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ABSTRACT

We propose a novel approach to breast mass classification based on deep learning models
that utilize raw radio-frequency (RF) ultrasound (US) signals. US images, typically displayed
by US scanners and used to develop computer-aided diagnosis systems, are reconstructed
using raw RF data. However, information related to physical properties of tissues present in
RF signals is partially lost due to the irreversible compression necessary to make raw data
readable to the human eye. To utilize the information present in raw US data, we develop
deep learning models that can automatically process small 2D patches of RF signals and
their amplitude samples. We compare our approach with classification method based on the
Nakagami parameter, a widely used quantitative US technique utilizing RF data amplitude
samples. Our better performing deep learning model, trained using RF signals and their
envelope samples, achieved good classification performance, with the area under the
receiver attaining operating characteristic curve (AUC) and balanced accuracy of 0.772
and 0.710, respectively. The proposed method significantly outperformed the Nakagami
parameter-based classifier, which achieved AUC and accuracy of 0.64 and 0.611, respectively.
The developed deep learning models were used to generate parametric maps illustrating the
level of mass malignancy. Our study presents the feasibility of using RF data for the

development of deep learning breast mass classification models.
© 2020 Nalecz Institute of Biocybernetics and Biomedical Engineering of the Polish
Academy of Sciences. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Breast cancer is the most frequently diagnosed cancer in
women and the leading cause of cancer-related deaths
worldwide [1]. Early detection and accurate diagnosis of breast
cancer is crucial for the efficient treatment and survival of
patients. Ultrasound (US) imaging is a popular medical
imaging modality used for breast lesion characterization. US
is low-cost, widely available and can be used to differentiate
breast masses with high accuracy. However, US scans need to
be collected by a skilled physician adept at operating a US
scanner and locating the mass within the examined breast.
Moreover, the assessment of breast masses in US images is
subjective and depends on the radiologist's experience.

Various computer-aided diagnosis (CAD) systems have
been developed to aid radiologists to objectively assess breast
masses in US to improve classification performance and avoid
unnecessary biopsies [2-5]. CAD systems commonly utilize US
images to differentiate malignant and benign lesions. Howev-
er, the appearance of tissues in US images depends on US
scanner settings (e.g. scanner gain, compression). For in-
stance, the texture of US images and visibility of object edges
can be modified by using various image reconstruction
methods and image post-processing algorithms [6]. Such
modifications may have negative impact on the classification
performance of the CAD systems utilizing US images [7].
Moreover, during the US image reconstruction process the
information related to tissue structure carried by raw radio-
frequency (RF) signals is partially lost due to irreversible
compression, which is necessary to make the raw US data
readable to the human eye. As aremedy, quantitative US (QUS)
methods have been developed to extract features directly from
RF data. QUS techniques commonly utilize small 2D patches of
RF data to estimate features related to various local physical
properties of tissue [8]. For instance, local spatial distribution
of tissue micro-structures can be assessed based on RF signal
amplitudes [9]. Commonly, the Nakagami and homodyned K
distributions are used to model the statistics of RF signal
amplitude. In the case of breast mass classification, shape
parameters of the Nakagami and homodyned K distributions
have been used to differentiate malignant and benign breast
masses in several papers [10-13]. While QUS techniques are
based on specific tissue models, Uniyal et al. developed a
breast mass classification method based on generic hand-
crafted features extracted from small 2D patches of RF data
and US images [14]. In this case, various spectral features were
calculated based on RF data. Moreover, features related to
gray-level co-occurance matrix were estimated based on US
images. Further, Ouyang et al. assessed the relative size of
cancer tissue US scatters with the H-scan method to
differentiate malignant and benign breast masses [15].

Deep learning methods based on convolutional neural
networks (CNNs) are gaining importance in the medical image
analysis field. CNN is an artificial neural network that includes
at least one layer performing convolution-like operations [16].
CNNs have been frequently used to process time-domain [17]
and spatial data [18]. They are considered a highly successful
alternative to fully-connected neural networks, primarily due
to the properties of convolutional layers such as translational

equivariance, parameter sharing and sparse connectivity [16].
In US imaging, deep CNNs have been successfully applied to
breast mass classification in several studies [19-25]. Due to
relatively small data sets, authors of the aforementioned
studies applied different transfer learning techniques with
deep CNNs pre-trained on the ImageNet data set to develop
the classifiers based on US images [26]. For instance, in [19] the
authors used features extracted from the VGG19 CNN to train
support vector machine classifiers. Meanwhile, in [20,25] pre-
trained CNNs were fine-tuned to differentiate malignant and
benign breast masses.

Deep learning models for breast mass characterization
have also been developed for other imaging modalities, such
as histology or mammography. Bardou et al. used CNNs for
breast histology image classification, and achieved high
accuracy in the differentiation of malignant and benign
masses [27]. Mullooly et al. utilized deep learning methods
to relate breast histology image features with mammographic
breast density [28], which is a popular method to assess long-
term risk of the breast cancer [29,30]. Diniz et al. used CNNs to
classify breast tissue into dense and non-dense based in
mammography images [31]. Al-masni et al. utilized a deep
learning model named YOLO (You Only Look Once) to
simultaneously detect lesions and assess malignancy of breast
masses in mammography [32].

In this work, we propose a novel deep learning based
approach to breast mass classification. Based on RF data
collected from malignant and benign breast masses, we have
developed deep CNNs that can automatically process RF
signals and differentiate breast masses. As in the case of the
previous studies on QUS techniques [10-13], our method is
designed to process small 2D patches of RF data to locally
characterize breast tissue. In contrast to QUS techniques, our
approach is automatic and does not require any feature
engineering or physical modelling - the deep learning model
learns how to extract useful features for breast mass
classification directly from the RF data. To the best of our
knowledge, this is the first work on using deep learning
methods to classify breast masses based on RF data. We
investigate the usefulness of neural network models consist-
ing of 1D and 2D convolutional layers developed using raw RF
signals and their amplitudes. Moreover, we compare our
approach with the classification method based on the
Nakagami distribution.

2. Methods
2.1. Data set

To perform the experiments, we used the publicly available
OASBUD data set, which includes US RF signal frames recorded
from 52 malignant and 48 benign lesions [33]. Malignant
masses were assessed with biopsy, while benign masses were
assessed either with biopsy or a 2-year follow-up. For each
mass, two orthogonal scans (transverse and longitudinal) were
acquired using the Ultrasonix SonixTouch Research US
scanner (Ultrasonix Inc., Canada) equipped with the L14-5/
38 linear array transducer operating at a nominal central
transmit frequency of 10 MHz. In each case, single focusing
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beamforming was applied with the focal zone set at lesion
depth. For each RF signal frame, 512 scan lines were collected,
with the sampling frequency equal to 40 MHz. US images were
reconstructed based on RF data, and used by an experienced
radiologist to outline regions of interest (ROIs) indicating each
breast mass area. More information about the data set can be
found in the original paper [33]. Fig. 1 shows a reconstructed US
image of a breast mass and a single RF signal corresponding to
one of the scan lines.

Following the approaches from previous studies on QUS
techniques, we developed the deep learning models using 2D
patches of raw US data [10-13]. Separately, we extracted 2D
patches of RF signals and their amplitude samples. The
amplitude samples were calculated based on RF signals using
Hilbert transform. The sliding window technique with stride
equal to 1mm was applied to divide each mass ROI into
smaller sub-regions of 2 x 2mm (104 x 27 samples). The
window dimension corresponded approximately to three
times the imaging pulse length and proved to provide good
results in the case of Nakagami imaging [9]. In total, we
obtained 3344 and 6301 2D data patches from the malignant
and benign breast masses, respectively. Our approach to RF
data analysis is presented in Fig. 2.
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Fig. 1 - (a) US image of a breast mass reconstructed using RF

data. The red line indicates one of RF signals scan lines. b)
The indicated RF signal line (blue) and its envelope (red).

2.2. Network architecture

Let X be the set of all possible 2D RF data patches extracted
from the malignant and benign breast masses. In general, any
classifier can be expressed as a function p(x;d), which assigns
appropriate likelihood of malignancy to each patch x € X. Here,
¢ stands for a set of model parameters to be determined during
training. In this work we consider neural network architec-
tures that are composed of convolutional, pooling and dense
(fully connected) layers. A convolutional layer convolves input
data x with trainable filters. For a 2-D case the output of the kth
convolutional filter can be expressed in the following way [34]:

¢(X7i7 ))k = (X*Gk)(17 j)+bk7 (1)

where (i, j) is the pixel position in the kth feature map ¢(x, i, j)i, X
denotes input data, * is the convolution operation and 6, and by,
stand for the filter weights and bias term associated with the
kth filter, both to be determined during the training procedure.

The pooling layer performs a down-sampling of input by
computing a summary statistic over small parts of the data. In
this work we compute the maximum and average over regions
consisting of a couple data points (see Tables 1 and 2). We also
use global average pooling (GAP), which computes the average
over an entire feature map (the output of each convolutional
filter separately). Pooling layers reduce the volume of
processed data and thus may reduce the number of param-
eters of the further layers (e.g. dense layers). Also, a pooling
layer is invariant to the (potentially small) translations of the
input data.

The dense layer linearly transforms input by multiplying it
by a matrix of trainable parameters 6:

G1(X;6); = > OimXn + bi. @

Dense layers are frequently used to reduce the dimensionality
of input data; in particular, they can be used to reduce a vector
of (latent) features to a single output of the neural network.

Frequently, a non-linear activation function is applied after
each convolutional or dense layer; in this work we use a
rectifier linear unit (ReLU) activation function for the output of
convolutional layers [35]:

r(x) = max(0,x) (3)

and a sigmoid activation function for the dense layers:

s(x)=(1+e ) 4)

Our approach to model development was inspired by
several studies on the usage of deep neural networks for the
processing of raw acoustic waveforms [36-38| and EEG signal
decoding [39]. We investigated three different approaches to
the binary classification of the 2D RF data patches.

The first network, denoted CNN-1D, was based on 1D
convolutional layers and was developed to process RF signals.
This model can be described as a composition p(x) = f(¢s(#:(x))),
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Fig. 2 - Classification procedure applied in this work. The sliding window technique (with stride equal to 1 mm) was used to
extract 2 X 2 mm patches of RF data from breast mass ROIs. For each US data patch, the likelihood of malignancy p(x;) was
computed with a CNN. The final decision on whether the lesion was malignant or benign was made on the basis of average
likelihood p(x;), computed from all 2D patches obtained from all available examinations made for a given subject's lesion S.
In addition, a map illustrating mass malignancy was generated in order to visualize the predictions made by the deep

learning model.

where ¢¢(x) consists of 1D convolution-pooling blocks proces-
sing each scan line separately in the longitudinal direction,
and ¢s(x) consists of convolutional-pooling blocks that process
the RF data patches in the transverse direction to extract the
information about the relationships between scan lines. After
the convolutional-pooling blocks, a global max pooling layer
was used, followed by a dense layer with a sigmoid activation
function applied to estimate the likelihood of malignancy. The
architecture details of the proposed CNN-1D model are
summarized in Table 1. The purpose of ¢(x) was to extract
temporal information present in each scan line separately.
The usage of 1D convolutions reduced the impact of spatial
information available in 2D patches by constraining the
feature extraction process performed by ¢.(x) only to the time
domain. This solution was inspired by the studies on EEG
signal decoding with deep learning [39], where CNNs were
developed to process EEG signals separately and then combine
the information extracted from different EEG sensors for
further processing. Moreover, processing each RF signal
separately is a common approach to the estimation of QUS
parameters, such as the backscatter and attenuation coeffi-
cients [40]. To take into account the potential relationship
between features extracted from neighboring scan lines, we

Table 1 - CNN-1D architecture.

Layer type Description
Convolutional 16 filters 13 x 1
Average-pooling Pooling and stride 2 x 1
Convolutional 16 filters 5 x 1
Max-pooling Pooling and stride 2 x 1
Convolutional 32 filters 5 x 1
Max-pooling Pooling and stride 2 x 1
Convolutional 32 filters 13 x 1
Convolutional 32 filters 1 x 6
Max-pooling Pooling and stride 1 x 2
Convolutional 32 filters 1 x 6

Global max pooling (GMP)
Dense One output unit

applied function ¢s(x), followed by a global max poolinglayer to
extract information about the presence of each feature in, at
least, one scan line of the input data patch.

The second network architecture, denoted CNN-2D, was
trained based on the envelope of RF signals. This model was
designed to assess the usefulness of the spatial information
presentin RF signal amplitudes. The model contained three 2D
convolution-max-pooling blocks, followed by a global average
pooling layer and a dense layer with the sigmoid activation
function. The architecture details are presented in Table 2. The
CNN-2D model was inspired by the QUS techniques based on
the Nakagami and homodyned K distributions, which extract
information present in the envelope of RF signals. Similar deep
learning models have been used for infant brain MR image
segmentation [41].

The third network architecture, denoted CNN-1D-2D, was a
combination of the two previous models (Fig. 3). In this case,
we combined the CNN-1D and CNN-2D models by concatenat-
ing the outputs of the last global pooling layers, which were
provided as the input to the dense layer followed by the
sigmoid activation function. The aim of this solution was to
train the model to simultaneously analyse RF signals and their
amplitude samples.

We used the rectifier linear units (ReLU) activation
functions to process outputs of the convolutional blocks [35]
in all deep learning models. Moreover, we applied batch
normalization after each convolutional block [42].

Table 2 - CNN-2D architecture.

Layer type Description
Convolutional 32 filters 9 x 4
Max-pooling Pooling and stride 4 x 1
Convolutional 64 filters 5 x 5
Max-pooling Pooling and stride 2 x 2
Convolutional 128 filters 5 x 5

Global average pooling (GAP)
Dense One output unit
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Fig. 3 - CNN-1D-2D architecture. The classification is
performed using 2D patches of raw RF signals and their
envelope samples computed with the 1-D Hilbert
transform H(x). Output vectors from the CNN-2D's Global
Average Pooling layer (GAP) and CNN-1D's Global Max
Pooling (GMP) layer were concatenated and provided as an
input to a fully connected layer.

2.3.  Nakagami imaging

The deep learning models proposed in this paper were
compared with the Nakagami parameter based breast mass
classifier [10,43]. For each 2D patch of RF signal amplitudes, we
estimated the Nakagami parameter to assess local tissue
scattering properties related to the spatial distribution of
tissue microstructures. The probability density function of
the Nakagami distribution can be described in the following
way [44]:

m p2m—1
R () 5

where A stands for the RF signal amplitude, I'() is the Gamma
function, m is the Nakagami parameter and Q is the mean
amplitude intensity. The Nakagami parameter is related to the
spatial distribution of tissue microstructures (cell clusters)
within the resolution cell of the imaging transducer. For
0.5 <m< 1 the resolution cell contains a small number of
scatterers, for m = 1 the resolution cell contains a large number
of randomly distributed scatterers, for m > 1 the resolution cell
is expected to include randomly distributed scatterers and
regularly spaced scatterers. The maximum likelihood estima-
tor was applied to calculate the Nakagami parameter [45].

2.4. Model development and evaluation

The data set was randomly divided 10 times into train,
validation and test sets based on subject IDs. In each case, we
used 50% of data for training, 20% for validation and 30% for
testing. To improve the training of the models, we investigated
two approaches to the normalization of input data [46]. The
signals were standardized using heuristics transformations
given by the following equations:

and

Xi — Mi

X = o (7)
where (i, o) are the mean and standard deviation of the amplitude
samples in the whole training data set Xyqin, and (u;, o7) are the
mean and standard deviation of the amplitude samples in a single
2D patch x; Signal pre-processing based on Eq. (6) maintains the
information about the relative scale of signal value (mean inten-
sity) between the patches; while for the second transformation,
the amplitude of samples corresponding to each patch have the
same standard deviation. We trained and evaluated the CNN-2D
model using data transformed with both methods.

Deep learning models were developed using the training set to
minimize the weighted negative cross entropy loss function. To
address the problem of class imbalance, we adjusted the loss
function inversely proportional to the class frequency in the
training set. Weights of the models were initialized as random
values drawn from a uniform distribution with limits determined
using Glorot's method [47]. The stochastic gradient descent
algorithm with initial learning rate equal to 10~ and momentum
0.9 was used to perform back-propagation. We used a validation
data set for an early stopping (100 epochs patience, maximum 500
epochs) procedure and to reduce the learning rate when validation
loss reached plateau. We assessed the model's performance on a
test data set using the area under the receiver operating curve
(AUC) and balanced accuracy (arithmetic average of recall and
specificity). We assigned malignant class to each RF data patch
whenever the a posteriori probability of malignancy was higher
than 0.5 (p(x) > 0.5); otherwise the patch was classified as benign.
We calculated the classification performance metrics for two
tasks. First, we evaluated how well the models performed in 2D
patch classification. Second, we assessed the models in subject
classification. In this case, we averaged the predictions corre-
sponding to all patches extracted from a particular mass. This was
performed to assess how accurately the models predicted the
malignancy of breast mass. Similarly, the Nakagami parameters
calculated for each 2D patch were averaged to determine the
mean Nakagami parameter for the entire breast mass. Based on
the mean Nakagami parameters calculated for each subject we
developed a logistic regression classifier for the breast mass
differentiation. The Welch's t-test was applied to compare the
AUC values obtained for the better performing deep learming
model and the Nakagami parameter based classifier.

>Based on the patches extracted with the sliding window
technique, we used the deep learning models to generate
parametric maps illustrating the likelihood of malignancy for
each breast mass. The likelihood of malignancy obtained for
each sub ROI was overlaid on the US image. All calculations
performed in this study were done in Python 3.6. The networks
were implemented in Keras 2.2.4 with the Tensorflow 1.12
backend [48,49].

3. Results
3.1.  Impact of the RF signal normalization method

We trained and evaluated the CNN-2D model using inputs
normalized as in Egs. (6) and (7); the results are presented in
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Table 3 - Performance scores obtained by the CNN-2D Table 3. We achieved slightly better classification performance

model using two different RF data normalization for the first standardization, both for classification per patch

schemes. and per subject. Hence, for the remaining experiments we
AUC (+std. dev) Accuracy (+std. dev.) decided to employ the second standardization scheme.

Classification per subject . .

std. (6) 0.776 (:0.075) 0.691 (+0.073) 3.2. Classification performance

std. (7) 0.762 (+£0.072) 0.691 (+0.085)
L Table 4 presents the classification performance achieved by
classification per 2D patch

std. (6) 0.775 (£0.075) 0.710 (+0.062) the deep learning models and the Nakagami parameter based
std. (7) 0.746 (£0.072) 0.682 (40.059) classifier. The best average results for the subject classification
task were obtained by the CNN-1D-2D model, with the AUC
and accuracy values equal to 0.772 and 0.701, respectively. As
opposed to the CNN-2D model, incorporating the CNN-1D
model improved the classification performance by a small
Table 4 - Classification performance obtained by the deep margin. The Nakagami parameter based classifier achieved an
AUC value of 0.64 in the subject classification task. This result
was significantly lower than the AUC value obtained for the
AUC (+std. dev.) Accuracy (+std. dev.) CNN-1D-2D model (p-value <0.05).

In the patch classification task, the model based on the RF

learning models and the Nakagami parameter based
classifier.

classification per subject

CNN-2D 0.762 (+0.072) 0.691 (+0.085) signal envelope achieved the best results, with AUC and
CNN-1D 0.730 (£0.104) 0.646 (+0.072) accuracy values of 0.746 and 0.682, respectively. In compari-
CNN-1D-2D 0.772 (+0.083) 0.701 (+0.073) son, the CNN-1D model developed using RF data achieved a
Nakagami parameter  0.640 (+0.093) 0.611 (+0.051) much lower AUC value of 0.648. To further compare the results

classification per 2D patch obtained for the patch classification task, we examined the

CNN-2D 0.746 (+0.072) 0.682 (+0.059) number of misclassified 2D patches in one of the test sets for
CNN-1D 0.648 (:£0.045) 0.602 (£0.032) each subject individually. These are presented in Table 5. In
CNN-1D-2D L0 7)) el comparison to the CNN-2D model, the usage of the CNN-1D-2D
Nakagami parameter  0.624 (+0.069) 0.593 (+0.051)

model improved the accuracy for subjects with the highest

Table 5 - Classification error computed for each training subject separately.

Id. Class # ROIs CNN-2D error CNN-1D-2D error
36pm malignant 37 34 (91.9%) 17 (45.9%)
30nh_1 benign 19 15 (78.9%) 9 (47.4%)
114hd malignant 22 17 (77.3%) 10 (45.5%)
176JP malignant 4 3 (75.0%) 2 (50.0%)
55rm benign 392 261 (66.6%) 207 (52.8%)
65gs benign 13 7 (53.8%) 2 (15.4%)
14mw malignant 23 12 (52.2%) 8 (34.8%)
188 malignant 22 11 (50.0%) 8 (36.4%)
Slag benign 96 43 (44.8%) 54 (56.2%)
10jw malignant 114 45 (39.5%) 50 (43.9%)
102ks malignant 378 142 (37.6%) 93 (24.6%)
115r malignant 35 13 (37.1%) 19 (54.3%)
75kp benign 75 27 (36.0%) 56 (74.7%)
111kp benign 84 25 (29.8%) 27 (32.1%)
110jb malignant 191 52 (27.2%) 76 (39.8%)
47sm benign 98 26 (26.5%) 27 (27.6%)
23wp benign 125 32 (25.6%) 49 (39.2%)
30nh_2 benign 73 17 (23.3%) 20 (27.4%)
41ba malignant 199 38 (19.1%) 56 (28.1%)
31nh benign 64 8 (12.5%) 18 (28.1%)
180IM malignant 663 70 (10.6%) 127 (19.2%)
112bw benign 33 3 (9.1%) 4 (12.1%)
25ci benign 69 6 (8.7%) 16 (23.2%)
181J0 malignant 307 18 (5.9%) 29 (9.4%)
205AT malignant 106 1 (0.9%) 0 (0.0%)
49ez benign 7 0 (0.0%) 2 (28.6%)
46sm benign 2 0 (0.0%) 0 (0.0%)
42sw benign 2 0 (0.0%) 1 (50.0%)
226MP malignant 45 0 (0.0%) 1(2.2%)
200AT malignant 56 0 (0.0%) 4 (7.1%)
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Fig. 4 - Malignancy maps developed for subjects with ID number 36pm, 75kp, 55rm using the CNN-2D (first row) and CNN-1D-
2D (second row) models. For subjects 36pm, 55rm we observed an improvement in patch classification accuracy; for subject

75kp we noticed a decrease in performance.

number of incorrectly classified patches (e.g. subjects: 36pm,
30nh_1, 55rm); however, it also resulted in several misclassi-
fications (e.g. subjects: 5lag, 75kp, 41ba). CNN-1D-2D de-
creased the number of subjects that had at least 50% of
incorrectly classified patches: from 8 for CNN-2D (subjects:
36pm, 30nh_1, 114hd, 176JP, 55rm, 65gs, 14mw, 188) to 6 for
CNN-1D-2D (subjects: 75kp, 51ag, 115r, 55rm, 42sw, 176]JP). It
also decreased the number of subjects with all patches
correctly classified (0% error) - from 5 to 2. The highest error
rate was 91.9% (subject 36pm) for CNN-2D and 74.7% for CNN-
1D-2D (subject 75kp).

Fig. 4 presents parametric maps illustrating the likelihood
of mass malignancy obtained for the cases classified with
different levels of confidence. The maps were generated using
the CNN-1D-2D model.

4, Discussion

Our study confirmed the feasibility of using CNNs for breast
mass classification based on patches of raw RF US data. The
highest AUC value, equal to 0.772, was obtained for the CNN-
1D-2D model. The approach proposed in this study was most
similar to that developed by Uniyal et al, where the
classification method based on generic features extracted

from RF signals achieved an AUC value of 0.68 on a set of 22
breast lesions [14]. However, in contrast to this work, we did
not apply any feature engineering to develop the classifier.
Instead, we trained the CNN model to automatically process RF
data and perform 2D patch classification. Our better perform-
ing deep learning model achieved significantly higher scores
than the Nakagami parameter based classifier. This result
suggests that deep learning based analysis of RF signals may
provide better results than standard QUS techniques. Howev-
er, the obtained results for the Nakagami parameter were
worse in comparison to those reported in previous studies on
breast mass classification. For instance, Larrue and Noble used
the Nakagami distribution to model RF signal amplitudes and
achieved an AUC value of 0.78 on a set of 37 breast lesions [12].
Liao et al. proposed a similar model based on the Nakagami
distribution, and obtained an AUC value of 0.84 based on a set
of 130 breast lesions [10]. Shankar et al. combined a Nakagami
parameter computed from two ultrasound images and
achieved an AUC value of 0.8316 [44]. The superior perfor-
mance of Nakagami parameter based classifiers reported in
previous studies could result from the fact that the authors did
not apply any cross-validation to calculate the performance
scores, possibly rendering the obtained results overly optimis-
tic. The discrepancy in results could also be caused by the
differences in data sets and imaging procedures.
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While our approach achieved better classification perfor-
mance in comparison to the Nakagami based model, the
obtained AUC values were significantly lower than those
reported for deep learning breast mass classification systems
utilizing US images [19,20,24,25]. These models were devel-
oped using transfer learning with pre-trained deep neural
networks, and achieved AUC values above 0.85 in breast mass
classification. For instance, Byra et al. developed a deep
learning model using US images reconstructed based on the RF
data from the OASBUD data set (the data used in our study),
and achieved an AUC of 0.819 [24]. This AUC value was higher
than that obtained using our better performing model, 0.772.
The superior performance of the deep learning models
developed using US images may be partially explained by
the fact that the malignancy of breast masses is related to
features that are not present in small patches of RF data
extracted from breast mass area. For instance, morphological
features of mass contour play an important role in breast mass
differentiation [3]. Virmani et al. showed that a hybrid CAD
system that uses a combination of morphological features
extracted from a despeckled US image and texture features
extracted from the unprocessed US image can achieve 96%
accuracy [7]; similarly, high performance has been reported for
the segmentation task [5]. We trained our models using RF
data only, and thus information about mass appearance in
respect to surrounding tissues was not utilized. Moreover,
transfer learning was not applied in our study, as the deep
learning models were trained from scratch. The aforemen-
tioned methods utilized deep learning models trained on large
sets of natural images. As far as we know, there are no open
access data sets of RF data that could be used to pre-train a
deep learning model. In our study, the models were trained
and evaluated using a relatively small data set of 200 RF data
frames collected from 100 breast masses. Supposedly, the
classification performance of the deep learning models should
increase with data volume.

The approach proposed in this study has several advan-
tages. First, it can be used to create parametric maps illustrating
the likelihood of malignancy within the examined breast mass.
Second, while our method was developed using small patches
of RF data, handcrafted features or patient characteristics can
be easily incorporated into the model. For instance, morpho-
logical features could be combined with the features produced
by the penultimate layer of the network. This way, the model
would be trained to simultaneously take into account mass
morphology and to extract information from RF data. Moreover,
this idea is not limited to handcrafted features: QUS parametric
maps, elastograms and US images can also be incorporated into
the model to provide more information about breast mass
physical properties [50,51]. Nevertheless, there are several
issues related to our work which we would like to address in the
future. First, we have so far only investigated two approaches to
model development, but it would be interesting to explore other
possibilities. For instance, the neural networks could be trained
using spectrograms calculated based on RF signals. It might
also be productive to investigate the usefulness of other deep
learning architectures, for instance recurrent neural networks.
Second, we trained our models from scratch, but it might be
feasible to apply transfer learning. US simulation programs,
such as Field II, could be used to artificially generate large

volumes of RF data from tissue mimicking numerical phan-
toms [52]. We could then use the artificial RF data to initially
pre-train the deep learning model, and fine-tune it using RF
data collected from human tissues.

5. Conclusions

In this work, we developed a breast mass classification method
based on convolutional neural networks and ultrasound radio-
frequency data. Our results confirmed the feasibility of
developing models that can process small 2D patches of
radio-frequency data and differentiate between malignant and
benign breast masses. Our better performing deep learning
model outperformed the Nakagami parameter based classifier.
As opposed to other quantitative ultrasound techniques, our
method can automatically process RF data to extract features
useful for the classification. The proposed approach to tissue
characterization is general and can be applied to processing RF
data collected from other human tissues.
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