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This paper analyzes the relations between the theory of Michell structures, which is one of
the most important theories in structural optimization, and some remarkable engineering
structures, including selected high-rise buildings, large-scale roof coverings and long-span
bridges. The first part of this study briefly presents the development of Michell’s the-
ory, its basic concepts, assumptions, and examples and fundamental features of Michell
structures. Then, several untypical engineering structures that make use of said concepts
are presented, including skyscrapers proposed by the Polish structural designer W. Za-
lewski and the international architectural office of Skidmore, Owings and Merill (SOM).
Next, large-scale roof coverings of “Spodek” arena in Poland as well as selected bridges
are thoroughly analyzed in the context of similarity to Michell structures. The conducted
study reveals that considered structural forms of the analyzed structures follow some of
the concepts known from Michell’s theory and thus possess many features of the optimal
structural designs.
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1. Introduction

The theory of Michell structures is one of the most important and probably
one of the most impressive theories in structural optimization. Michell’s theory
reveals how to optimally transmit the given external load to a given support
and optimally transmit a given system of self-equilibrated loads. In contrast to
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traditional structural optimization settings, in which only selected parameters
are considered as problem unknowns, in Michell’s theory the entire structure is
treated as a design variable. The results from such an approach allow drawing
general conclusions about optimal layout, topology and geometry of the optimal
structure, including members’ connections, directions and sizing. Michell’s theory
discloses that bending in optimal structures is totally eliminated, while single
members are fully stressed by tensile or compressive forces. As a result, the
structure is perfectly adjusted to the applied external loading, requires a minimal
amount of material and has minimal total weight.

Anthony George Maldon Michell proposed the above-mentioned pioneering
concept in his remarkable paper published in 1904 [1], where, e.g., the problem
of the optimal cantilever supported on a circle was solved. Since that time,
many specific Michell structures involving various types of external loads (e.g.,
concentrated, distributed and transmissible) as well as various types of boundary
conditions (e.g., roller and pinned supports) have been presented. The most
significant contributions to the field were made in 1960s by H.S.Y. Chan who
determined geometries of the optimal structures in bounded domains [2, 3], and
in the books authored by Hemp [4] and Cox [5], where various types of elementary
Michell structures were described. The interest in Michell’s theory was revived
in the 1990s by G.I.N. Rozvany and his co-workers, who analyzed problems
regarding layouts of structures located in bounded design domains of various
shapes [6, 7], various allowable stresses in tension and compression, multiple
load cases and the supports costs [8, 9].

In recent decades, the approximate solutions of Michell’s problems have been
obtained numerically using ground structure methods, which rely on the selec-
tion of the optimal structure from the initially assumed system of nodes and
their possible connections. The effectiveness of such methods results from the
application of dual formulation of the weight minimization problem and lin-
ear programming methods, as well as the use of adaptive techniques limiting
the number of simultaneously considered members, as described by Gilbert and
Tyas [10] and Sokół [11]. The application of ground structures with millions of po-
tential unknowns yields optimal designs that clearly resemble analytical layouts
obtained from Michell’s theory and gives almost exact values of corresponding
volumes. As a result, in [12] the ground structure methods that allowed to find
previously unknown Michell structures transmitting three self-equilibrated forces
were presented, in [13, 14] structures transmitting distributed loading to two sim-
ple supports were studied, and [15] pointed out that selected known solutions
of Michell’s problem were entirely incorrect. The theory of Michell structures,
as well as analytical and numerical solutions of the problems involving various
loading and boundary conditions, is comprehensively presented in the book by
Lewiński, Sokół and Graczykowski [16].
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The mentioned above Michell structures were not only the theoretical con-
cepts but also have inspired civil engineers and have influenced selected con-
temporary designs of high-rise buildings, large-scale roofs and long-span bridges.
The objective of this paper is to present and critically analyze practical appli-
cations of Michell’s theory in civil engineering. Firstly, we will study the con-
cepts of Michell-inspired “wingy” and “bulbous” skyscrapers proposed by Wacław
Zalewski and Wojciech Zabłocki as well as selected buildings designed by the
international architectural office of SOM. Then, the constructions of the large-
scale roofs of two famous Polish commercial buildings, Supersam in Warsaw and
Spodek in Katowice, will be analyzed, revealing that their designers used a com-
bination of the tensegrity concept and Michell’s theory. Finally, conclusions from
Michell’s theory concerning the optimal layout of structures created over multi-
ple spans and subjected to distributed loading will be compared against selected
constructions of long-span bridges.

2. Theory of Michell structures in a nutshell

and illustrative examples

2.1. Michell structures in the plane

The topology optimization problem considered in the theory of Michell struc-
tures is to find the lightest structure with the bounded value of stress: −σC ≤
minλi(σ) ≤ maxλi(σ) ≤ σT , which transmits a given load to a given support or
transmits a system of self-equilibrated loads (Fig. 1); λi(σ) represents the i -th
eigenvalue of tensor σ.

a) b)

Fig. 1. Two versions of 2D Michell’s problem: a) transmitting a given point load
to a given support, b) transmitting a self-equilibrated system of loads.

The optimal structures should be examined in the class of trusses since the
elimination of bending leads to a uniform state of stress in the entire cross-
section of each member, while optimization of member’s cross-sections allows to
obtain the fully-stressed design of the entire structure. The structures proposed
by A.G.M. Michell are a generalization of trusses and they take the form of
discrete-continuous structures composed of:

• fibrous domains consisting of infinitely thin and infinitely densely located
members (a single family of straight fibers or two families of orthogonal
fibers),
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• reinforcing members of finite cross-sections (typically located at the bound-
aries of the feasible domain) being the response for the occurrence of point
loads.

In the non-degenerated case, when two families of members exist, all members
are located along the trajectories of principal strains. The theory of Michell
structures originated by solving the problem of finding the lightest cantilever
of equal permissible stresses in tension and compression capable of transmitting
a given point load to a given circular support. The approximation of this solution
with a finite density of parametric lines is presented in Fig. 2 (left).

Fig. 2. Left: Michell cantilever transmitting point load to circular support (case of equal
permissible stresses in tension and compression); right: three subsequent suboptimal trusses
transmitting given force to a straight support: a) Vr = 6.1605, b) Vr = 6.0953, c) Vr = 6.0835,

where Vr = V/V0, V0 = Pa/σ0, σ0 being the permissible stress.

The intuitive understanding of Michell structures can be gained by analyzing
three suboptimal trusses with an increasing number of members, transmitting
a point load to a straight support (Fig. 2 right). These structures can be ob-
tained using an arbitrary numerical method (e.g., ground structure method)
with various discretizations within the planar design domain. Application of the
numerical methods shows that when the spatial discretization becomes finer,
the number of bars increases and the structure becomes lighter. The limit of
this sequence corresponding to the infinitely dense discretization in the plane
and characterized by infinite number of bars is a Michell truss. Although the
structure presented in Fig. 2c is not infinitely dense, it reveals basic features of
the corresponding Michell structure. It is composed of fan regions with straight
members starting at the supports, fibrous domain with orthogonal members and
reinforcing members of larger cross-sections (not visualized) spanning from the
location of the point load to the locations of the supports.
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Mathematical formulation of Michell’s problem requires defining U
(
Ω
)

as
the set of kinematically admissible virtual displacements u, as well as the set
Σ
(
Ω
)

of statically admissible forces Ñ, F̃T , F̃C in fibrous domain and in both
reinforcing members (along the curves ΓT and ΓC respectively) compatible with
external loading. The principal forces in the fibrous domain can be defined as:
N1 = hλ1(σ) and N2 = hλ2(σ), h being the depth (or the transverse thickness)
of the structure. Thus, the total volume of the structure equals:

VΩ = I
(
N, FT , FC ; Ω

)
=

✂

Ω

( |N1|
σT

+
|N2|
σC

)
dΩ+

✂

ΓT

|FT |
σT

ds+

✂

ΓC

|FC |
σC

ds (1)

and the primary formulation of the volume minimization problem reads:

VΩ = min
{
I
(
Ñ, F̃T , F̃C ; Ω

)
such that

(
Ñ, F̃T , F̃C

)
∈ Σ

(
Ω
)}

. (2)

The dual formulation takes the form of maximization of the work of the external
forces on virtual displacements:

VΩ =
1

σ0
max

{
P · u (P) | such that u ∈ U

(
Ω
)
; ε (u) ∈ Bκ

}
, (3)

where Bκ is the so-called locking locus confining allowable values of virtual
strains to those satisfying:

− σ0

σC
≤ λi(ε(u) ≤

σ0

σT
, i = 1, 2. (4)

The above formulation allows to determine the optimality conditions which read:

λ1 (ε(u)) =
σ0

σT
, λ2 (ε(u)) = − σ0

σC
(5)

in the regions where two families of bars occur.
The important conclusion is that all members of the optimal structure have

to be located along the trajectories of principal strains, where the strains achieve
limit constant values. These trajectories may be curved so members of the
optimal structure also have to be curved. As a consequence, there exist two
families of fibers, which create an infinitely dense orthogonal net, the so-called
Hencky net.

In order to find the Hencky net, we have to determine the Lamé functions
A(α, β), B(α, β) defined as:

A(α, β) =
√
a11, B(α, β) =

√
a22, aλµ = aλ · aµ,
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where aλ are bases vectors. The Lamé fields are governed by the differential
equations:

∂2A

∂α∂β
= A,

∂2B

∂α∂β
= B. (6)

The following step is the construction of the mappings: x(α, β), y(α, β) defi-
ning the parametric lines and the adjoint displacement field u = [u(α, β), v(α, β)].
These fields have to satisfy the so-called telegraphers equation and kinematic
boundary conditions. They can be found via the application of Riemann’s method.
Let us note that the above relatively complex procedure allows only for finding
the geometry of Michell structure. The complete solution of Michell’s problem
is constructed in the following steps:

1) Finding geometry of the Hencky net for given support geometry and force
location;

2) Finding force fields in fibrous domains and reinforcing members;

3) Finding the equivalent thickness field of the structure;

4) Computing the volume using: i) virtual work, see (3) and ii) integration of
thickness, see (1).

The agreement of volumes obtained using the two above methods proves
that the duality gap between the primal and dual formulation of the volume
minimization problem vanishes and confirms the determined continuous-discrete
structure’s optimality.

The load-carrying engineering structures are usually designed within a cer-
tain feasible region. In many cases, its boundaries are segments of straight lines.
Just the presence of the boundaries brings about specific shapes of the opti-
mal solutions. Let us recall that the Michell cantilevers transmitting point loads
into a straight support located in a trapezoidal domain are composed of several
regions of the kinematic division with different geometry of parametric lines.
The arrangement of these regions and parametric lines geometry do not depend
upon the location of the point load (Fig. 3a). The initial straight support appears
to degenerate into two pin supports, making the optimal structure externally
statically indeterminate and implying a dependence of the geometry of paramet-
ric lines on allowable stresses in tension and compression (Figs 3a and 3b). The lo-
cation of point load defines regions of the static division with a different distribu-
tion of internal forces (Fig. 3c). The distribution of the thickness of the cantilever
is determined region-wise, and it depends both on the Lamé fields and the force
fields inside the fibrous domain. The overlapping of the regions of kinematic and
static division causes the cantilever thickness’s distribution to be very complex
and containing multiple lines of discontinuities (Fig. 3d). Discrete versions of
Michell structures can be obtained using the method of graphic statics [17].
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a)

b)

c)

d)

Fig. 3. Optimal Michell cantilever transmitting point load to straight support: a) arrangement
of the regions of kinematic division for σT = σC ; b) geometry of Hencky net for σT = σC ;
c) arrangement of regions of kinematic and static division for σT = 5σC ; d) the alternate

thickness distribution of the cantilever for σT = 5σC .

2.2. 3D setting: spatial Michell structures

The subject of consideration is the minimization of the volume of spatial
frameworks to be designed in a given spatial domain; the state of stress is subject
to the conditions: −σC ≤ minλi(σ) ≤ maxλi(σ) ≤ σT , i = 1, 2, 3. Since
optimization excludes bending, the above conditions mean that the axial stresses
in the bars (or fibers) are bounded by −σC , σT . The load is given and should
be transmitted to a prescribed boundary where the supports can be placed;
indeed, the position of supports is also determined by the optimization process.
This setting includes, in particular, designing roofs over large base domains; the
design domain is then a certain layer between two fixed surfaces over the basis
domain.

As in the 2D case, the 3D design process is reduced to solving the two mu-
tually dual problems. The kinematic problem has the form (3, 4) where now the
locking locus for virtual strains is a cube. In contrast to the 2D case, its ver-
tices need not be attained. Some subdomains may be characterized by virtual
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strains whose only two principal strains attain the bounds. Then the optimal
structure becomes a grid surface. The dual or stress-based problem is expressed
by Eq. (3.95) in Lewiński et al. [16]; hence it is reduced to finding a minimum
of a certain functional of the statically admissible stresses.

The number of available exact 3D solutions to the problem stated above is
very limited, see Chapter 5 in Lewiński et al. [16]. On the other hand, the ground
structure method is still being improved to produce clear numerical solutions in
3D, see also Sokół [18]. New highly accurate numerical solutions of 3D problems
will appear soon.

If the applied load is assumed to be transmissible along the gravity direction
and if the roof designed over a given planar basis is to be composed of two
families of mutually orthogonal arches, the optimum roof becomes a Prager-
structure, see also Rozvany and Prager [19]. The theory of such roofs has much
in common with the theory of Michell structures, since the optimization problem
is also here reduced to the two mutually dual problems (kinematic and static)
whose solutions determine the structure itself; the method cuts out the sub-
domains of the basis domain over which the roof is not necessary, see Czubacki
and Lewiński [20].

3. Applications to high-rise buildings design

The engineers who were strongly impressed by Michell’s theory and inspired
by his theoretical optimal layouts were Polish construction engineer and designer
Wacław Zalewski (1917–2016) and architect Wojciech Zabłocki (b. 1930). Dur-
ing their long-term and fruitful cooperation, they have considered, among others,
buildings taller than 200 m with height to width ratios larger than five (h > 5a),
subjected to large torsional and bending moments caused by wind loads. Con-
sequently, in order to develop the basic structural model of the building, they
applied the analogous optimum design problem of the cantilever. They consid-
ered various standard structural systems and topologies based on variations of
Michell cantilevers as candidate solutions for high-rise buildings design [21–23].
Moreover, they intuitively applied optimal structure rationalization by reducing
it to trusses composed of dozens of elements, see also Allen and Zalewski [24].
The fundamental comparison of normalized volumes of these structures (Fig. 4a)
has immediately shown the superiority of Michell-like topologies and revealed
their usefulness in high-rise building construction. This encouraged Zalewski and
Zabłocki to propose the general concept and develop several detailed projects
of “tulip-like (bulbous) buildings” and “wingy buildings”, presented in Figs 4b
and 4c, respectively.

The “wingy buildings” are composed of three or four wings (which stand
for buttresses) connected to the central core. The main feature of the central
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a) b) c)

Fig. 4. a) Comparison of various topologies by Zalewski and Zabłocki [21]; b) sketch
of “tulip-like building” (source: http://www.wz-structure.org/#/unbuilt/); c) wooden
model of “wingy building” (source: https://www.pw.edu.pl/Uczelnia/Materialy-promo-

cyjne/Galeria/Konstrukcje-Waclawa-Zalewskiego-fotorelacja).

core is the capability of resisting vertical loads caused by self-weight. Wings
construction is based on a system of orthogonal members located at the exterior
surfaces and thus possesses the ability to transmit bending moments caused by
wind loads, which is also characteristic for Michell cantilevers. These innovative
designs resulted in an attractive shape of the building and good lighting of spaces.
In addition, the atypical aerodynamics of the building allows for wind energy
harvesting.

The wingy skyscraper presented in Figs 5a and 5b has tapered wings con-
nected to the central transit core. The building has 209 m in height and 50
stories. The self-weight is transmitted by vertical columns located in the cen-
tral core. The structure of each wing clearly resembles the geometry of Michell
cantilever. The members in tension and compression are located approximately
orthogonally and roughly along the directions of principal stresses caused by
bending forces. In addition, the round concrete foundations resemble the ends of
the fan regions of the optimal cantilevers.

The “bulbous” (“tulip-like”) skyscraper is presented in Figs 5c and 5d. The
building has a bulbous shape and it is built on a plan of a clover. The structure
has 164 m in height and 41 floors. The shape of the building is created by rotating
a 2D Michell cantilever around the vertical axis of symmetry and by varying
the slenderness. The vertical loads caused by self-weight are transferred by the
central communication core. The double-curvature steel structure on the facade
surrounds the entire building and transmits lateral forces caused by wind loads.
Because of symmetrical construction, the building has equal resistance to wind
loads from all possible directions.

The application of Michell’s theory to buildings’ construction can also be
clearly seen in some selected designs by the architectural office of Skidmore, Ow-




























