene status was
first recognized by Ko (1991) and then was analyzed by
Kepler and Elston (2001). Their approach involves the
Chapman–Kolmogorov equation for probability distri-
bution defined on discrete states, which is then approxi-
mated by the Fokker–Planck equation. The authors
consider synthesis of protein oligomers, but assume
direct translation of proteins from the DNA. In the case
of a single self-promotory gene, the Fokker–Planck
equation is further simplified by neglecting the diffusion
term, which leads to the first-order system of PDEs
analogous to our system (32)–(33). Kepler and Elston
(2001) also consider a system of two mutual repressors,
and assuming that they are identical they compute the
marginal distribution of the protein using Monte Carlo
simulations. The main difference between the Kepler–
Elston (2001) approach and the approach we propose is
the manner in which we pass from the discrete to a
continuous description. We do this at the level of a single
cell description, approximating the Gillespie scheme by a
system of stochastic ODEs, while Kepler and Elston pass
from the Chapman–Kolmogorov equation to Fokker–
Planck equation. The advantage of our approach lies in
the possibility to validate it by single cell simulations,
which generally is much simpler than comparing a
solution of Chapman–Kolmogorov equation and its
Fokker–Planck approximation. In their recent work,
Pirone and Elston (2004) use the Fokker–Planck
equation to calculate all first and second moments of
the probability density function. In the latter paper more
attention is focused on oligomerization reactions leading
to the formation of dimers and tetramers.

Transcriptional regulation involving switching be-
tween discrete high and low transcriptional rates was
also considered in a frequency domain by Simpson et al.
(2004). Their approach provides the frequency distribu-
tion of noise associated both with mRNA synthesis/
degradation and noise resulting from the operator
binding events that cause bursts of transcription.

Following Ko (1991) and others, here we focus on
stochasticity in eukaryotic gene expression, which is
introduced at the level of transcriptional regulation. The
approach combines the stochastic switch description of
kinetics of reactants present in a small number of copies
(in this case gene copies) with ODE description for
processes involving larger number of reacting molecules
(i.e., mRNAs and proteins). The model we explore is
based on the assumption that the gene promoters, in the
time-scale on the order of the mRNA half-life, are not in
a statistical equilibrium. This assumption is supported
by a growing number of experiments on single cell gene
expression, showing cell-to-cell heterogeneity in mRNA
levels, fluctuations of which are too large to be explained
only by effects of the finite number of mRNAs
(Takasuka et al., 1998; Stirland et al., 2003). The
experiments also show strong time-dependent fluctua-
tions of single cell mRNA levels, in response to a steady
stimulation. Moreover, these fluctuations have a ten-
dency towards desynchronization (Takasuka et al.,
1998; Stirland el al., 2003; Elowitz et al., 2002).

Low frequency of gene switching causes activation of a
single gene, leading to the production of a flux in mRNA
transcript abundance, on the order of the total mRNA
for the gene being considered. Since the relative strength
of stochastic effects grows as the number of reacting
molecules decreases, we expect that the stochasticity due
to switching of the gene status is the most important, at
least for eukaryotes. Accordingly, we neglect the
mRNA/protein production/decay randomness. For sim-
plicity, we assume that gene activation or repression is
due to a single molecule; however in many cases the gene
is turned on (or off) due to a collective action of several
different regulatory factors. This problem has been
analysed recently by Paszek et al. (2005).

The resulting stochastic ODEs for mRNA and protein
in a single cell yield a system of linear first-order PDEs
for pdf’s. Using the discretization, we reduced the
problem of finding time-dependent pdf’s to solving a
large system of linear differential equations. Stationary
pdf’s are solutions of a system of linear algebraic
equations. This approach allows us to calculate the two-
dimensional (mRNA and protein) time-dependent and
stationary pdf. Having the two dimensional pdf, we
calculate numerically the marginal distribution for
protein in order to compare it with protein distribution
in the Kepler–Elston model (2001), in which a direct
translation of the protein is assumed without mediation
of mRNA. We found the Kepler–Elston approximation
to be satisfactory in the case when protein half-life is
much longer than mRNA half-life. However, the
approximation fails when the protein is degraded faster
than mRNA, what may happen in the case of active
protein degradation (e.g. Lipniacki et al., 2004; McA-
dams and Shapiro, 2003). In this case, the Kepler–
Elston approximation may produce artificially bimodal
protein distributions. Based on the introduced ap-
proach, and using the Kepler–Elston approximation,
we considered the following two-gene systems: activa-
tor–repressor and repressor–repressor, and have calcu-
lated their two-dimensional protein–protein probability
distribution functions.
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In summary, we derive the first-order PDEs for
probability distribution function from stochastic ODEs
describing approximate kinetics of a single cell. Result-
ing equations enable us to calculate, for the first time,
the two-dimensional distributions, i.e., the mRNA-
protein distribution in the case of single gene regulation
and the protein–protein distribution in the case of two-
gene regulatory systems.
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Appendix A. Derivation of PDEs for the pdf’s—general

case

We consider the following general set-up:
A system of K nonlinear autonomous ODEs of the

form

dx

dt
¼ jðx; gÞ; tX0, (59)

xð0Þ ¼ x0, (60)

where x ¼ xðtÞ, x0 and j are column K-vectors with
components xk; x0k, and jk, respectively. g ¼ gðtÞ is a
right-continuous function assuming values from a finite
set equivalent to f1; 2; . . . ;Mg. We assume that functions
j are continuous and bounded

j : D� f1; 2; . . . ;Mg ¼ ½0; a1� � ½0; a2� � � � � � ½0; aK �

� f1; 2; . . . ;Mg ! RK ð61Þ

and such that D is invariant for the system, i.e., for
initial conditions x0 2 D and any g, xðtÞ 2 D. A solution
of the ODE system (59)–(60), extended from value xs at
time s, is frequently denoted

xðtÞ ¼ xðt; xs; sÞ, (62)

which for given gðtÞ defines a mapping X ð�; t; sÞ ¼
xðt; �; sÞ : RK ! RK ; a translation from s to t along the
solution of the ODE (59).

Furthermore, we let g be a random function,
following the rules of a continuous-time non-autono-
mous finite Markov chain. Specifically, if at time tX0,
gðtÞ ¼ m, then the probability that at time tþ Dt it will
be in a different state l, is equal to

Pr½gðtþ DtÞ ¼ l j gðtÞ ¼ m� ¼ qlmðxðtÞÞDtþ oðDtÞ, (63)

where qlmðxÞ are bounded continuous on D, and
limDt!0 oðDtÞ=Dt ¼ 0. In other words, the transition
intensities of process g are functions of the state x of the
ODE system (59)–(60).

We will derive expressions for the joint distributions of
the random variables xðtÞ and gðtÞ, at a given time t. Let
us denote by f gðx; tÞ, the joint function of probability
density (in xðtÞ) and probability (in gðtÞ), so that

Plðx;Dx; tÞ ¼ Pr½xkðtÞ 2 ðxk; xk þ DxkÞ; k ¼ 1; . . . ;K ;

gðtÞ ¼ l�

¼ f lðx; tÞDx1 � � �DxK þ oðDxÞ. ð64Þ

Furthermore, let us assume f gðx; 0Þ is given. For tX0, let
us consider Plðx;Dx; tÞ and Plðx;Dx; t;DtÞ, this latter
being the probability that xðtþ DtÞ falls into the region
containing solutions of system (59)–(60), which at time t

were enclosed in the rectangle ðx; xþ DxÞ; and that
gðtþ DtÞ ¼ l,

Plðx;Dx; t;DtÞ ¼ Pr½fxðtþ Dt; xt; tÞ; xt 2 ðx; xþ DxÞg,

gðtþ DtÞ ¼ l�. ð65Þ

If there is no jump of gðtÞ in the interval ðt; tþ DtÞ then
Plðx;Dx; t;DtÞ ¼ Plðx;Dx; tÞ. However, in general, transi-
tions to l may occur from all other states
m 2 f1; 2; . . . ;Mg, mal; in the interval ðt; tþ DtÞ, so that

Plðx;Dx; t;DtÞ

¼ Plðx;Dx; tÞ 1�
X
mal

qlmðxðtÞÞDt� oðDtÞ

" #
ð66Þ

þ
X
mal

Pmðx;Dx; tÞ½qmlðxðtÞÞDtþ oðDtÞ� (67)

and consequently

lim
Dt#0

Plðx;Dx; t;DtÞ � Plðx;Dx; tÞ
Dt

¼ Plðx;Dx; tÞqllðxðtÞÞ

þ
X
mal

Pmðx;Dx; tÞqmlðxðtÞÞ, ð68Þ

where qllðtÞ ¼ �
P

mal qlmðtÞ. Let us notice that since
Plðx;Dx; t; 0Þ ¼ Plðx;Dx; tÞ, the limit at the left-hand side
of (67) is the derivative qPlðx;Dx; t;DtÞ=qDt at Dt ¼ 0.
The following expression involving a change of variables:

Plðx;Dx; t;DtÞ

¼

Z
� � �

Z
u2ðx;xþDxÞ

det
qX ðu; t; tþ DtÞ

qu

� �����
����

� f l ½X ðu; t; tþ DtÞ; tþ Dt�du; l ¼ 1; . . . ;M ð69Þ

is employed, since it would be difficult to express the
region being the image of the rectangle ðx; xþ DxÞ
through mapping X ð�; t; tþ DtÞ. Let us also note that

Plðx;Dx; tÞ ¼
Z
� � �

Z
u2ðx;xþDxÞ

f lðu; tÞdu; l ¼ 1; . . . ;M.

(70)
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As it is known, the sensitivity matrix W ðu; s; tÞ ¼
qX ðu; s; tÞ=qu is the solution of a matrix ODE

d

dt
W ðu; s; tÞ ¼

qjðu; gÞ
qu

W ðu; s; tÞ; W ðu; s; sÞ ¼ I , (71)

and therefore, for small Dt,

W ðu; t; tþ DtÞ ¼ I þ
qjðu; gÞ

qu
Dtþ oðDtÞ,

d

dt
W ðu; t; tþ DtÞ ¼

qjðu; gÞ
qu

þOðDtÞ ð72Þ

which implies

j det½W ðu; t; tÞ�j ¼ 1, (73)

dfj det½W ðu; t; tþ DtÞ�jg=dtjDt¼0 ¼
XK

k¼1

qjkðu; gÞ
quk

. (74)

Substituting into Eq. (69), and carrying out the required
differentiations under the integral, we obtain

qPlðx;Dx; t;DtÞ=qDtjDt¼0

¼

Z
� � �

Z
u2ðx;xþDxÞ

XK

k¼1

qjkðu; lÞ

quk

f lðu; tÞ

(

þ
XK

k¼1

jkðu; lÞ
qf lðu; tÞ

quk

þ
qf lðu; tÞ

qt

)
du. ð75Þ

Comparing expressions under the integrals in Eqs. (68)
and (75) (note Eq. (70)), we obtain the following system
of first-order linear PDEs:

qf lðu; tÞ

qt
þ
XK

k¼1

qjkðu; lÞ

quk

f lðu; tÞ þ
XK

k¼1

jkðu; lÞ
qf lðu; tÞ

quk

¼ f lðu; tÞqllðxðtÞÞ þ
X
mal

f mðu; tÞqmlðxðtÞÞ,

l ¼ 1; . . . ;m

or

qf lðu; tÞ

qt
þ div ½jðu; lÞ f lðu; tÞ� ¼ f lðu; tÞqllðxðtÞÞ

þ
X
mal

f mðu; tÞqmlðxðtÞÞ; l ¼ 1; . . . ;m. ð76Þ

A. 1. Preservation of probability norming

Adding Eqs. (76) together and remembering that
qllðtÞ ¼ �

P
mal qlmðtÞ we obtain

XM
l¼1

qf lðu; tÞ

qt
þ div ½jðu; lÞ f lðu; tÞ� ¼ 0. (77)

The assumption that there exists a domain D invariant
for system (59)–(60) ( i.e., that for initial conditions
x0 2 D, and any g, xðtÞ 2 D) implies that for all l and t

supp f lð�; tÞ � D. Thus we can show applying Gauss–
Green theorem that the integral of the marginal
distribution function Rðu; tÞ,

Rðu; tÞ ¼
XM
l¼1

f lðu; tÞ (78)

is preserved in time by system (76). Let D0 be a domain
in RKsuch that closure D � interior D0. Thus we have
f ljqD0

¼ 0, l ¼ 1; . . . ;M. The Gauss–Green Theorem
(Evans, 2002) states that, provided f ðxÞ 2 C1ðD0Þ is a
vector function bounded on qD0,Z

D0

qf

qxi

dx ¼

Z
qD0

n � f ðxÞdS, (79)

where n is a unit vector normal to qD0 directed
outwards. Thus, since div f ¼

P
i qf =qxi, from Eq.

(77) and Gauss–Green theorem we obtain,

q
qt

Z
D0

Rðu; tÞdu ¼ �
XM
l¼1

Z
D0

div ½jðu; lÞf lðu; tÞ�du

¼ �
XM
l¼1

Z
qD0

f lðu; tÞn � jðu; lÞdS ¼ 0,

ð80Þ

The last equality follows from the fact that f lðu; tÞ 	 0
on qD0, for each l ¼ 1; . . . ;M. Let us note that since
system (76) is linear, the value of marginal distribution
norming

R
D0

Rðu; tÞdu is not determined by the system
itself, thus we have freedom to impose

R
D0

Rðu; tÞ ¼ 1.
System (59)–(60) can be interpreted as system describing
the motion of a particle in RK � f1; 2; . . . ;Mg space.
Intuitively, the conservation of marginal probability
norming R is a direct consequence conservation of
particles, i.e., a particle, kinetics of which is given by
Eqs. (59) and (60), remains in the D� f1; 2; . . . ;Mg
subdomain.
Appendix B. Discretization techniques

Here we discuss the numerical method applied to
calculate the stationary distributions f ðx; yÞ; gðx; yÞ of
system (21)–(22). To illustrate the technique let us begin
with the simplified model (28)–(29). Let us consider the
spatially discretized problem on the grid corresponding
to the interval ½0; 1�. The continuous variable x is
replaced by i=N, 0pipN. Let f i and gi denote
probability distribution functions f and g at point i of
the grid. The discretized analog of system (30)–(31) now
reads

df i

dt
¼ b

i

N
gi � cf i þ rðði þ 1Þf iþ1 � if iÞ, (81)

dgi

dt
¼ �b

i

N
gi þ cf i þ rððN þ 1� iÞgi�1 � ðN � iÞgiÞ.

(82)
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The resulting system consists of 2� ðN þ 1Þ linear
ODEs. In each of the equations the first two right-hand
side terms correspond to exchange between distributions
f and g. The last two terms describe transport into grid
point i, and from the grid point i. Note that in the case
of distribution f transport to grid point i proceeds from
grid point i þ 1, while for the distribution g transport
proceeds to grid point i from the grid point i � 1.
Assumption that f and g vanish out of interval ½0; 1� may
be replaced by setting f Nþ1 ¼ g�1 ¼ 0, which closes the
system.

The stationary distributions is calculated by setting
df i=dt ¼ dgi=dt ¼ 0. This simplifies system (81)–(82) to
a system of linear algebraic equations

br

i

N
gi � crf i þ ði þ 1Þf iþ1 � if i ¼ 0, (83)

�br

i

N
gi þ crf i þ ðN þ 1� iÞgi�1 � ðN � iÞgi ¼ 0, (84)

where, recall, br ¼ b=r and cr ¼ c=r. The resulting
system has no free terms and therefore it may not have
unique solution. To make the system unique, we replace
one of its 2� ðN þ 1Þ equations by the normalization
equation ½1=ðN þ 1Þ

P
iðf i þ giÞ ¼ 1. In Fig. 16 we

compare the two solutions of system (83)–(84) calcu-
lated for N ¼ 50 and 200 with the analytic result
(37)–(38). As one may expect, the accuracy of the
applied method grows with the size of the grid. For N ¼

500 the difference would be indistinguishable by eye.
The full system (21)–(22) is considered on the grid i; j,

where 0pipN ; 0pjpN: The continuous variables x

and y are replaced by i=N and j=N, respectively. Let f i; j

and gi; j denote distributions f and g at point i; j of the
Fig. 16. Numerical solutions for distributions f ðyÞ and gðyÞ on the grid

of size N ¼ 50 (dotted lines) and N ¼ 200 (dashed-dotted lines) are

compared with analytical solutions (37,38), (continuous line). The

parameters are cr ¼ 6, br ¼ 3.
grid. This way we replace f ðx; yÞ and gðx; yÞ by 2� ðN þ
1Þ2 variables.

The discretized analog of system (21)–(22) now reads

df i; j

dt
¼ b

j

N
gi; j � cf i; j � if i; j þ ði þ 1Þf iþ1; j

� rji � jj f i; j þ rði þ 1� jÞf i; j�1L1

þ rðj þ 1� iÞf i; jþ1L2, ð85Þ

dgi; j

dt
¼ � b

j

N
gi; j þ cf i; j � ðN � iÞgi; j þ ðN þ 1� iÞgi�1;j

� rji � jj gi; j þ rði þ 1� jÞgi;j�1L1

þ rðj þ 1� iÞgi;jþ1L2, ð86Þ

where L1 and L2 are the logical variables,

L1 ¼ 1 for i4j � 1 and L1 ¼ 0 for ipj � 1 (87)

and

L2 ¼ 1 for ioj þ 1 and L2 ¼ 0 for iXj þ 1. (88)

As in the previous case, the stationary distributions are
calculated by setting df ij=dt ¼ dgij=dt ¼ 0. As a result
we obtain system of 2� ðN þ 1Þ2 algebraic linear
equations. To make the solution unique we replace
one of the equations by the normalization ½1=ðN þ
1Þ2�

P
ijðf i; j þ gi; jÞ ¼ 1: We note that the matrix of the

resulting system is relatively sparse, and the number of
non-zero entries grows as N2, not as N4. The random
access memory (RAM) shortage is the main problem
here. We used the MATLAB 7.0 solver and to save
RAM we declare matrix as sparse and then we invert it
using matrix left division function to solve the system.
The problem can be solved on a coarse grid, N ¼ 50, in
less than a minute, on an average PC, but to solve it on a
finer grid (up N ¼ 300) we use server with 8GB RAM.
In a same way we discretize systems (49)–(52) and
(55)–(58) for protein–protein stationary distributions. In
the case of activator–repressor (49)–(52) we obtain

� if 0;0
ij þ ði þ 1Þf 0;0

iþ1;j � rjf 0;0
ij þ rðj þ 1Þf 0;0

i;jþ1

� pþ k
i

N

� �
f 0;0

ij þ f 0;1
ij hþ f 1;0

ij q
j

N
¼ 0, ð89Þ

� ðN � iÞf 1;0
ij þ ðN þ 1� iÞf 1;0

i�1;j � rjf 1;0
ij þ rðj þ 1Þf 1;0

i;jþ1

� q
j

N
þ k

i

N

� �
f 1;0

ij þ pf 0;0
ij þ hf 1;1

ij ¼ 0, ð90Þ

� if 0;1
ij þ ði þ 1Þf 0;1

iþ1;j � rðN � jÞf 0;1
ij þ rðN þ 1� jÞf 0;1

i;j�1

� ðpþ hÞf 0;1
ij þ f 0;0

ij k
i

N
þ f 1;1

ij q
j

N
¼ 0, ð91Þ

� ðN � iÞf 1;1
ij þ ðN þ 1� iÞf 1;1

i�1;j � rðN � jÞf 1;1
ij

þ rðN þ 1� jÞf 1;1
i;j�1 � q

j

N
þ h

� �
f 1;1

ij

þ k
i

N
f 1;0

ij þ pf 0;1
ij ¼ 0. ð92Þ
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System (85)–(86) of linear ODEs can be used to
simulate time evolution of densities f ðx; y; tÞ and
gðx; y; tÞ. We use functions lsim or initial designated for
systems of linear ODEs. The simulation needs however
even larger RAM and is also much more time
consuming. Using our solver we can simulate evolutions
on grids with up to N ¼ 50. On such a grid it takes
several hours until the proximity of steady state is
reached. On a grid with N ¼ 15, the problem can be
solved on PC in less than a minute.
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