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On the basis of the paper [1] two topics are discussed. Firstly, exact formulae for the homogenized coeffi-
cients of a layered thermopiezoelectric composite are derived. Secondly, by applying the Ritz method, the
local problems are solved approximately. Specific cases are also examined and illustrated.

1. INTRODUCTION

The first published results on homogenization of piezoelectric composites with periodic structure
are due to the second author [2]. This author used the method of I-convergence. Next, Bloch
expansion techniques were applied in [3] to the dynamic equations. As could be expected, the
homogenized coefficients coincide with those derived in [2]. Different techniques of prediction of the
effective moduli of piezoelectric composites were used in Refs. [4-13].

Homogenization of the equations of thermoelasticity with periodic coefficients was performed by
Francfort [14,15]). Mathematically very elegant setting, without the assumption of periodicity was
proposed in [16]. In the last paper, correctors were also introduced and investigated. If the initial
conditions for the equations of thermoelasticity are nonhomogeneous, then the initial condition for
the temperature of the homogenized system changes, somewhat surprising result. Homogenization
of the equations of thermopiezoelectricity with periodic coefficients was performed by us in [1]. The
formula for the initial temperature of the homogenized body reduces to that primarily derived by
Francfort [14] in the absence of an clectric field. Similar phenomenon was observed for the equations

of thermodiffusion with not necessarily periodic structure [17].

It is worth noting that piezoelectric and thermopiezoelectric composite materials are receiving
interest in the developing field of “smart” materials, of. also [18,19]. They are also useful in modelling
the behaviour of biological materials exhibiting piezo- and pyro-electric effects, c¢f. [2].

The aim of the present contribution is mainly twofold. Firstly, for a thermopiezoelectric layered
composite with a microperiodic structure, analytical formulae for the homogenized coeflicients
are specified. This is a one-dimensional homogenization and the local problems involve ordinary
derivatives only. Secondly, in order to find solutions of the local problems, general procedure of
applying the Ritz method is outlined and next used in the two-dimensional case. To illustrate our
procedure specific cases are solved and the results presented in the form of figures. In particular, we
treat a composite made of two phases: quartz and lithium niobate. To make our paper self-contained
as far as possible, we provide also the most imiportant results of [1].

We observe that numerical methods for much simpler physical situations were developed in

[20-25).



134 : | o A, Galka, J.J. Telega and R. Wojnar

2. BASIC EQUATIONS

Let © C R® be a bounded, sufficiently regular domain and (0,7) (7 > 0) — a time interval. The
elastic, thermoelastic, piezoelectric, dielectric and pyroelectric moduli are denoted by Cijry Yigs Gijks
€;; and \;, respectively, cf. [26,27]. Throughout this paper small Latin mchces take values 1, 2 and 3.
Next, k;; stands for the heat conductivity, p is the density and 8 = T ; C, is the specific heat at

constant strain per unit volume and Tj is the reference (absolute) temperature. We identify Q with -
the underformed state of the thermopiezoelectric composite with a microperiodic structure. Thus

- for £ > 0, the material functions just introduced are £Y -periodic, where ¥ = (0, Y1) x (0, ¥2) x (0, Y3)
is the so-called basic cell cf [28 31] More premsely, we wrxte o E

M@ = A() @ =1 (—) o) =0 (%),
where z € Q and the functlons ik gU » etc. are €Y -periodic, Where £> 0 is a small parameter.

For a fixed ¢ > 0 the basic relations describing a linear, thermopiezoelectric solid with the
microperiodic structure are, cf. [1,26,27] :

(i) Field equations
05+ bE = oS Jin Q@ x(0,7), o ‘
Df; =0 in Qx(0,7). e ‘
(i1) Heat equatz’on
= (%ei) ¢ in ax 0,7). e )

(i) Constztutwe equations

0° = —75iei; (u°) + 7% — X E;(¢°), | @
Df = gier(u®) + X5s® + € Be(¢).

2

(iv) Geometrical relations
exi (1) =‘u§k,i>m-§~<uz,l+uf,k>? Bu(yf) = —¢f. S )

Here oy, uf, b, p°, Ef, Df, 6° and s° are the stress tensor, the displaceméﬁt vector, the body
force vector the mass denszty, the electric field vector, the electric displacement vector, the relative

temperature and the entropy, respectively. Moreover we have r¢ = ézf,mw = %2_ and ¢ = &,

where R® represents heat sources; b® and r® are €Y -periodic.- ’ o

. We note that i in our paper [1], the material coefficients appearing in Egs. (4)‘weré dis‘tinguished
0y a bar. ~ : ~
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The tensors of material functions satisfy the usualsymme‘tryﬁé . ditions

£ £.

et . N )
Cijmn - Cmm‘j - cz’jnm =G4

Jimn

V= Yo Gk = Gk € =€
We make the following assumption: there exists a constant o > 0 Suéh‘t‘hé,kt‘ for é@iiﬁt}St every z € (2,
the following conditions are satisfied ~ i *

ijmn(m)eijemn 2 a ; e {2: ’}’fj(a:)alaj > o ! a ,2, s
kij(x)aia'j ; B ] a f ¥ 6%(37)(1@&3‘ = i a 52‘1 :
for each e € E3 and cach a e R?; hére E3 is the space of symmétric 3 x 3 matrices:
Substituting (4) into Egs. (2) and (3) we obtain (e > 0 and fixed):
(cfjmnuil,n "—kk’ijSE + gzzjﬁpg?k )aj 'H')f = peﬁsv
(gfmnu{ren,n + /\535 - 6?};;‘1065/6 )ai = 07 ) : k . : ) ; k (7) k

$° = [Iﬂfj(«'yﬁ,muin,n + G5 sE + Xewi)ily e

‘Obviously, u®, s°, ¢, b, and ¢ are functions of z € Q and ¢ € (0, 7). : 8

Equations (7) represent the system of equations for finding u®, ¢° and s°. It has to be completed
: & ®

by the boundary and initial conditions. We assume the homogeneous boundary conditz’ons:k

uw(z,t) =0, 6°(2,t) =0, ©°(z,t)=0 [ ‘ SR : (8)

for o €d8Qandte [0,7]; 8Q stands for the boundafy of Q.

The initial conditions are

u(z,0) = Ulz),  #(z,0) = V(z), |

i | : (9)

- 6%(z,0) = T(z), ©*(z,0) = F(z). ‘

The functions U, V, T and F are prescribed. : S ; ‘ ~
Under physically reasonable assumptions, a solution (u®, %, s°) to the initial-boundary value

problem just formulated exists and is unique. = SO

3. HOMOGENIZATION

In order to find the effective or macroscopic coeflicients we employed the method of two-scale ;

~asymptotic expansions, c¢f. [29,30]. In our case we make the following Ansatz

uf(z,t) = u(z,y,t) + eul(z, ¥, t) +e2u(z,y, t) + .. :

5 (2,1) = ©(2,,1) + el (z,1,1) + 20 (z,y,t) + ... g & (10)

s°(u,t) =%z, y,t) +est(z,u,t) + 252(z, y, 8) + ...

where Yy = 25:” The functions uo(aja-)t))kul(xa-»t)a-f-:wa(x7':t)’<pl(x7'1t)a";730($;'7t)781(w)-1t)7

etc., are Y-periodic. The main steps of the asymptotic analysis are outlined in the paper [1]. We - E
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shall now prov1de those results Wthh are essential for our subsequent conmdera,tlons Fora functxon
fELI( ) we set ~ -

N =71 S

The homogemzed form of Egs. (3) and (7)1,2 is

(92 0 . h 52 0 kh 52@0 5 aeh
(P) - 2 = Cigmn + Gkij 5 ~Yigg
; ot 0x; 83: Oz ;0x); 0z,

(1)

‘We observe that the dlsplacemen’n ﬁeld u (a: i) and electmc potentlal ﬁeld @0(30 t) do not depend
on the 1oca,1 variable y €Y. The entropy of the homogemzed thermopwzoelectmc solid " is the
average of s%(z,y,t) over ¥ and thus it is equal to (s%(z,y,1)) = —«T Jys %z, y,t)dy. The physical

interpretation of 8"(z, £) is readily inferred from (11); it is the temperature field of the homogenized

- body.

The effecmve coefficients are gwen by the following expressions:
o T S oA

b= (e . P .
Cijmn ‘ <%mn “*‘%pq %% “*”me g |

L ool OR®)"
Jrij = \Gkis + Cigmn =5~ +kgm¢j T
: or oQ

R /T e
iy 'ﬂj Cz;?g ayq gkzg o >

Where the local functions X( mn) , glmn) @<m> Ty, R Q and @ are Y- per10d1c They are solutlons
to the local problems which’ W1H now be formulated

Let us assume that the periodic material functions ¢;; ), g” x(y); ete. are of class L*e(Y ) Such
case includes layered thermoplezoeiecfrlc materials. We set ‘ :

Hyer(Y) ={vE HY(Y) | v takes equai values on opposite sides of Y}, ‘ o (13)

Hoer(V,RY) = {v = (0) | i € Hoee(¥), §=1,2,3). | T

~ The unknown periodic local functions entering Eqs. (12) are solutions to the following local prob-
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Problem P}

loc

Flnd X(mn} € Hper(y> and Q(mn) € Hper(y) Suchktha,‘t

/Y [Cijmn(y} +Cz'qu(y) X(m")) +91m y)

]{/ [gmn(y) +gipq(y)ey (X(mn)) Ze (y) 89( )}. aw .

Probiem P2

loe

Find ™ € Hper(Y) and R0 € H, o (V) such that

(m) ; ‘
4 {gmz;,(ngmg( )85; -+ Cina(y)e} (@W)} H()dy =0 W€ Hpu(V,R%),

~ g 8R(m}‘ T ow | :
/Y [Eim(y)‘“*‘ €k E = Qz‘pqegq(®(m))] é“mdy =0 : ka € Hyer(Y).

Problem P} S

~Find T; € Hper(Y) and Q € Hper(Y) such that

| | L0Q7 o, L ,
/Y Vi () = Cijpq(y)epy (L) — 9kij(y)5§; e;(V)dy =0 Vv e Hye(V,RY),

T | Q1w ‘
/ {/\xyug@q(meﬁq(r)mm ayk}é——dy 0 Vo Hou(d),

where ‘
1 v ow\
v = z Ll

MOreovér,S = (©;) is a solution to the following

Problem P4 o
Find ©; € Hper(Y) such that

@k} %d =0 Vv & Hpe(Y,RY).

L [mm )5k

7

Remark 3.1 : .
In fact, the two-scale asymptotlc method leads d1rectly to the strong formulatlon of the local ‘
problems. Consequently, the material functions involved have to be more regular, at least of class
CH(Y). However, the point of departure can be the weak (Varlatxona,l) form of system (7). Then
the local problems are glven above. ‘
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Remark 3.2 :
 Having in mind specific problems, for instance la,yered ma,terlals, it is convenient to introduce the

following notation:
X%J’) - Xgri{’!)7

Cijmn = Cijmiis

: ; . .
Codimn = Gimn> X?('IY’IL) = @'S:l)a

A = 0,

Cajin = ~jny
G = Vi Xffii) = RO, |
C4j44 ﬂ ,k\jk, “ik,;?‘;kf‘X'gc44‘)k ; ]j‘k,
Ciagn = /3(?1) k (44) = Q>

Whereaﬁ, -1234and@jﬁkm,n_123 ;
Then the strong formulation of the local problems Pt (i =1,2,3) reduces to finding Y-periodic

functions X( ) satisfying the relation

8 [ o) ) LT L |
T 1 Catyn "5 L = T Codpys RS 18)
By; {Ca T Oy | Oy | | 1)

and the homogenized (effective) moduli are
‘ngw, = (Capuv) + <ca5’m"§l“" : e - (1)
; Yn ; ~ ~

- kThus the effective thermopiezpelectric COefﬁciQn‘tS are chpletely described by‘ cg Buw and K,ilj

4. MICROPERIODIC LAYERED COMPOSITE

-Now the basic cell reduces to an interval, say (0,1), ¢f. Fig. 1. We assume that the material co-
efficients of such a composite are piecewise constant; for the lamination in the direction y3 they -
are ; o ‘ o
: & for ys € (0,€),
afiuy P/
Caﬂui/(?a’) =9 oy k
Cr(xz’z‘;uv for yz € (£,1).
Thus the composite is made of two matemais After lengthy, though s;mple calculatlons the 1ocal
functions can be found in a closed form; they are piecewise linear, ¢f. [17]); moreover

Chow = (Copu) = €1 = OB lonsaplloms], . D)
where ‘ ‘ ‘
k<caﬁw/> = fcggw (1 - 5) azﬁ)’yw
cand : k ‘

2 1
QICQ/BHV]} :(Dzép,u - Ct(x[;pl/ -

[Bag] = [€ys + (1= €)cligs):
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Fig. 1. Layered composite: basic. cell; Y1 — material with coefficients ci 375 and nsg ; Y2 — material with

(@) (2)

coefficients Ca 5 and K

These coefﬁments have to be completed by the heat conductivity x;;, which is also p1ecew1se
constant. Homogenized heat conductivity coefficient reads :

mz}‘ij?(ﬂw)""';f(l—‘wf)ff"lﬂnism[ﬁjs]i{ S | R | (18)
where k

CE=6 4+ (1- sl

5. RITZ METHOD

To find the effective coefficients one ha,s to solve prlmarﬂy the local problems The Ritz method
offers a possibility of determination of the local functions in an approximate manner. Below, we
apply this method to our thermopiezoelectric problem. :

5.1. General case

We shall be looking for an approx1mate solution of the local problems by the thz method Accord~
ingly, we take

O = e, o o),

B = RV, e = Mgy, e ‘ oy
Iv = Tead™W), Q@ = Quty). | |
Here ¢%(y),a = 1,2,...,a (the base functmns) ‘are prescribed Y-periodic functmns and
(m”) Q(mn) R( ™) @Em) ,Fka,Qa are unknown constants Obvmusly, the summation convention still
apphes

~ The local problems Ploé (1:1,2,3) should now be satisfied for test functions of the form

v z‘viafﬁa(y)’ w = ’wa¢a(‘y)‘~; ~ ; B ; | o (20) -
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| To determine the unknown constants one hé,s to solve the following a}geb;aic equaﬁbns: k
x5 Acla, b, k,4] + O™ Agla, b, i] = Belb,i,m, n],
| x,ﬁ’Z")‘Ag[b‘, a k] - @&@?)Ae[a, b = Bylb, m nl,

RS Agla,b,i] + ™ Acla, k, b,1] = Bga[m, 4, b,

| (21)
R{™ Aela, b] — {7 Aglb,a,k] = Befp,m],
 Thadlt 04— Qudelont = Bimll,
o Aé[a,j,b,n} = fy Cijkﬁ#?{lfkdya : Ag[aabk,k”] = /Y Qéknd)?sﬁ?@dﬁ
Ae[a; o] | = j{):fik¢f%¢?kdy7 ~ Bc[a,j,m,n} = "j;?z'jmnqﬁ?idys
Bg[a,m,ﬁ} ‘::‘«-Lkgmﬂgbde, : Bgali,m,a] = mj[i/gq;mngb:’ndY? B k LI (22)
Belaym] = - /Y cm#idY,  Bimla] =~ ]; Ao, |

Bomla,m] = = [ vmgidy

R [
ith ¢% = ——, and
w1§ o = B an

: Ala, 7, b,1) %~Ac[d,j, é‘, 7 +‘ AB{d,@j}Ag[d, b, 1],
B = %Bgm[b,, i] + ABd, b, z‘szm{d],
Blj,m,a] ::Bga[j,m,a] —~‘A‘B[c‘£,a,m]Bé[d, 1,
Bla, j,m,n] = Bela, j,m,n] 3 ABld,a,)Bgld, mn] |

with

AB[da G’).ﬂ = (A6>";[C7 d]Ag{Q aaj]“

The solution of the systém of equations (21) is giifen by
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x%m-mwﬂmmmmBm@mmy

6™ = ~(4)" "I clBals, ]+ (4)fh ., Bl

RJ™ = (Ae)'[b,a) Be[b,m] + (4)~ [dzckl [m,z;d]ABacak

ET (23)
oY = (4)7Yd, i, a,k|Blm,i,d], :
Tha = (A7 di,a, Bld,1],
Qe = —(Ae) [, alBimib] + (A)"'1d,, o, IB(d, |ABla, , K],
Syﬁbols (4e)™! a,nd (47t denotekinﬂrerse matricés of (Ae) and (A) ,‘ déﬁned in this order by
(Ae};l[b, a]Ae[d, c}km }i k(Ae)“l{Ik), aldela, c] = by ‘
T a=1 i
an& ‘
‘ B : o .
(A) b,y a, m]Ala,m, ¢, k] = Z 2 b n,a,mlAla, m, ¢, k] = Gpelpn - -
‘ Finally, the hémogenized ‘cdefﬁcients can bé written as follows:
s = (cui) + (Ae) [, alBglb k. ) Bl .1
-(A)_l[b n,a m] [b,n, k,[]Bla, m,z’,j],
gy = (gui) — (Ae)" b, alBelb, KlBola i,
() m)BlE Bl mi, 7]
b = () — (Ae) D alBImBlBgle,1d]
H(A)"[b, n, a,m]Blb, 0,4, /] Bla, m} b
dy = {e) — (Ae) B, alBelblBela ]

+(A)~1 [b’ @7 . ‘m]B[z,n,:b]‘B‘[j\,;m,:f}] ,‘fﬂ -
¥ = 00— (o bamnBEad

~ Ao a,m] B{z n aw[a m),
B = (8)~ (4e) {b,alBim 1Bzmt1 -

+(A)*1[b’~n,a,m]B[b,n]B[%mL; :

@
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5.2. Speciﬁc two—dimensimnal problem: two-phase ccmposite

To illustrate the outlined general procedure we consider a two-phase composite material with pie_:cga—
wise constant coefficients, provided that they do not depend on y3 (two-dimensional homogeniza-

tion):
1)
(v) Cobur fox Y€ @, 1,2,34. Lo (25)
C =3 : OOy V=L 8y 0y 4 . i
afuviY @ f_ v 3 ;
CoBuv or‘; Yy e Yo,

........... z%

Fig. 2. Basic cell'of two-dimensional composite

. S : a ’ - k
Fig. 2 describes the basic cell; now ¢% = g;b = 0 while (22) simply takes the form

Acfa,k,b,i] = ¢ Fla,b, L, J) + [eesilfla, b, L, J],
Agla,b, k] = ¢),Fla,b, L, J] + [gLkJ1f[a,b, L, J),

Ae[a, b] = eg}F{a, b, L, J} + [ers1 fla, b, L, J],
| | (26)

kBC[a',i’man] = ECKiman[avK]’ k Bg[a‘vmkv ’I’L}: ﬁgKmnﬂf[a»K}w

Boalk,ia] = [gex)flo, K],  Bela,m] = [exmlfla, K],

~ Bimla)  =DxlfleK],  Bomlai] = pygidfle K.
Here : k i ‘ ;
; . gt B o ¢ g
)bJL7'] = : d}r, FG,b,L,J S —— —dY,
f @ ] v Oy Os : : Y Oyr By, %
a : ‘
fla, K] = | 0 1y and K, J,...=1,2.

v Oyx
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5.2.1. Base functions

We take the following base functions

¢%~<y1,y2>ma ~m<1-ug)yl‘for ylg(wg,g), | = o S
4 2 §7§>a

f?}i-é for“yle(
(

( n {1 ¢
| nYy2 + 2 fO? Y2 € ”"2','"2'> .
Py =4 ~(l-nw for ye (mgg) | e )
o (1), |
ol e (L))
B (y1,92) = cos(my;) sin(2rys), SR (29
' (y1,92) = cos(myp) sin(2myy). & Sk B0

Next, we calculate
(1— o (-8 é)
(1 5) for Y1 € ( 272 3 -
; R 1 ¢ £ 1)~
. f e = o e
5 o1 yle( 2’ 2)U<272 3

$(W1,92) =0, ¢A(y1,m) =0,

,11 (yla y?) =

o | =-n) for yy € (ﬂ—;z, g—) ;
% (y1,y2) = | ~ L
| Cfor e (,.l __’Z)U“(ﬁ _1_)
7 i for y2‘ 25 2) 2%9 /"

&5 (vn, ) = —msin(myy) sin(ry2), 8 (u1,4) = 2m cos(nyr) cos(2mys),

¢4 (y1,y2) = 2m cos(2myy) cos(mys), ““éi(yi,‘yz)k = —msin(2ry;) sin(mys).

6. EXAMPLE: COMPOSITE"MADE OF QUARTZ AND LITHIUM NIOBATE

In this section we examine a two-phase composite for which the basic cell is two-dimensional, ¢f. .
Fig. 2. The material of the inclusion Y; is quartz, while the matrix ¥5 = Y\Y7 is made of lithium
niobate. S s ~ ;

Prior to solving such two-dimensional homogenization problem, we specify the material coeffi-
cients characterizing these two components. e : ;
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8.1. Material coefficients

Quartz, cf. [27,32,33]
(1) Density: p = 2.65-103%.
m

~ (ii) Heat capacity

; o | |
~01885§~w07871 f C. = pee = 2,086+ 10° fo, - Ty =300°K,
J  | _gn (10)2
=8 = ETE T = 0.1438 - 10° e
B= . = 6.953 - 10 (102 Bt=01 38 - N :

The indices used here take the followmg values cf [17] ; ‘
o) (G2 (3 =0 (3= Gy =)
K->1 2 3 4 5 6

(iii) Eiastlc moduli (units: 1010{2T ) |

€11 €12 €13 . Ci4.
Cig. ~C11. €13 —Ci4

0
0
ci3 c13 ez 0 0
0

Lo S o HRIN e S e

(cijem) = (kL) =
~ ~ cia —cig 0 cay

00 0 0 0 cu  cu

; § O; ; O; 0.0 e %(011 = 612) }
cry = 8.674, Leqe = 0.699; cs =1.191, - e = ~1.791,
cag = 10.72, cas =5.794,  cee = 3.988.

(iv) Piezoelectric coefficients (units: —)

‘ gn —gu 0 gs 0 0
(gjr) =(gix)=] 0 0 0 0 -—guu —gix
| Lo o 0 0 0 0
g11 = 0171, g = —0.04.

(v) Dielectric coefficients (units: 1071° F )
‘ m
fer 0 0
(eg)=10 a1 0
0 0 €3
€1 = 0.392, €33 = 0.41.

o ‘ L ca
(vi) Heat conductivity (units: —
s?cm

kiy 0 g1
(k‘ij):: 0 kit 0
) k 0 0 kay

k‘u = 0.016, k33 == 0030 .
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(vii) Thermal expansion coefficients (units: 1‘0"“6-1—15—) ‘
: (8551 g 0
(iz) =1 0 ‘eq; 0
) 0 : 0 i3y ;
H= 13'37" o33 = 7.97, i = Cijmn O -

Lithium niobate (Li Nb Oy), cf. [32]:
(i) Elastic moduli (units: 1010-N~‘)‘
; m?

ei; cigoociz3 cig 0
¢z ciro ¢z —cig 0
ci3 ¢z ez 0 0
g —cyy 0 cgq O
0 0 ) 0 0 C44 Ci4

0 0 0 0 cu 3ar—cpo)

c11 =203, ¢i2=53, c3=75 cu=09,

Jon v e B o'

(Cijkm) = (cxr) =

33 =235, cu =60,

(ii) Piezoelectric coefficients (units: %)
: ‘ m

- 0 0.0 0 g5 —gp
(9ijk) = (9ix) = | —g22 g2 0 g5 0 O
g3t g3t gz 0 0 0

g15 =37, gm =25, gz =02, g5 =13.

(iii) Dielectric coefficients (units: 10*105)
m

; k err 00

(Eij) = 0 : €11 0
L0 0 en)

€11 = 3‘.89, €33 = 2.57.

6.2. Numeri‘ca}‘ resixlts
We have examined both the one-dimensional and two-dimensional problems. In the first case exact

homogenization formulae specified in Section 4 were used.
The superscript “(1)” in the material coeﬁiments corresponds now to the layer made of qua,r’rz

@ ) One-dimensional case
On the basis of formula (17) we have computed elastic, piezoelectric and dielectric homogemzed

“coefficients. We have considered three laminations determined by three Cartesian axes {y;}, (i =
‘1,2, 3): Some of our calculations are depicted in Figs. 3-5. An interesting conclusion can be drawn

from the upper and lower parts of Fig. 4. In the case of the lamination determined by ys, for a
certain range of the volume ratio v the coefficient g3n is negative, though both g§1>1 and ggg are
nonnegative. Also, the coefficient gty for the lamination determined by y; is larger than gﬁl and

g§1)1 in certain interval of v, see the lower part of Fig. 4.
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“Fig. 3. Selected homogenized elastic coefficients as a function of volume ratic v = & chk (s, 7,m, n) = cf}mn
= lamination in the direction of yi; for instance, chl(i, 7, m,n) denotes homogenized coefficient Cg;'mn for

lamination in the direction ¥,
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Fig 4. Selected homogenized piezoelectric coefficients as a function of volume ratio v = & ghk(m, z’ )] =
gh:; — lamination in the direction of y; for instance, ghl(m i;7) denotes homogenized coefficient g for

lammatlon in the direction y
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 Fig. 5. Selected homogenized dielectric coefficients as a function of volume ratio v = £; ehk(s,j) = e —
lamination in the divection of yx; for instance, ehl{4, ) denotes homogenized coefficient e?j for lamination in’
the direction g ~ ' : e S
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(ii) Two-dimensional case ‘ : ‘ , IES

- In this case the homogenized coefficients were obtained on the basis “Of form Ia“{ (2 ) The

calculations were performed for two, Eqs. (27) and (28), and for four, Eqs. (27)——(30) vase funetions.

Some of our results are summarized in Figs. 6-9. In Figs. 6 and 8 the homogenized cocfficients are

functions of the volume fraction v = £n, where the inclusion has a quadfatic; sect (€ - 17) o
In Figs. 7 and 9 the homogenized coefficients are now functions of 7 provided that v - % ’

the inclusion is a variable rectangle. If 5 — %— and n —+ 1, thte.fWO—dimeﬁSiOﬁaﬁlfpfObIéms reduce to

the corresponding one-dimensional lamination problems in the direction of y» and y;, respectively.

0,18 +
0,16 : : ; -
0,14 4 R R |
012 4 ST : ;

on 1 ; S e gh2(1,1,1)
0,084 - S B s ohd(.1.1)
006+ L. R S ; ;

0,04 e

002+ /.7

______
o

- gh{1,1,1)

O = e : " b “ (— * 1 - 1
002 0,4 08 08 1

= oh4a.1,m)
Toosl o e e gh2(3,1,1)
£ )

v

py gh4(3.3.3)
B o L e e T L .
= gh2(3,3,3)
zh

Fig. 8. Selected homogenizéd piezoelectric coefficients as a function of volume fraction
v = &n, & = n; gh2(m,i, ) = 97’;,‘; — two base functions; ghd{m,1,j) = g:,‘“j — four base functions
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- Fig. 7. Selected homogenized piezoelectric coefficients as a function of n for v = 1/2; gh2(m,i,7)
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two base functions; ghd(m,4,j) = g,’iﬁj -~ four base functions
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- Fig. 8. Selected homogenized dielectric coefficients as a function of v = £, £ = 7; eh2(3, 7) = el — two base
‘ functions; ehd(m, i, 5) = €}y — four base functions
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The exact one-dimensional results (v = 3) for lamination | in the correspondmg “
~compared with approximate two- d1mensmnal results obtained for: 7.=10.551 = 5 and
~for dielectric and piezo-electric coefficicients. Good agreement (Wnbhm 1% of erm “

‘was observed for all components. ~

kCthIl were
090 > 1,
'{ih‘e“‘gsul’cs
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