
Autonomous model-based assessment of mechanical failures of
reconfigurable modular robots with a Conjugate Gradient solver

Paweł Hołobut1, Stéphane P.A. Bordas2 and Jakub Lengiewicz1,2

Abstract— Large-scale 3D autonomous self-reconfigurable
modular robots are made of numerous interconnected robotic
modules that operate in a close packing. The modules are
assumed to have their own CPU and memory, and are only
able to communicate with their direct neighbors. As such, the
robots embody a special computing architecture: a distributed
memory and distributed CPU system with a local message-
passing interface. The modules can move and rearrange them-
selves changing the robot’s connection topology. This may
potentially cause mechanical failures (e.g., overloading of some
inter-modular connections), which are irreversible and need
to be detected in advance. In the present contribution, we
further develop the idea of performing model-based detection
of mechanical failures, posed in the form of balance equations
solved by the modular robot itself in a distributed manner.
A special implementation of the Conjugate Gradient iterative
solution method is proposed and shown to greatly reduce the
required number of iterations compared with the weighted
Jacobi method used previously. The algorithm is verified in a
virtual test bed—the VisibleSim emulator of the modular robot.
The assessments of time-, CPU-, communication- and memory
complexities of the proposed scheme are provided.

I. INTRODUCTION

Modular self-reconfigurable robots are mechatronic sys-
tems which can autonomously change their structure, thus
potentially adapting to different environments and assuming
different functionalities. They are composed of elementary
robotic units—modules—which work together and form a
compound system of variable connection topology [1]. In-
dividual modules are usually relatively simple compared
with typical robots, but possess several features which allow
them to work collectively. In particular, they can attach
to other modules and move over them, communicate with
adjacent modules, and process information stored in their
internal memory. In other words, they are small computers
with limited resources, which also have some locomotion
capabilities. A self-reconfigurable robot made of a huge
number of microscopic modules could be considered an
example of Programmable Matter [2].

One class of self-reconfigurable robots, which are of spe-
cial interest to our investigations, are densely-packed spatial
ensembles. The modules of such systems can be arranged
arbitrarily in the volume they occupy (like grains of sand)

1Paweł Hołobut and Jakub Lengiewicz are with the Institute of Fun-
damental Technological Research, Polish Academy of Sciences, Poland
pholob@ippt.pan.pl, jleng@ippt.pan.pl

2Stéphane Bordas and Jakub Lengiewicz are with the
Department of Engineering, Faculty of Science, Technology
and Medicine, University of Luxembourg, Luxembourg
stephane.bordas@alum.northwestern.edu,
jakub.lengiewicz@uni.lu

or regularly, following strict attachment patterns (lattice-
based systems). Reconfiguration and general shape-change
of such robots is accomplished through relocation of part of
their modules from one area of the robot to another, which
often requires complex planning. A recent survey of self-
reconfiguration planning algorithms for modular robots can
be found in [3]. Individual approaches vary depending on the
considered module geometry and assumptions about the lat-
tice structure. Examples include reconfiguration of a porous
structure arranged on a cubic lattice guided by attraction
gradients [4], [5]; reconfiguration by hole propagation [6];
efficient distributed reconfiguration of planar square- [7] and
hexagonal- [8] lattice-based systems; finally, reconfiguration
by transporting modules through tunnels inside the structure,
discussed in [9] and [10].

The above-mentioned reconfiguration methods are all
purely geometric—the motion of modules satisfies only
geometric constraints requiring that moving modules adhere
to other modules, have sufficient space to move [11], and
that the entire structure remain connected. For any of such
methods to be workable, however, additional constraints of
mechanical nature have to be considered. In a real physical
setting, with a limited connection strength between modules
and under the action of gravity and possibly other external
loadings, reconfiguration may fail for at least two mechanical
reasons [12]. The first one is loss of stability: when the center
of mass of a modular robot shifts during reconfiguration
in such a way that the structure is thrown out of balance
and falls. The second one is breakage of inter-modular
connections: when some of the connections between modules
become overloaded during reconfiguration and split. Both
of these modes of mechanical failure should be taken into
account during reconfiguration planning, because any event
of this type is irreversible and seriously interrupts the process
of reconfiguration. Despite the importance of this problem
for the operation of densely-packed modular robots, but also
because of the difficulties involved, the topic has scarcely
been pursued and is far from having been solved.

Prediction of mechanical failure requires performing a
mechanical analysis of the reconfigured version of a modular
robot before the reconfiguration actually occurs, using the
methods of computational mechanics [12]. There are two
ingredients of this process. The first one is building an
adequate mechanical model of the modular robot itself and
of the way it is supported and loaded. In different contexts,
models of this kind have been investigated in [13], [14] and
[15]; generally, many Finite Element approximations can be
used to serve this purpose. The second one is an effective

2020 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS)
October 25-29, 2020, Las Vegas, NV, USA (Virtual)

978-1-7281-6211-9/20/$31.00 ©2020 IEEE 11696

numerical solution of the resulting mathematical problem
in order to compute the stresses in the system and the
robot-environment reaction forces [16]. For the robot to be
entirely autonomous, the computations need to be executed
by the modules themselves, exploiting their limited memory,
computing power, and local inter-modular communication.
In other words, the solution algorithm has to run on the
distributed asynchronous computing architecture represented
by the interconnected ensemble of modules.

In the present paper, the approach to mechanical failure
prediction proposed in [12] is significantly improved. The
Finite Element representation of the modular robot with
linear-elastic beams modeling pairs of connected modules
is used again, this time in the general 3D setting. Previously,
however, the solution to the system of mechanical equilib-
rium equations resulting from the model was obtained by
the weighted Jacobi iterative procedure. It had the advantage
of being easily run on the modular robot itself in a fully
distributed fashion, but at the cost of slow convergence char-
acteristic of this procedure. Here, a special implementation of
the fast Conjugate Gradient algorithm [17] is introduced, as
an alternative to the weighted Jacobi, which greatly reduces
the necessary computation time. The proposed version of the
algorithm spreads computations over the modules, exploiting
the robot’s particular distributed computing architecture.

The discussion is limited to connection breakage only,
leaving out the loss-of-stability failure case as it involves
considering unilateral contact conditions which are more
difficult to handle. The main focus is on cubic modules,
despite the fact that the procedure is general and can address
different module geometries and connection schemes. For
the sake of clarity, only computation of the mechanical
response of an existing configuration of a robot is presented.
Nevertheless, as it was shown before [12] in the context
of a different algorithm, the framework can be extended
to allow prediction of the mechanical state of a planned
(perturbed) configuration. This can be achieved by splitting
a reconfiguration step into several stages, such as releasing
connections, shifting modules, and forming new connections,
each of which is analyzed mechanically using the presented
procedure—necessarily augmented to handle modules which
change their place and module-to-module contact conditions.

Implementation and verification of the algorithm is per-
formed in the dedicated modular-robot simulator Visi-
bleSim [18]. The simulator is compatible with the modular-
robotic system Blinky Blocks [19], i.e., the code in VisibleSim
can be run on the real hardware. Hardware tests are, however,
outside the scope of the present paper, partially because
assembling a thousand-module structure, like the ones in the
simulations section, is currently barely feasible.

II. PROBLEM FORMULATION

A. Preliminaries

We consider a robot built of N cubic modules connected
face-to-face using magnetic connectors. Each module is
equipped with a CPU, memory and can exchange messages
with its face-adjacent neighbours, of which there may be

up to six. The robot resides in the gravity field and is
possibly subjected to some other external loading assumed to
be quantitatively known. There are also additional modules
attached to the structure that are fixed—considered to be
immobile—which prevent the robot from losing stability and
falling. The task is to program the ensemble of modules to
autonomously compute the stresses caused by the external
loading in all inter-modular connections. The algorithm
should be relatively efficient and exploit the distributed
computational structure of the robot.

B. Linear-elastic beam model of connected modules

Various mechanical models of the modular robot can be
adopted, depending on the required precision and acceptable
complexity of the representation. Similarly to [12], the stan-
dard Finite Element frame model is used below to represent
the modular robot. In the model, each module is represented
by a single node with six degrees of freedom—three dis-
placements and three rotations—located in the middle of
the module. Each pair of connected modules, in turn, is
represented by a linear-elastic beam joining the nodes of the
two modules.

In a global coordinate system CSG, the beam model
stipulates that

fpq = K11
pqup +K12

pquq , (1)

where fpq = [fx, fy, fz,mx,my,mz]
T
pq is the vector of reaction

forces and torques acting on the beam q–p at node p (·T
denotes a transpose), uq = [ux,uy,uz,τx,τy,τz]

T
q and up =

[ux,uy,uz,τx,τy,τz]
T
p are the vectors of displacements and

rotations of nodes q and p, respectively, K11
pq = R̂pqK11R̂T

pq
and K12

pq = R̂pqK12R̂T
pq are stiffness matrices of the beam,

R̂pq =

(
Rpq 0

0 Rpq

)
, (2)

K11 =
E
L3

12Ix 0 0 0 −6IxL 0

0 12Iy 0 6IyL 0 0
0 0 AL2 0 0 0
0 6IyL 0 4IyL2 0 0

−6IxL 0 0 0 4IxL2 0
0 0 0 0 0 Jν L2

 , (3)

K12 =
E
L3

−12Ix 0 0 0 −6IxL 0

0 −12Iy 0 6IyL 0 0
0 0 −AL2 0 0 0
0 −6IyL 0 2IyL2 0 0

6IxL 0 0 0 2IxL2 0
0 0 0 0 0 −Jν L2

 , (4)

Rpq is the 3× 3 rotation matrix from the local coordinate
system CSpq—whose z axis points from node q to node p—
to CSG, 0 is the 3× 3 zero matrix, while E, L, A, Ix, Iy
and Jν are the elastic modulus, length, cross-sectional area,
area moments of inertia in the x and y direction of CSpq, and
scaled torsion constant in the z direction of CSpq, respectively
(see Tab. I).

11697

symbol value description
E 100 MPa elastic modulus
L = a 40 mm length
A = a2 40×40 mm2 cross-sectional area
Ix, Iy 213000 mm4 area moment of inertia of the beam connec-

tion in the x and y direction
Jν 138500 mm4 scaled torsion constant in the z direction
M 0.061 kg mass of a block
Fmax

V 12 N maximal magnetic force of a vertical con-
nection

Fmax
L 15 N maximal magnetic force of a lateral connec-

tion

TABLE I
GEOMETRIC AND MATERIAL PARAMETERS OF THE MODULES AND THE

CONNECTIONS (MOTIVATED BY THE Blinky Blocks MODULAR

ROBOT [19]).

C. Equilibrium equations of the modular robot

Since all degrees of freedom of the ensemble of modules
are assumed to be located at discrete nodes, with three
translational and three rotational degrees of freedom per
node, the system is in static equilibrium if and only if the
sum of forces and the sum of torques acting on each node are
zero. This balance of the forces and torques at any node p
requires that the sum of reactions from the beams ending in
p, as given by Eq. (1), equals the external forces and torques
Fext

p = [f ext
x , f ext

y , f ext
z ,mext

x ,mext
y ,mext

z]Tp acting on node p. One
obtains the standard Finite Element system of equations:

∀p ∑
q

[
K11

pqup +K12
pquq

]
= Fext

p , (5)

where p = 1, . . . ,N, while q runs over the indices of all
neighbors of a given module p, including fixed modules, for
which uq = 0. Vectors Fext

p and up, for all p, are expressed in
the same global coordinate system CSG. The external forces
are assumed to be known; in fact, in the simulations we will
consider vertical gravity to be the only factor, in which case
Fext

p = [0,0,−M ·g,0,0,0]T for every module p, where M is
the mass of one module (cf. Tab. I) and g is gravitational
acceleration. The unknowns of the system are the 6-vectors
of generalized displacements up, p = 1, . . . ,N.

As it is usually done in Finite Element analysis, Eq. (5)
can be also presented in a compact matrix form

Ku = Fext, (6)

where K is the assembled 6N×6N known constant stiffness
matrix, Fext is the 6N-vector of known constant external
forces and torques, and u is the 6N-vector of unknown nodal
displacements and rotations, for which the system needs
to be solved. K is symmetric and positive definite, which
follows from the linear-elastic properties of the robot under
small deformations. In Section III, a distributed technique
for solving Eq. (6) by the modular robot itself is described,
which is the main topic of the present paper.

D. Condition for overloading of inter-modular connections

Once Eq. (6) is solved for u, which is the subject of
the next section, the robot may autonomously check com-
putationally if any of the connections between its modules

has reached an unacceptable stress level. Junction forces
and torques between any pair of connected modules can be
approximated by the forces and torques in the middle of
the beam representing this pair. Using Eq. (1) and observing
that the distribution of forces and torques is linear along the
beam in the adopted model, one obtains approximate junction
forces and torques between modules q and p, expressed for
convenience in the local coordinate system CSpq, as

[f c
x , f c

y , f c
z ,m

c
x,m

c
y,m

c
z]

T
pq =

1
2

R̂T
pq(fpq− fqp) =

=
1
2

R̂T
pq(K

11
pqup +K12

pquq−K11
qpuq−K12

qpup), (7)

where uq and up come directly from u and are thus expressed
in the global coordinate system CSG.

The possibility of connection breakage can be checked
by comparing the connection forces and torques obtained
from Eq. (7) with limit values valid for a given attachment
mechanism. In the case of cubic Blinky Blocks, which
use magnetic forces to bind adjacent modules together, the
condition for a connection to hold might have the form

(Fmax− f c
z) ·a/2 > max(|mc

x|, |mc
y|), (8)

where Fmax is the total attraction force between the magnets
of the two modules and a is the size of the cube (cf. Tab. I).
The above condition accounts for both tension and bending,
which strain the connection simultaneously. We do not use
conditions for shearing and twisting because Blinky Blocks’
connectors are more resistant with respect to these failure
modes.

III. DISTRIBUTED CONJUGATE GRADIENT SOLVER

The matrix K in Eq. (6) is symmetric and positive
definite, which allows one to use the Conjugate Gradient
solution scheme in its basic form [17], and assures conve-
nient memory- and CPU complexities with respect to the
number of modules (see Section III-D). Extensions to more
general cases, e.g., non-linear or non-symmetric systems, are
possible (see, e.g., [20]), but in general at the cost of higher
memory and CPU requirements.

In Section III-A, the original centralized form of the
method is presented, while in Section III-B, its extension
to the distributed computing architecture embodied by a
modular robot is discussed.

A. Centralized (shared memory) formulation of CG

After [17] and [16], the Conjugate Gradient (CG) iterative
solution scheme has the following general form. The proce-
dure is initialized with: u0 = 0, r0 = Fext, d0 = P ·Fext and
n= 1, where P is a preconditioning matrix (explained below).
Each CG iteration n consists of the following sub-steps:

1)
α =

rT
n−1 ·P · rn−1

dT
n−1 ·K ·dn−1

,

2) un = un−1 +αdn−1,

rn = rn−1−αK ·dn−1,

11698

CG weighted Jacobi

Execution time O(N ·D)' O(N4/3) O(N2)

No. of CPU oper. / module O(N) O(N2)

No. of messages / module O(N) O(N2)

Memory usage / module O(1) O(1)

TABLE II
COMPLEXITY ASSESSMENTS FOR THE CONJUGATE GRADIENT

ALGORITHM AND THE WEIGHTED JACOBI ALGORITHM. N IS THE

NUMBER OF MODULES AND D IS THE DEPTH OF THE SPANNING TREE.

3)
β =

rT
n ·P · rn

rT
n−1 ·P · rn−1

,

4) dn = P · rn +βdn−1.

If the relative residual error rT
n ·P ·rn/rT

0 ·P ·r0 is below a
given tolerance level (close to zero) then the algorithm stops.
Otherwise, it sets n := n+1 and the iteration sub-steps 1-4
are repeated.

The theoretical upper bound on the number of iterations
necessary to converge to the exact solution is the size of the
system, i.e., the number of degrees of freedom (DOF) of the
system, which is equal to 6N. This property alone allows CG
to outperform the simplest weighted Jacobi scheme, which
is only approximate and for which the required number of
iterations scales with the square of the number of DOF of the
system, see Table II. The above upper bound for CG is valid
for the more general class of Krylov Subspace methods. The
effective number of necessary iterations of the CG solver is
usually much lower than that bound, and strongly depends
on the physical configuration of the robot and on the choice
of an appropriate preconditioning matrix P.

In the present paper, two of the simplest possible choices
of P are investigated:

P = I and P = diag(K)−1,

where diag(K) is the diagonal part of K. The former case
gives a non-preconditioned scheme, which will serve as a
reference solution. The latter form is known as the Jacobi
preconditioner (it should not be mistaken for the weighted
Jacobi method mentioned before in this paper), and gives
a surprisingly good speed-up of execution, which will be
demonstrated in Section IV. Both forms of P are local, thus
being suitable to be directly applied in the distributed version
of the algorithm.

B. Distributed version of CG

In a centralized setting (with access to shared memory),
the scalar and vector products required by the CG algo-
rithm can be computed directly. Since the modular robot
considered in this paper has no shared memory, a special
treatment is necessary to distribute and aggregate data, which
deteriorates the parallelism of the original CG steps.

The distributed version of the CG algorithm relies on
a tree structure (see. Section III-C) that allows efficient
distribution and aggregation of information across the robot.
We can distinguish three phases of the distributed algorithm,

analogous to the centralized version presented in Section III-
A. Each phase of the algorithm is initiated (synchronized)
by the centroid module which is the root of the spanning
tree. If it is not stated otherwise, the information is always
propagated/aggregated over the tree. In the notation below,
iteration steps n are omitted for simplicity, the lower index
p refers to the module number, while q denotes direct
neighbors of p.

Phase INIT: Initialization of the CG procedure.

• Each module p initiates its local 6-vectors up and rp:

up = 0 and rp = Fext
p .

• The scalar r is aggregated over the tree:

r = ∑
p

rT
p ·Pp · rp,

where Pp is the 6×6 central submatrix of P correspond-
ing to the DOF of module p.

• The centroid sets rref = r, distributes β = 0 over the tree
to all modules and runs Phase α .

Phase α:
• Each module p updates its local 6-vector dp:

dp = Pp · rp +βdp,

and exchanges dp with all its neighbors q.
• Each module p computes its local 6-vector zp:

zp = ∑
q

K11
pq ·dp +K12

pq ·dq.

• The denominator of α is aggregated over the tree:

a = ∑
p

dp · zp.

• The centroid computes α = r/a, distributes it over the
tree to all modules and runs Phase β .

Phase β :
• Each module p updates its local up and rp:

up = up +αdp,

rp = rp−αzp.

• The numerator of β is aggregated over the tree:

b = ∑
p

rT
p ·Pp · rp.

• The centroid computes β = b/r and sets r = b.
• The centroid checks if r/rref ' 0. If so, convergence has

been achieved and it stops the algorithm. Otherwise, it
distributes β over the tree to all modules and runs Phase
α again.

11699

C. Centroid and spanning tree

The module assigned as the root of the spanning tree
should lie close to the center of the robot (center of the
connectivity graph of the robot, not necessarily its geomet-
rical center). This reduces the depth of the tree, thereby also
the execution time of the algorithm (see Section III-D). The
selection of a centroid can be made in a distributed manner,
see e.g. [21], but in the present implementation we make that
selection manually.

In a distributed and asynchronous architecture, the well-
known sequential breadth-first search algorithm for building
a spanning tree needs an additional synchronization phase to
assure that the depth of the tree is minimal. For a tree of
depth D, the number of sequential steps of the algorithm is
of the order O(D2) because the creation of each level of the
tree requires a synchronization phase.

D. Complexities of the distributed CG solver

Assessments of the time-, CPU-, communication- and
memory complexities of the CG algorithm are presented in
Table II, in comparison to the weighted Jacobi solver from
our previous paper [22]. In the table, N is the number of
modules, D is the depth of the spanning tree. D is of the
same order of magnitude as the radius of the graph repre-
senting the connection topology of the robot. In the most
likely (favorable) scenarios, D∼ N1/3 for three-dimensional
structures, but in the worst-case scenario D∼ N, which can
destroy the good scalability properties of the proposed CG
algorithm.

In Table II, the execution time is understood as the number
of sequential operations of the algorithm: the number of
global iterations of the CG algorithm multiplied by the
number of the propagation/aggregation steps that are done
sequentially level by level over the spanning tree. In the
complexity assessment we assumed the rough upper bound
N for the number of global CG iterations. In the numerical
examples (see, e.g., Fig. 4), however, it can be seen that
the number of global iterations grows slower than linearly
with the system size (which is favorable). One of possible
explanations is that we increase the resolution of robot
geometries with almost no increase in their topological
complexities, which can be relatively more easy to solve by
the CG algorithm.

At a given global iteration of the CG algorithm, the max-
imum numbers of CPU operations and message exchanges
are constant per module (although not performed in parallel
by all modules). Therefore, in both cases the complexities
are O(N). The memory usage per module is only related to
the number of direct neighbours, which is constant and does
not depend on the size of the system.

IV. IMPLEMENTATION AND SIMULATION RESULTS

The algorithm has been implemented in the VisibleSim
emulator [18]. The information exchange between modules
is performed solely by sending messages between direct

(a) Low resolution: 54 modules, 324 DOF.

(b) High resolution: 1024 modules, 6144 DOF.

Fig. 1. Cantilever example. Colors represent the level of overloading of
connections: green=low, yellow–orange=moderate, red=overloaded. Mod-
ules in blue are fixed.

neighbors through message-passing interfaces. The imple-
mentation is entirely compatible with the Blinky Blocks
reconfigurable modular robot [19].

The performance of the algorithm has been analyzed in
two types of setups: (1) the cantilever examples, see. Fig. 1,
and (2) the elephant examples, see Fig. 2. In both cases we
examined the convergence and scaling properties by running
the algorithm on setups of growing sizes (resolutions).

The first observation is that, as expected, the Conjugate
Gradient method converges to the numerical zero, see Fig. 3.
Moreover, the convergence rate increases while getting closer
to the solution, which is a characteristic behavior of CG. The
second observation is that the simple Jacobi preconditioning
significantly improves the convergence of the CG algorithm
compared with the non-preconditioned version. For instance,
in the case presented in Fig. 3, the preconditioned version
required over eight times less global CG iterations to con-
verge. That improvement seems to grow with the growing
system size, which is shown in Fig. 4.

In Fig. 4 it is analyzed how the computation time scales
with the increasing number of modules. Two measures of
computation time are presented: the necessary number of
global CG iterations (Fig. 4a) and the necessary number of
subsequent CG steps (Fig. 4b). The former measure does not
include the propagation/aggregation phases that involve the
spanning tree, which refers to a hypothetical situation when
the modules have access to shared memory and are able to

11700

(a) Low resolution: 1003 modules, 6018 DOF.

(b) High resolution: 20212 modules, 121272 DOF.

Fig. 2. Elephant example. Colors represent the level of overloading of con-
nections: green=low, yellow–orange=moderate, red=overloaded. Modules in
blue are fixed.

No preconditioning

Jacobi preconditioner

0 2000 4000 6000 8000 10000 12000

10-16

10-11

10-6

0.1

104

Global CG iteration number

R
el
at
iv
e
re
si
du
al
er
ro
r

Fig. 3. Elephant example with 7360 modules and 44160 DOF. Convergence
of global CG iterations with and without preconditioning.

compute the necessary scalar/vector product in parallel in
one step. The latter measure refers to the fully distributed
algorithm analyzed in the present paper.

In Fig. 4b one can observe that for bigger configurations
the computation time scales with the number of modules
linearly or even better (e.g., for 10 times larger problems
the convergence time increases no more than 10 times). This
result is better than the assessments provided in Table II, as
has been discussed in Section III-D. We can also observe that

for the same system sizes the Elephant examples converge
slower than the Cantilever examples. This is due to the higher
geometrical complexity of the Elephant’s shape which results
in a more complex mechanical response.

Elephant, preconditioned

Cantilever, not preconditioned

Cantilever, preconditioned

10 100 1000 104

5

10

50

100

500

1000

Number of modules

N
um
be
ro
fg
lo
ba
lC
G
ite
ra
tio
ns

(a)

Elephant, preconditioned

Cantilever, not preconditioned

Cantilever, preconditioned

10 100 1000 104
1

10

100

1000

104

105

106

Number of modules

N
um
be
ro
fs
eq
ue
nt
ia
lC
G
st
ep
s

(b)

Fig. 4. Scaling of the number of (a) global CG iterations and (b) sequential
CG steps for the cantilever and elephant tests.

V. CONCLUSIONS AND FUTURE WORK

The problem of determining the mechanical state of a
modular robot was posed in the form of linear force-balance
equations resulting from a simple mechanical model of the
robot, together with simplified criteria for inter-modular
connection overloading. To solve the system of equations,
a version of the Conjugate Gradient method was proposed
that can be run by a modular robot in a fully distributed
fashion: using distributed CPU and memory, and local com-
munication. The time-, CPU-, communication- and memory
complexities of the algorithm were evaluated and proved
superior to those of the simple weighted Jacobi scheme.
The algorithm was implemented in the VisibleSim emulator
and its performance checked in two series of examples. The
computation time was observed to grow slower than linearly
with the system size.

The proposed approach complements our research into
building a scalable framework for modular-robotic Pro-
grammable Matter. In general, reconfiguration time and sys-
tem strength tend to deteriorate when the number of modules
increases and their dimensions decrease. So far, we have

11701

demonstrated efficient schemes allowing high parallelism
of reconfiguration, while assuring structural integrity of a
robot [10]. We have also presented a family of modular-
robotic actuator structures which produce forces proportional
to the number of their modules [22]. However, a reconfigura-
tion planner is still missing that would efficiently predict the
future mechanical state of a robot. The presented algorithm
is a step towards breaking that efficiency barrier.

The performance of the present algorithm is much better
than that of the weighted Jacobi method. However, the
number of necessary operations seems to be still too high
for large-scale systems. There are several possibilities for
further improvement of the efficiency of the framework:

1) Multigrid techniques [23], which form a family of
more accurate preconditioners and can thus reduce the
necessary number of iterations of the solver.

2) Model order reduction techniques, which could sim-
plify the mechanical model and thus reduce the size of
the system to be solved. In particular, methods capable
of creating connections between proper orthogonal de-
composition and Newton-Krylov methods [24] would
be particularly attractive in terms of resolving non-
linearities and localization. Those in turn can be gener-
alized using selective reduced domain decomposition
methods, as in [25]. These kinds of methods have
already been applied in soft robotics [26], albeit, in
a centralized setting.

There are several other possible extensions of the present
work. (1) In addition to the overload check, a stability check
is necessary to fully evaluate the mechanical state of a robot.
This is more involved because unilateral contact conditions
must be included, introducing non-linearities and possible
asymmetry to the system of equations. Special solution
techniques are therefore required. (2) Development of a more
accurate mechanical model of the modular robot itself. (3)
Application to different connection topologies, in particular,
to quasi-spherical module designs [27]. (4) Running the
algorithm on real Blinky Blocks [19], which would allow
experimental validation of the framework.

ACKNOWLEDGMENT

This work was partially supported by the EU Horizon 2020
Marie Sklodowska Curie Individual Fellowship MOrPhEM
(H2020-MSCA-IF-2017, project no. 800150)

REFERENCES

[1] M. Yim, W. Shen, B. Salemi, D. Rus, M. Moll, H. Lipson, E. Klavins,
and G. S. Chirikjian, “Modular self-reconfigurable robot systems,”
IEEE Robotics Automation Magazine, vol. 14, no. 1, pp. 43–52, 2007.

[2] S. C. Goldstein, J. D. Campbell, and T. C. Mowry, “Programmable
matter,” IEEE Computer, vol. 38, no. 6, pp. 99–101, 2005.

[3] P. Thalamy, B. Piranda, and J. Bourgeois, “A survey of autonomous
self-reconfiguration methods for robot-based programmable matter,”
Robotics and Autonomous Systems, vol. 120, p. 103242, 2019.

[4] K. Støy, Emergent control of self-reconfigurable robots. PhD thesis,
The Maersk Mc-Kinney Moller Institute for Production Technology,
University of Southern Denmark, Odense, Denmark, 2004.

[5] K. Støy, “Using cellular automata and gradients to control self-
reconfiguration,” Robotics and Autonomous Systems, vol. 54, no. 2,
pp. 135–141, 2006.

[6] M. De Rosa, S. C. Goldstein, P. Lee, J. Campbell, and P. Pillai,
“Scalable shape sculpting via hole motion: motion planning in lattice-
constrained modular robots,” in Proceedings of the IEEE International
Conference on Robotics and Automation, pp. 1462–1468, 2006.

[7] B. Piranda and J. Bourgeois, “A distributed algorithm for reconfig-
uration of lattice-based modular self-reconfigurable robots,” in Pro-
ceedings of the 24th Euromicro International Conference on Parallel,
Distributed, and Network-Based Processing (PDP), pp. 1–9, IEEE,
2016.

[8] A. Naz, B. Piranda, J. Bourgeois, and S. C. Goldstein, “A distributed
self-reconfiguration algorithm for cylindrical lattice-based modular
robots,” in 15th IEEE International Symposium on Network Computing
and Applications, pp. 254–263, 2016.

[9] Z. Butler and D. Rus, “Distributed planning and control for modular
robots with unit-compressible modules,” International Journal of
Robotics Research, vol. 22, no. 9, pp. 699–715, 2003.

[10] J. Lengiewicz and P. Hołobut, “Efficient collective shape shifting
and locomotion of massively-modular robotic structures,” Autonomous
Robots, vol. 43, no. 1, pp. 97–122, 2019.

[11] A. Nguyen, L. J. Guibas, and M. Yim, “Controlled module density
helps reconfiguration planning,” in Proceedings of the 4th Interna-
tional Workshop on Algorithmic Foundations of Robotics, pp. 23–36,
2000.

[12] P. Hołobut and J. Lengiewicz, “Distributed computation of forces in
modular-robotic ensembles as part of reconfiguration planning,” in
Proceedings of the IEEE International Conference on Robotics and
Automation, pp. 2103–2109, 2017.

[13] P. J. White, S. Revzen, C. E. Thorne, and M. Yim, “A general stiffness
model for programmable matter and modular robotic structures,”
Robotica, vol. 29, pp. 103–121, 2011.

[14] J. Hiller and H. Lipson, “Automatic design and manufacture of soft
robots,” IEEE Transactions on Robotics, vol. 28, no. 2, pp. 457–466,
2012.

[15] J. Hiller and H. Lipson, “Dynamic simulation of soft multimaterial
3d-printed objects,” Soft robotics, vol. 1, no. 1, pp. 88–101, 2014.

[16] L. N. Trefethen, Numerical Linear Algebra. SIAM: Society for
Industrial and Applied Mathematics, jun 1997.

[17] M. Hestenes and E. Stiefel, “Methods of conjugate gradients for
solving linear systems,” Journal of Research of the National Bureau
of Standards, vol. 49, p. 409, Dec. 1952.

[18] B. Piranda, “Visiblesim: Your simulator for programmable matter,” in
Algorithmic Foundations of Programmable Matter, Dagstuhl Seminar
16271, p. 12, 2016.

[19] B. T. Kirby, M. Ashley-Rollman, and S. C. Goldstein, “Blinky blocks:
A physical ensemble programming platform,” in CHI ’11 Extended
Abstracts on Human Factors in Computing Systems, CHI EA ’11,
(New York, NY, USA), pp. 1111–1116, ACM, 2011.

[20] Y. Saad, Iterative methods for sparse linear systems. Society for
Industrial and Applied Mathematics, 2nd ed., 2003.

[21] A. Naz, B. Piranda, S. C. Goldstein, and J. Bourgeois, “Approximate-
centroid election in large-scale distributed embedded systems,” in
2016 IEEE 30th International Conference on Advanced Information
Networking and Applications (AINA), pp. 548–556, 2016.

[22] J. Lengiewicz, M. Kursa, and P. Hołobut, “Modular-robotic structures
for scalable collective actuation,” Robotica, vol. 35, pp. 787–808,
2017.

[23] W. L. Briggs, V. E. Henson, and S. F. McCormick, A Multigrid
Tutorial. SIAM, 2000.

[24] P. Kerfriden, P. Gosselet, S. Adhikari, and S. P.-A. Bordas, “Bridging
proper orthogonal decomposition methods and augmented newton–
krylov algorithms: an adaptive model order reduction for highly
nonlinear mechanical problems,” Computer Methods in Applied Me-
chanics and Engineering, vol. 200, pp. 850–866, 2011.

[25] P. Kerfriden, O. Goury, T. Rabczuk, and S. P.-A. Bordas, “A partitioned
model order reduction approach to rationalise computational expenses
in nonlinear fracture mechanics,” Computer methods in applied me-
chanics and engineering, vol. 256, pp. 169–188, 2013.

[26] O. Goury and C. Duriez, “Fast, generic, and reliable control and simu-
lation of soft robots using model order reduction,” IEEE Transactions
on Robotics, vol. 34, no. 6, pp. 1565–1576, 2018.

[27] B. Piranda and J. Bourgeois, “Designing a quasi-spherical module for
a huge modular robot to create programmable matter,” Autonomous
Robots, vol. 42, no. 8, pp. 1619–1633, 2018.

11702

