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Abstract: Moving load is a fundamental loading pattern for many civil engineering structures and
machines. This paper proposes and experimentally verifies an approach for indirect identification of
2D trajectories of moving loads. In line with the “structure as a sensor” paradigm, the identification is
performed indirectly, based on the measured mechanical response of the structure. However, trivial
solutions that directly fit the mechanical response tend to be erratic due to measurement and modeling
errors. To achieve physically meaningful results, these solutions need to be numerically regularized
with respect to expected geometric characteristics of trajectories. This paper proposes a respective
multicriterial optimization framework based on two groups of criteria of a very different nature:
mechanical (to fit the measured response of the structure) and geometric (to account for the geometric
regularity of typical trajectories). The state-of-the-art multiobjective genetic algorithm NSGA-II is
used to find the Pareto front. The proposed approach is verified experimentally using a lab setup
consisting of a plate instrumented with strain gauges and a line-follower robot. Three trajectories
are tested, and in each case the determined Pareto front is found to properly balance between the
mechanical response fit and the geometric regularity of the trajectory.

Keywords: structural health monitoring (SHM); moving load; trajectory identification; geometric
regularity; multicriterial optimization; load identification; inverse problems; structural mechanics

1. Introduction

Aging infrastructure and increasing operational loads require development and im-
plementation of effective methods for structural monitoring [1–3]. Within the last two
decades, the related field of structural health monitoring (SHM) has witnessed a rapid
progress in basic research approaches [4,5], in technology [6], as well as an increasing
number of successful practical applications [7–9]. This field can be broadly divided into
two areas: damage identification and load monitoring. The area of damage identification
encompasses approaches that aim at detection, localization, and quantification of structural
damages [10] and at health testing [11]. However, this paper belongs to the area of load
monitoring, which aims at indirect identification of operational or environmental loads
and excitations.

The general goal of load identification is to infer certain characteristics of structural
loads in an indirect way, that is, based on recorded structural response and a certain kind
of structural model. Such an approach can be opposed to the direct measurement of
excitations, which in many applications is not possible or difficult [12]. Load identification
problems belong thus to the general class of inverse problems of input identification; they
were extensively studied and detailed reviews can be found, for example, in [13–15].

In a general, straightforward formulation of the load identification problem, there is
usually a conflict between the generality of the unknown load and the limited availability
of information. This is a result of two typical, contradictory features of such problems:

• A large number of potential excitation points, that is, the degrees of freedom (DOFs)
in which the excitation force can be applied and should be thus identified.
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• A limited number of sensors that can be employed to measure the structural response
to the unknown excitation and provide information for the identification process.

There is usually insufficient information about the load to enable its full identification,
so that the identification problem is not well posed in the sense of Hadamard [16]: the
solution is non-unique and numerically ill-conditioned. To ensure the uniqueness, typical
approaches restrict the generality of the load to be identified. The unknown force is often
assumed to be pointwise and stationary, so that the aim is to identify its time-dependent
magnitude only [17]. With the structure remaining in the linear range, such a formulation
is basically equivalent to the problem of deconvolution [18], which is known to lead to
ill-conditioned numerical formulations [19]. In addition to typical `2-based regularization
methods, the ill-conditioning can also be addressed using `1-based regularization that
assumes a sparse representation in a broad, redundant dictionary [20–23]. However,
the assumption of a stationary pointwise excitation is not directly applicable in the case
of unknown moving loads. A typical solution mode in such a case is to assume the
trajectory of the moving load to be known [24], and this is an especially natural approach
in case of identification of vehicle load from bridge responses [25]. The task can be further
reformulated as the problem of identification of vehicle parameters (most importantly mass)
instead of the related time-dependent excitation force; this reduces the number of unknown
parameters to be identified, but it requires the dynamics of the coupled vehicle–bridge
structure to be considered [26,27].

Formulations that aim at simultaneous identification of the locations and time-
dependent magnitudes of the unknown forces are rare. A two-step iterative procedure
for localization and identification of a single force is proposed in [28]. Force localization
is based on a stabilization diagram computed for the regularization parameter, but the
assumption of a single stationary force precludes direct application in the case of moving
loads. A case with a larger number of unknown forces is considered in [29], which pro-
poses an approach for full time-domain identification of their magnitudes and locations.
The sparse Kalman filer is employed, where the spatial locations of the forces are predicted
in each step using the relevance vector machine (RVM). In [30], an optimization approach
is proposed based on a mixed group regularization scheme: `1 regularization is used to
promote spatial sparsity and determine the locations of the forces, while their spectra are
simultaneously identified by means of `2 regularization. This approach is reformulated
in [31] as a second order cone program, which allows an interior point optimization scheme
to be used. A related space-frequency mixed multiplicative regularization approach with
an informed regularization term is proposed in [32]. The problem of identification of loca-
tions and time-domain reconstruction of multiple unknown forces is recently formulated
and solved also in the Bayesian framework [33].

It should be emphasized that the unknown forces considered in the above methods,
even if multiple, are assumed to be stationary. A time series of such stationary forces of
short duration can be used to represent a moving force, and such an approach is inves-
tigated in [34], where vehicle positions along a bridge are identified together with the
lane number by means of sparsity-based methods. However, the case of a moving load is
conceptually different from the case of a set of independent forces. In the case of indepen-
dently treated forces, no specific spatial distributions or time sequences are promoted a
priori. In contrast, in the case of a moving load, the crucial factor is the trajectory of the
load, which needs to satisfy certain natural continuity or geometric regularity constraints.
These constraints can be exploited in the identification process to provide additional in-
formation and ensure more reliable results. Astonishingly, such an approach seems to be
unexplored. Consequently, this paper focuses on the case of a moving load and on the
problem of trajectory identification using geometric regularity conditions, including an
experimental verification in laboratory conditions. The focus on the trajectory contrasts
with the usual approaches that concentrate on identification of the time-dependent force
magnitude and typically assume the load to be stationary or the trajectory to be known.
Earlier attempts included sparsity-based identification of 1D trajectories of moving mass
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loads on a laboratory beam with transient dynamics [35], but they did not consider the
geometric characteristics of the trajectory. Here, a fully two-dimensional case is considered:
the unknown load is freely moving in 2D on a plate structure. Typical optimization criteria,
based on the mechanical response only, tend to yield erratic and nonphysical trajectories,
especially if the instrumentation is limited. It is thus proposed to use concurrently two
complementary criteria of very different natures: mechanical and geometric [36]. The for-
mer is the typical objective function that quantifies the mechanical response discrepancy,
while the latter quantifies certain geometric features of the trajectory such as stability of
linear and angular velocities [37]. A multicriterial optimization approach is then used,
which effectively allows the erratic response-based trajectory to be numerically regularized
with respect to the geometric regularity criteria. The optimization is performed using a
specialized state-of-the-art multicriterial genetic algorithm NSGA-II [38,39]. A nonpara-
metric model of the structure is employed in the form of a set of experimentally collected
measurements, which allows the tedious processes of finite element model building and
updating to be avoided. The approach is experimentally verified in laboratory conditions:
a plate instrumented with three strain gauges is used with a line-follower robot in the role
of the moving load.

The paper is structured as follows. Section 2 introduces the model of the load and
the nonparametric model of the structure. Section 3 describes the proposed multicriterial
identification approach, including the response-based objective function and a compound
measure of geometric regularity of a candidate trajectory. Numerical implementation is
discussed in Section 4, including numerically efficient versions of the objective functions,
a binary representation and encoding of the trajectory, and other details required for
the implementation of NSGA-II. Finally, Section 5 presents experimental verification in
laboratory conditions performed using a plate subjected to a line-follower robot and three
example trajectories.

2. Moving Load and Nonparametric Structural Model

2.1. Moving Load

A force load model is considered. The trajectory of the moving load, that is, the
position of the force in time, is denoted by x(t) = (x1(t), x2(t)), and it is assumed to be
confined to a certain two-dimensional domain D on the boundary of the structure,

x : [0, T]→ D ⊂ R2, (1)

where T is the duration of the considered time interval. The corresponding magnitude of
the load is denoted by the non-negative scalar f (t),

f : [0, T]→ [0, ∞). (2)

2.2. Measured and Modeled Response

The response of the structure is measured with N sensors, which are assumed to be
linear, and their signal, recorded in response to the actual load, is denoted by εM(t) ∈ RN .
Unlike the measured response, which is recorded and given a priori to constitute the basis
for identification, the modeled structural response depends on the structural model, and it
is a function of the moving load as defined in terms of x(t) and f (t). The modeled response
is denoted by ε(x, f )(t) ∈ RN .

Under zero initial conditions, the modelled response can be represented in the follow-
ing form,

ε(x, f )(t) = K(x, f )(t), (3)
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whereK is a certain operator. Similarly to the sensors, the structure is also assumed to be
linear, so that the operatorK is linear with respect to the load magnitude f . In the general
dynamic case,K is a convolution,

ε(x, f )(t) = K(x, f )(t) =
∫ t

0
f (τ)kx(τ)(t− τ)dτ, (4)

where kx(·) is the N-dimensional vector of the impulse response functions that describe the
responses of the respective sensors to an impulsive excitation applied at the position x ∈ D.
In the the quasi-static case, the operatorK simplifies to the following scalar–vector product,

ε(x, f )(t) = K(x, f )(t) = f (t)kx(t), (5)

where kx is the vector of the sensor responses to a static unit force load applied at the
position x. Note that in both cases the set {kx : x ∈ D} constitutes a nonparametric model
of the structure, reduced to the considered sensors and the load domain D. Such a model
can be obtained numerically, e.g., using an updated finite element (FE) model, or purely
experimentally, as shown in Section 5.2.

3. Trajectory Identification

Let the structure at hand be subjected in the time interval [0, T] to a moving load
with an unknown trajectory x(t) and an unknown magnitude f (t). Let εM(t) denote the
corresponding structural response that was measured by the available sensors. The task of
trajectory identification can be formulated as the inverse problem of identification of x(t)
based on the available signal εM(t). Such a formulation requires one or more appropriate
objective functions to be defined.

In typical formulations of the load identification problem available in literature,
the identification is based on a single natural objective function that quantifies the discrep-
ancy between the measured and the modeled response of the structure. In the general case
of a freely moving 2D load, as considered here, a direct application of such a formulation
tends to yield erratic solutions due to measurement and modeling errors, especially in the
limited instrumentation case. As illustrated in Section 5.3, the trivial solutions obtained this
way contain obvious, nonphysical spatio-temporal inconsistencies (sudden jumps, widely
varying velocity, etc.).

Therefore, in the following subsections, this paper proposes two complementary
objective functions to be simultaneously minimized in a multicriterial optimization prob-
lem. The functions are of very different natures: mechanical (to quantify the response
discrepancy) and geometric (to quantify the geometric irregularity of the trajectory).

3.1. Measurement-Based Objective Function

The fundamental objective function has a mechanical character, and it quantifies
the discrepancy between the measured response εM(t) of the physical structure and the
modeled response ε(x, f )(t) treated as a function of the load trajectory:

F1(x) := γ ln
(

1 +
1
T

min
f≥0
‖∆ε(x, f )‖2

2

)
, (6)

where γ is a constant normalization factor and the misfit is quantified in terms of the `2
norm of the response modeling error:

‖∆ε(x, f )‖2
2 :=

∫ T

0

∥∥∥εM(t)− ε(x, f )(t)
∥∥∥2

dt. (7)

The internal minimization in Equation (6) with respect to the non-negative load magnitude
f expresses the fact that this paper focuses on the identification of the trajectory only.
Due to the assumed linearity of the structure, see Equation (4) or (5), such a minimiza-
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tion constitutes a quadratic programming problem, which is relatively easy to be solved,
especially in the discretized time setting.

The normalization coefficient γ in Equation (6) ensures that the minimum value of F1
is one:

γ :=
1

minx ln
(

1 + 1
T min f≥0‖∆ε(x, f )‖2

2

) . (8)

It should be noted that a formal mathematical formulation of minimization in Equations (6)
and (8) would require specification of the function spaces that f and x belong to. However,
the trajectory is, in practice, represented in the discrete form of a finite sequence of n points
to be interpolated, which simplifies the actual search spaces to [0, ∞]n and Dn, respectively,
and allows the related mathematical intricacies to be neglected.

3.2. Geometric Regularity of the Trajectory

The second objective function is used to quantitatively express the expectation that
reasonable trajectories should be characterized by some degree of geometric regularity.
It takes the following compound form,

F2(x) := αF21(x) + βF22(x), (9)

where F21 and F22 quantify two different geometric characteristics of the trajectory: angular
wiggling and relative stability of linear velocity, respectively.

Angular wiggling F21. The component F21 is intended to limit excessive changes of the
angular velocity of the load:

F21(x) :=
1
T

∫ T

0
ln
(

1 + θ̇2(t)
)

dt, (10)

where θ̇(t) is the angular velocity of the moving load,

θ̇(t) :=

∣∣det[ẋ(t) ẍ(t)]
∣∣√

10−3 + ‖ẋ(t)‖4
. (11)

The term 10−3 present in the denominator of Equation (11) is a small term added to avoid
numerical indeterminacy for temporarily stationary loads, which otherwise would occur
whenever ẋ(t) = 0.

Stability of linear velocity F22. The component F22 is intended to limit excessive variabil-
ity of the linear velocity of the load. It is defined in analogy to the coefficient of variation as
the root mean square (rms) linear velocity normalized with respect to the mean value,

F22(x) :=
rms‖ẋ‖

mean‖ẋ‖ , (12)

where

rms‖ẋ‖ =

√
1
T

∫ T

0
‖ẋ‖2(t)dt, (13)

mean‖ẋ‖ = 1
T

∫ T

0
‖ẋ(t)‖dt. (14)
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The weighing coefficients α and β in Equation (9) encode the relative importance of
F21 and F22, respectively. Their numeric values are selected here to equalize the relative
importance of F21 and F22 in the case of the trivial F1-optimum trajectory xF1(t):

α :=
1
2

1
F21(xF1)

, (15)

β :=
1
2

1
F22(xF1)

, (16)

where
xF1 := arg min

x
F1(x). (17)

As discussed at the end of Section 3.1, the trajectory x is in practice represented in the
discrete form of n points, and thus the minimization in Equation (17) is actually performed
in Dn.

3.3. Multicriterial Optimization and Pareto Front

The trajectory identification problem is formulated as a multicriterial optimization
problem. The aim is to find the trajectories x that simultaneously minimize both objective
functions F1 and F2:

minimize F1(x), F2(x)

w.r.t x (18)

subject to x(t) ∈ D for t ∈ [0, T].

As in case of Equations (8) and (17), the actual search space in Equation (18) is in practice
simplified to Dn. The solution of such a multicriterial optimization problem is usually
non-unique [40]. It consists of nondominated trajectories, which correspond to the Pareto
front in the (F1, F2) space. These trajectories are optimum in the sense that none of them can
be improved with respect to both objective functions. By investigating the nondominated
solutions along the Pareto front, one can trace the influence that the two objective functions
have on the optimum trajectory, and ultimately find the balance between them.

4. Numerical Optimization

The multicriterial minimization problem in Equation (18) is a variational problem
that seems to be intractable by classical analytical means of variational calculus. Moreover,
measurement data have in practice always a discrete character. Therefore, the general
continuous formulation presented in Sections 2 and 3 should be ultimately discretized and
solved numerically. This section describes such a discretization and other prerequisites for
numerical optimization.

4.1. Optimization Algorithm

The considered objective functions have relatively complex, multimodal characters.
In terms of the optimization algorithm, a natural choice is thus a global search approach.
There is a relatively small family of specialized multiobjective global search algorithms [39],
and the nondominated searching genetic algorithm (NSGA-II) is used here due to its
in-built preference for uniformly populated Pareto fronts [38]. As is typical for genetic
algorithms, each trajectory is represented in the binary form, and typical forms of mutation
and crossover operators are considered. The specific flowchart of computations is shown
in Figure 1. The block “nondominated sort” convert the pairs of objective functions into a
single ranking based on Pareto front ranks and crowding distance, to be used for parent and
survivor selection [38]. As a stopping criterion, the maximum number of 10,000 generations
is used.
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Figure 1. Flowchart of computations: NSGA-II algorithm [38] applied to the trajectory identifica-
tion problem.

4.2. Trajectory Representation and Encoding

NSGA-II, as other genetic algorithms, operates on populations of individuals.
Each individual represents a trajectory, which in the general continuous formulation
is a function, see Equation (1). However, for optimization purposes and because of the
discrete character of the measurement data, it is represented in practice by a finite sequence
of n points sampled from the loading domain D at uniform time intervals,

x ∼ {x1, x2, . . . , xn} ∈ Dn, where xi = x
(

i− 1
n− 1

T
)

. (19)

If necessary, the continuous form of the trajectory can be approximated by performing
a spline-based interpolation of the sequence {x1, x2, . . . , xn}. The trajectory is assumed
to be 2D, that is D ⊂ R2, and in the discretized form it is consequently represented by a
sequence of 2n real numbers,

x ∼ {u1, u2, u3, u4, . . . , u2n−1, u2n} ∈ R2n, (20)

where xi = (u2i−1, u2i). In applications considered in this paper, the loading domain
D is rectangular, so that ui belongs to a certain interval, ui ∈ [ui0, ui1]. For encoding
purposes, each of these intervals is uniformly discretized into 2nbit points, which are
then encoded using the Gray encoding scheme (reflected binary code [41]) in nbit bits(

gi1, gi2, . . . , ginbit

)
∈ {0, 1}nbit :

ui := ui0 +
ui1 − ui0
2nbit − 1

nbit

∑
j=1

2j−1bij, (21)
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where
(
bi1, bi2, . . . , binbit

)
is the standard binary encoding that can be obtained from the

Gray encoding in the following way,

bi1 := gi1

for j := 2 to nbit do

if gij = 1 then bij := not(bi(j−1))

else bij := bi(j−1)

(22)

Finally, all these nbit-bit representations are stacked together to form a (2nnbit)-bit binary
encoding of the entire discrete trajectory.

4.3. Genetic Operators and Initial Population

The usual 2-way deterministic tournament selection is applied to select the individuals
for mating, crossover and mutation. As each individual (a trajectory) is represented and
encoded in the standard binary way, typical recombination and mutation operators can be
used. The probability of mutation for each bit is (nnbit)

−1 and the crossover probability for
each mating pair is 0.5.

The NSGA-II, as any other genetic algorithm, requires an initial population to be
defined. Here, it is the one-element set that consists of the trivial F1-optimum trajectory
xF1 . Such a a choice accelerates the search, as it allows the population to evolve from
the trajectories that offer a reasonable fit to the physical measurements. All subsequent
generations consist of 100 individuals.

4.4. Objective Functions

The objective functions defined in Equations (6) and (9) are formulated in terms of
continuous and smooth trajectories. However, only discrete trajectories are available in
practice due to the discrete character of the measurement data. The continuous formulations
of the objective functions thus need to be accordingly discretized to be computable based
directly on the discrete representation of the trajectory, that is, the sequence {x1, x2, . . . , xn},
see Equation (19). In particular, the measurement-based objective function F1 is estimated
by replacing in Equation (7) the integral with the corresponding sum of samples:

F1(x) ≈ ln

(
1 +

1
n

min
f≥0

n

∑
i=1

∥∥∥εM
i − εi(x, f )

∥∥∥2
)

, (23)

where the measured and modeled responses are sampled as in Equation (19),

εM
i := εM

(
i− 1
n− 1

T
)

, (24)

εi(x, f ) := ε(x, f )
(

i− 1
n− 1

T
)

. (25)

The objective function F2 that expresses the geometric regularity of the trajectory is
a linear combination of two components, F21 and F22, see Equations (9), (10), and (12).
The former component quantifies the angular wiggling, and it is discretized as follows,

F21(x) ≈
1

n− 2

n−1

∑
i=2

ln

(
1 +

(
∆θi

n− 2
T

)2
)

, (26)

where ∆θi is the angle between the vectors xi−1xi and xixi+1,

∆θi := arccos
(xi − xi−1)

T(xi+1 − xi)

‖xi − xi−1‖‖xi+1 − xi‖
. (27)
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The latter component, F22, quantifies the variability of the linear velocity. In the discrete
setting, the involved integrals are straightforwardly represented as follows,

F22(x) ≈

√
1

n−1 ∑n−1
i=1 ‖xi+1 − xi‖2

1
n−1 ∑n−1

i=1 ‖xi+1 − xi‖
. (28)

5. Experimental Verification
5.1. Experimental Test Stand

The proposed approach was verified using a laboratory testing stand shown in
Figure 2. It consisted of a steel plate, 1 m × 1 m × 0.5 mm in dimensions, pointwise
supported in the middle and near the edges, and a line-follower robot with a track width
of 28 mm. The moving load was applied in the form of the weight of the robot. Its mass
was 0.302 kg, and it used a set of optical sensors to follow one of the three test trajectories
shown in the photo (a square, a circle and a triangle) with a constant velocity of about
9 cm/s. The plate was instrumented with three strain gauges, which were denoted A, B,
and C, and placed as shown in Figure 3. They were fixed at the bottom face of the plate to
avoid collision with the robot and damage.

Figure 2. The laboratory test stand: a 1 m × 1 m × 0.5 mm steel plate with a line-follower robot and
three test trajectories. The beginning and the end points of each trajectory are marked with red and
yellow arrows, respectively. The square and circle trajectories were covered twice, while the triangle
trajectory was covered three times.
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Figure 3. Scheme of the plate: placement of the strain sensors (A, B, and C) on the bottom face,
supports (× pin support,⊗ fixed support), and spatial discretization into a 10 × 10 point grid.

5.2. Responses to Test Trajectories and Nonparametric Model of the Plate

The robot followed the three test trajectories shown in Figures 2 and 3: twice for
the square and the circle trajectories, and three times for the shortest triangle trajectory.
The beginning and end points of each trajectory are marked in Figure 2 with a red and
a yellow arrow, respectively. The corresponding measurement signals of the three strain
sensors were recorded and plotted in Figure 4. A clear quasi-static character of the response
can be observed. It suggests that the load is also quasi-static, so that Equation (5) can be
used to model the response of the plate. Consequently, the nonparametric model of the
plate has the form of a set of vectors

{
kx ∈ R3 : x ∈ D

}
that collects the responses of the

three sensors to a unit load applied within the load domain D (the plate). This set was
constructed experimentally as follows.

1. The plate was discretized into a 10 × 10 point grid with 10 cm × 10 cm cells, as shown
in Figure 3.

2. The constant gravity load of a 0.265 kg mass was applied successively in all
100 points of the grid, and the responses of the sensors were recorded. A fragment of
the measurement signal (load in points No. 80 to 89) is shown in Figure 5. A limited
degree of nonlinearity can be observed in the responses of the sensors: a small drift
of the readings in the unloaded state (bias drift) and a small relaxation-like behavior,
which can be probably linked to the sensor–plate adhesive layer. Such effects increase
the measurement error, and although they are undesirable in applications, they helped
here to test the robustness of the proposed method.
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3. Finally, the response vectors corresponding to the 100 grid points were extracted
and spline-interpolated in 2D to form the continuous response surfaces and the
nonparametric model

{
kx ∈ R3 : x ∈ D

}
. The three interpolated response surfaces

are shown in Figure 6.

(a)

(b)

(c)

Figure 4. Recorded responses of the three involved strain sensors to the moving load (line-follower robot) following the test
trajectories: (a) the square trajectory, (b) the circular trajectory, and (c) the triangle trajectory.
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Figure 5. Recorded responses of the three involved strain sensors to the weight of a 0.265 kg mass placed in successive
points of the grid (points No. 80 to 89).

(a) (b) (c)

Figure 6. Response surfaces that describe static sensor responses to the constant gravity load of a 0.265 kg mass placed
on the plate: (a) sensor A; (b) sensor B; (c) sensor C. The surfaces are interpolated based on the explicitly marked 10 × 10
point grid.

5.3. The Trivial F1-Optimum Trajectories

The recorded responses (Figure 4) were resampled at a frequency of 1 Hz. To obtain
the initial solution for multicriterial optimization, the trivial trajectories were computed by
minimization of the measurement-based objective F1 in Equation (23). This is equivalent
to the minimization of the quadratic discrepancy measure with respect to the discrete
representation {x1, x2, . . . , xn} of the trajectory x. The structure is linear, so that given the
trajectory x, the internal minimization in Equation (23) with respect to the load magnitude f
is a relatively simple quadratic programming problem. Given Equation (5), it further decou-
ples into a series of separate independent one-variable quadratic minimization problems,
one for each successive load position xi. Therefore, the minimization of F1 with respect
to the trajectory can be also decoupled into a series of simple independent optimization
problems with respect to xi. In the discrete setting, they can be solved even by a brute
search over all possible 22nbit load positions: in this manuscript nbit = 6, which yields a
limited number of 4096 one-variable straightforward quadratic minimization problems.

The F1-optimum trajectories were computed and plotted in Figure 7. The black dots
mark the discrete trajectory points {x1, x2, . . . , xn} and correspond to the 1 Hz sampling
rate, while the smooth lines in-between the dots are their 3rd-order spline interpolations.
It is clear that these trajectories are indeed trivial in the sense that they are too erratic to be
reasonable, physical and useful. This confirms the necessity of the proposed multicriterial
optimization approach. The geometric criterion F2 can be used to balance F1 and alleviate
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the detrimental influence of all involved errors (measurement errors, sensor nonlinearities,
modeling errors, etc.) and the limited availability of information.

Figure 7. The trivial F1-optimum trajectories. The black dots correspond to the 1 Hz time sampling, while the line in-between
is the 3rd-order spline interpolation. The actual trajectories were: (a) square, (b) circle, and (c) triangle.

5.4. Multicriterial Identification of Test Trajectories

Given the erratic nature of the trivial trajectories, the proposed multicriterial optimiza-
tion scheme was applied to balance F1 against the geometric objective F2 and to determine
the Pareto front. Up to 10,000 generations were evolved. Figures 8–10 present the results
obtained for the square, circle, and triangle trajectory, respectively. In its top right part, each
figure shows the advancement of the Pareto front in the course of the optimization process.
Dark blue dots mark five specific trajectories along the final Pareto front. The top left dot
corresponds to the respective trivial trajectory, based on F1 only and shown in Figure 7.
The successive trajectories along the Pareto front (denoted by A, B, C, and D) illustrate
the increasing influence of the objective F2 and the effect of the geometric regularization it
imposes on the solution. These trajectories are shown to the left and below the Pareto plots
in Figures 8–10. The actual trajectories of the line-follower robot are shown in Figure 2: in
each case, their important characteristics were reasonably faithfully identified. It can be
seen that at least a qualitative identification of the trajectory was clearly possible.

The accuracy of identification can be assessed quantitatively by computing the mean
absolute error of the identified trajectory, which is defined as follows,

e(x, xtrue) :=
1
n

n

∑
i=1
‖xi − xtrue

i ‖, (29)

where x and xtrue denote, respectively, the identified and the true trajectory, and i indexes
the time steps. The three considered true trajectories were compared with the identified
trajectories from the respective final Pareto fronts. The results are plotted in Figure 11.

Incorporation of the geometric regularity in the optimization process allows the
identification error to be significantly decreased to the range of 30 mm to 60 mm, which
is already comparable with the track width of the robot (28 mm) and better than the
spatial discretization of the plate used to build its nonparametric response surface model
(100 mm). It should be emphasized that in all three cases the error decreases along the Pareto
front, although the response residuum increases, as quantified by F1. This confirms the
insufficiency of the measurement-based criterion and confirms the beneficial regularizing
effect of the proposed criterion based on geometric regularity. The obtained level of
accuracy, as well as the fact that the identified trajectories cover the entire spectrum of
geometric regularity (from erratic to very regular), also suggest that the discretization time
step is properly selected to the actual experimental setup.
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,

Figure 8. Multicriterial identification of the square trajectory: advancement of the Pareto front and four specific trajectories
along the final front (A, B, C and D). The top left dot on the Pareto front corresponds to the trivial F1-optimum trajectory
shown in Figure 7a. The actual trajectory is shown in Figure 2.

,

Figure 9. Multicriterial identification of the circle trajectory: advancement of the Pareto front and four specific trajectories
along the final front (A, B, C and D). The top left dot on the Pareto front corresponds to the trivial F1-optimum trajectory
shown in Figure 7b. The actual trajectory is shown in Figure 2.
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,

Figure 10. Multicriterial identification of the triangle trajectory: advancement of the Pareto front and four specific trajectories
along the final front (A, B, C and D). The top left dot on the Pareto front corresponds to the trivial F1-optimum trajectory
shown in Figure 7c. The actual trajectory is shown in Figure 2.
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Figure 11. Mean identification error for the trajectories on the final Pareto fronts. Labels “A” to “D”
correspond to the labels in Figures 8–10, while “F1-best” denotes the trivial F1-best trajectory.

5.5. Compound Trajectories

In order to test the proposed approach using more complex trajectories, the experimen-
tally measured responses to the three basic trajectories (square, circle, and triangle) were
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used to construct the two following compound trajectories along with the corresponding
responses of the strain sensors:

1. Figure 12a: the moving load starts at the top of the plate and follows clockwise the
triangle, circle, and the square trajectory, each of them once. This trajectory has two
small discontinuities at the top of the plate which occur when the load switches the
basic trajectory.

2. Figure 12b: the moving load starts at the upper right corner of the plate and follows
a U-shaped trajectory, which is composed of three segments of the basic square
trajectory. The path is followed three times, along the points w–x–y–z–y–x–w–x–y–z,
with two sharp U-turns at the points w and z.

The proposed multicriterial identification approach was applied to identify these two
trajectories based on the constructed sensor responses. The final Pareto fronts obtained
from the NSGA-II are plotted in Figure 13. Three specific points on each Pareto front
are labeled “A”, “B”, and “C”, and the corresponding identified trajectories are shown in
Figures 14 and 15. The mean identification error, defined in Equation (14), was calculated
for all identified trajectories, along both Pareto fronts, and plotted in Figure 16. Similarly as
in the case of the three basic trajectories, the proposed approach properly identified quali-
tative characteristics of both compound trajectories. In quantitative terms, the geometric
regularity criterion decreased the mean identification error to the level of 40 mm to 60 mm.

w

xy

z

(a) (b)

Figure 12. Two compound trajectories constructed using the three basic experimental trajectories:
(a) The load follows each of the basic trajectories once. (b) The load follows three times the U-shaped
path along the points w–x–y–z–y–x–w–x–y–z.
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Figure 13. The final Pareto fronts obtained from NSGA-II for the two compound trajectories shown
in Figure 12. Three specific points on each front are labeled “A”, “B”, and “C”, and the corresponding
identified trajectories are shown in Figures 14 and 15.

Figure 14. Identification of the compound triple trajectory shown in Figure 12a. The trajectories A, B and C correspond to
the three points marked on the respective Pareto front in Figure 13.

Figure 15. Identification of the compound U trajectory shown in Figure 12b. The trajectories A, B and C correspond to the
three points marked on the respective Pareto front in Figure 13.
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Figure 16. Mean identification error of the trajectories on the final Pareto front obtained for the
compound cases shown in Figure 12. Labels “A” to “C” correspond to the labels in Figures 13–15.

6. Conclusions

This paper has proposed a multicriterial approach for identification of moving load 2D
trajectory. Two complementary criteria of very different natures are used: (1) a mechanical
criterion aimed at fitting the modeled and measured structural responses and (2) a newly
proposed geometric criterion aimed at promoting physically reasonable trajectories. As a
result, otherwise erratic trajectories are numerically regularized with respect to geometrical
consistency measures that express typical or expected geometric features of trajectories.
The approach was verified experimentally using a laboratory test stand with a 1 m × 1 m
plate structure and a moving line-follower robot. All tested trajectories were successfully
identified in qualitative and quantitative terms. Introduction of the geometric criterion
allowed the mean identification error to be decreased 3–4 times to the level of 30 mm
to 60 mm, which was already comparable with the track width of the robot (28 mm).
For optimization, a specialized state-of-the-art multiobjective genetic algorithm NSGA-II
was used.

The discussed problem and the proposed approach generate a number of challenging
research tasks. This includes natural direct continuations, such as identification of the load
magnitude besides its trajectory and multiple trajectory identification in case of several
concurrently moving loads, as well as applications to human-induced loads [42,43] and
other types of excitations [44]. There are also several further related open problems: opti-
mum placement of available sensors [45,46], determination of the optimum load trajectory
and/or magnitude for the purpose of damage identification [47,48], the coupled problem
of online trajectory identification and optimum semi-active structural control [49], and
effective utilization of substructural identification approaches [50].
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