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A micromorphic formulation of the phase-field model of martensitic transformation is developed within
the incremental energy minimization framework. In contrast to the conventional phase-field formulation,
the order parameters are viewed as local variables and the corresponding evolution equations are solved
at the material-point level, i.e. at the Gauss points in the finite-element setting. From a computational
standpoint, such a treatment is advantageous for complex evolution laws that may lead to computational
difficulties if treated globally, as in the conventional phase-field formulation. In the micromorphic formu-
lation, each order parameter is coupled to its micromorphic counterpart governed by a global Helmholtz-
type PDE. This coupling ensures that the interfacial energy and related size effects are correctly captured
by the model. In this work, the micromorphic approach is applied to a finite-strain multivariant phase-
field model that incorporates rate-independent dissipation. The augmented Lagrangian technique is then
used to transform the resulting non-smooth incremental minimization problem to a smooth and uncon-
strained saddle-point problem. Microstructure evolution under nano-indentation is studied to illustrate
the approach.
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1. Introduction

Phase-field method is a versatile computational approach that
allows to simulate complex microstructure patterns. The basic idea
of the method is to replace sharp interfaces, which can be compu-
tationally troublesome to be tracked, by spatially diffuse interfaces.
This is achieved by introducing continuous variables, called order
parameters, the gradients of which are explicit arguments of the
free energy function, thus providing a continuum description of
the interfacial energy. Modeling the microstructure evolution in
martensitic phase transformation is one of the early applications
of the phase-field method, as rooted in the pioneering works of
Wang and Khachaturyan (1997), Artemev et al. (2000), Wen et al.
(2000), Levitas and Preston (2002), and has been the subject of a
great number of studies based on the spectral solvers (e.g.,
Ahluwalia et al., 2004; Shu and Yen, 2008; Borukhovich et al.,
2014; Zhong and Zhu, 2014; Zhao et al., 2020) and on the finite-
element method (e.g., Bartels and Mosler, 2017; Clayton and
Knap, 2011; Hildebrand and Miehe, 2012; Levitas et al., 2009;
Schmitt et al., 2013; She et al., 2013; Tůma et al., 2016, 2021).
The latter framework is employed in this work.

The standard phase-field formulation for modeling the
microstructure evolution leads to a coupled problem of mechanical
equilibrium (with displacements as the primary unknowns) and
viscous evolution of the order parameters. In the conventional for-
mat, the problem is solved on the global level, simultaneously with
respect to all unknowns. In the case of more complex evolution
laws, the conventional solution procedure can be restrictive and
may not lead to computationally efficient formulations. A possible
remedy would be to shift the complexities from the global level to
the local one. This can be done straightforwardly by using the
micromorphic approach.

The main idea of the micromorphic approach, in line with
Forest (2009), lies in the introduction of additional degrees of free-
dom (of any type and tensorial order, depending on the context),
which are the micromorphic counterparts of selected internal vari-
ables. The coupling between the micromorphic variables and the
original ones is then provided via the penalty method. Following
this modification, the gradients of the original variables in the con-
stitutive equations are replaced by the gradients of their micro-
morphic counterparts. Accordingly, the original variables can be
viewed as local quantities and the corresponding governing equa-
tions can be solved at the local level, e.g. at each Gauss point in the
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finite-element setting. For a general description of the micromor-
phic approach the reader is referred to Forest (2009), see also
Forest (2016).

Due to its generality, the micromorphic approach can be
employed to virtually any gradient model, such as gradient plastic-
ity (Anand et al., 2012; Mazière and Forest, 2015) and crystal plas-
ticity (Aslan et al., 2011; Wulfinghoff and Böhlke, 2012; Ryś et al.,
2020), gradient-enhanced continuum damage (Dimitrijevic and
Hackl, 2008; Waffenschmidt et al., 2014; Poh and Sun, 2017),
and gradient-enhanced pseudoelasticity (Rezaee-Hajidehi and
Stupkiewicz, 2018; Rezaee-Hajidehi et al., 2020). Applications of
the micromorphic approach in the context of phase-field modeling
are scarce. It has been used by Miehe et al. (2016, 2017) to facilitate
the finite-element implementation of their phase-field model of
ductile fracture (coupled damage and plasticity). The micromor-
phic approach has been also employed by Di Leo et al. (2014) in
their Cahn–Hilliard-type phase-field model of species diffusion
coupled with large elastic deformations, with the aim to reduce a
fourth-order PDE to two second-order PDEs to be amenable to
finite-element discretization, see also Ubachs et al. (2004).

In this work, the micromorphic approach is applied to a finite-
strain phase-field model of multivariant martensitic phase trans-
formation in shape memory alloys. In the case of a viscous-type
evolution, for which the corresponding conventional phase-field
formulation has been developed by Rezaee-Hajidehi and
Stupkiewicz (2020), the micromorphic regularization is straight-
forward, however, it does not bring any computational advantages
with respect to the conventional formulation. On the other hand,
when rate-independent dissipation effects are accounted for, the
conventional formulation does not lead to a computationally effi-
cient finite-element implementation. Accordingly, the role of the
micromorphic regularization becomes particularly important, as
it allows to shift the complexities induced by the rate-
independent dissipation to the local level where they can be trea-
ted in an efficient and robust manner. Specifically, the augmented
Lagrangian method is used in this work to handle the non-
smoothness introduced by the rate-independent dissipation, and
it is shown that, in this context, the micromorphic formulation per-
forms much better than the conventional one.

The variational formulation employed in this work is derived
from the general incremental energy minimization framework. In
this approach, the solution of the evolution problem is found by
minimizing the incremental energy supplied to the system which
is equal to the sum of incremental free energy and dissipation com-
plemented by the increment of the external loading potential.
Starting from the conditions of stability in rate-independent plas-
ticity, the incremental energy minimization framework has been
developed by Henryk Petryk in a series of seminal papers
(Petryk, 1982, 1985, 1991, 1993, 2003), later extended, for
instance, to account for the interfacial energy effects (Petryk and
Stupkiewicz, 2010), including stability of evolving laminates
(Petryk and Stupkiewicz, 2012), and recently extended to non-
potential problems (Petryk, 2020). Other developments and appli-
cations of this general framework can be found in numerous works
(e.g., Ortiz and Repetto, 1999; Carstensen et al., 2002; Miehe et al.,
2004; Kružík et al., 2005; Miehe, 2011; Mielke and Roubíček,
2015). The incremental energy minimization framework has been
also employed in the context of the phase-field method. The corre-
sponding variational formulation adopted in this work is based on
that developed by Hildebrand and Miehe (2012), and later
extended to constrained evolution by Tůma et al. (2016) and to
mixed-type dissipation with rate-independent dissipation effects
by Tůma et al. (2018).

One of the beneficial features of the phase-field method is that
most of the material parameters involved in the model have a clear
physical interpretation and can be, at least in principle, determined
2

independently. On the other hand, parameters with a more phe-
nomenological nature (e.g., the mobility parameters) can be iden-
tified through small-scale testing, for instance, using nano-
indentation, which is considered as a model problem in this work.
The simulations are here limited to 2D problems which, despite the
related simplifications, may deliver valuable qualitative predic-
tions. As an example, the indentation size effect due to interfacial
energy effects has been studied in our recent work (Rezaee-
Hajidehi and Stupkiewicz, 2020). More realistic 3D phase-field
simulations of nano-indentation necessarily involve large-scale
simulations and are so far limited to the conventional formulation
with viscous dissipation (Tůma et al., 2021).

This paper is organized as follows. In Section 2, a simple proto-
type small-strain phase-field model and its micromorphic regular-
ization are presented in order to elucidate the structure of the
micromorphic formulation. A finite-strain multivariant extension
of the model is then presented in Section 3.1 and its micromorphic
regularization in Section 3.2. The model is based on the elastic
strain energy of Hencky type, double-obstacle potential, and pen-
alty regularization of the inequality constraints on the order
parameters. In Section 3.3, the model is extended to incorporate
a mixed-type dissipation, i.e. a combination of the viscous and
rate-independent dissipation contributions, as a result of which
the incremental minimization problem becomes non-smooth. To
treat the non-smoothness, an augmented Lagrangian formulation
is developed which leads to an equivalent smooth and uncon-
strained saddle-point problem, see Appendix A. The details of the
finite-element implementation are presented in Section 4. Finally,
illustrative 2D examples are presented in Section 5, where the
microstructure evolution during nano-indentation has been cho-
sen as a model problem. In particular, the computational benefits
delivered by the micromorphic regularization are highlighted for
a simple system with one order parameter, see Section 5.2, while
the physical aspects of the rate-independent dissipation are illus-
trated in Sections 5.3 and 5.4 for a multivariant transformation.
2. A prototype phase-field model

To illustrate the idea of the micromorphic regularization, let us
consider a possibly simple prototype model for a system involving
only two phases. The model is formulated in the small-strain set-
ting and includes a single non-conserved order parameter g, inter-
preted as the relative phase volume fraction, the evolution of
which is governed by the classical Ginzburg–Landau equation
(e.g., Penrose and Fife, 1990),
_g ¼ �m
dF
dg

;
dF
dg

¼ @F
@g

�r � @F
@rg

: ð1Þ
The superimposed dot denotes here the (material) time derivative,
m is the mobility parameter and dF=dg is the variational derivative
of the functional F of the total Helmholtz free energy of the density
F (to be specified later).

Following the variational approach of Hildebrand and Miehe
(2012), see also Miehe (2011); Tůma et al. (2016), we first formu-
late the governing equations of the conventional phase-field model
in the rate form, Section 2.1, and then develop its incremental
(time-discrete) version, Section 2.2. In Section 2.3, we introduce
the micromorphic approach (Forest, 2009; Forest, 2016) and
develop the micromorphic regularization of the conventional
model. This set of prototype models lays the ground for the subse-
quent development of the model to more complex scenarios.
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2.1. Variational formulation of the rate-problem

In the case of transformation involving two phases, the phase
composition can be described by a single order parameter g such
that g ¼ 0 and g ¼ 1 correspond to the pure phases, and the inter-
mediate values correspond to diffuse interfaces. The complete sys-
tem is thus described by two continuous fields, the displacement
vector u and the scalar order parameter g, defined over the entire

body domain B. The strain tensor e ¼ rsu ¼ 1
2 ruþ ruð ÞT
� �

is

additively split into the elastic part ee and the transformation part
et, i.e. e ¼ ee þ et.

The Helmholtz free energy functional F is defined as the inte-
gral of the density F over domain B,

F u;g½ � ¼
Z

B
F rsu;g;rgð ÞdV ; ð2Þ

where F comprises the chemical energy Fchem, the elastic strain
energy Fel and the interfacial energy F int,

F e;g;rgð Þ ¼ Fchem gð Þ þ Fel e;gð Þ þ F int g;rgð Þ: ð3Þ

In the adopted notation, square brackets and parentheses are used
to distinguish the arguments of, respectively, functionals and
functions.

The chemical energy Fchem is defined as

Fchem gð Þ ¼ 1� gð ÞF0
1 þ gF0

2; ð4Þ
where the constants F0

1 and F0
2 represent the chemical energy of the

individual phases. The elastic strain energy is expressed as,

Fel e;gð Þ ¼ 1
2
e� et gð Þ� � � L e� et gð Þ� �

; ð5Þ

where the transformation strain et is obtained by averaging the
transformation strains of pure phases et1 and et2,
i.e. et gð Þ ¼ 1� gð Þet1 þ get2, and L represents the elastic stiffness ten-
sor, which is assumed constant. The interfacial energy Fint takes the
form of a double-well potential (Steinbach, 2009),

F int g;rgð Þ ¼ 6c
‘

g2 1� gð Þ2 þ ‘2

4
rg � rg

 !
; ð6Þ

where c represents the interfacial energy density (per unit area) and
‘ characterizes the thickness of the diffuse interface.

A global variational formulation will be now developed follow-
ing Hildebrand and Miehe (2012) and Tůma et al. (2016). To this
end, the potential energy functional E is defined as

E u;g½ � ¼ F u;g½ � þX u½ �; ð7Þ
where X is the potential of external loads (assumed conservative).
The global rate-potential is then formulated by adding the global
dissipation potential D to the rate-functional _E ¼ dE=dt,

P _u; _g;u;g½ � ¼ _E _u; _g;u;g½ � þ D _g½ �; ð8Þ

where the dissipation is here assumed to be of a purely viscous nat-
ure, i.e. the local dissipation potential D is quadratic in the rate of g,

D _g½ � ¼
Z

B
D _gð ÞdV ; D _gð Þ ¼ Dv _gð Þ ¼ 1

2m
_g2: ð9Þ

Finally, the complete evolution problem is expressed as the
minimization of the global rate-potential P with respect to _u
and _g,

_u; _gf g ¼ argmin
_u; _g

P _u; _g;u;g½ �: ð10Þ
3

Minimization of P with respect to _u reduces to the stationarity of _E
with respect to any kinematically admissible variation d _u, viz.

0 ¼ d _u
_E _u; _g;u;g½ � 8d _u; ð11Þ

which yields the weak form of mechanical equilibrium, i.e. the vir-
tual work principle. Note that the virtual work principle (11) is
actually formulated in terms of the displacement u rather than
velocity _u, since _E is linear in _u (Tůma et al., 2016). Stationarity of
P with respect to any admissible variation of _g leads to the evolu-
tion equation for g in weak form, which upon application of the
Gauss theorem gives the Ginzburg–Landau equation in the local
form (1) (Hildebrand and Miehe, 2012; Tůma et al., 2016).

2.2. Time-discrete formulation

The rate evolution problem described above is now reformu-
lated in a finite-step incremental setting. It is assumed that the
solution un;gnð Þ at the previous time step tn is known, and the
fields unþ1;gnþ1

� �
at the current time step tnþ1 ¼ tn þ s are to be

found. Hereinafter, for a concise notation, the subscript nþ 1
denoting the quantities at the current time step is removed.

Upon applying the backward Euler method, the global rate-
potential P, Eq. (8), at time tnþ1 is approximated as

P _u; _g;u;g½ � � 1
s

E u;g½ � � E un;gn½ �ð Þ þ D g� gnð Þ=s½ �: ð12Þ

Accordingly, referring to the rate problem (10), the minimization is
now performed with respect to u;gð Þ, which is written in the form
of the following incremental energy minimization problem,

u;gf g ¼ argmin
u;g

Ps u;g½ � ð13Þ

with the incremental potential Ps defined as

Ps u;g½ � ¼ E u;g½ � � E un;gn½ � þ Ds g½ �; ð14Þ
and with the time-discrete dissipation potential Ds defined in the
following form,

Ds g½ � ¼
Z
B
Ds gð ÞdV ;

Ds gð Þ ¼ sD g� gn

s

� �
¼ s

2m
g� gn

s

� �2
: ð15Þ

Stationarity of Ps with respect to u leads to the weak form of
mechanical equilibrium (virtual work principle). It is provisionally
assumed here that the potential of the external load is defined in
the form X u½ � ¼ �R

@Bt
t � udS, with t as the traction prescribed over

the boundary @Bt . Thus we have

0 ¼ duPs u;g½ � ¼
Z

B
r � rsdudV �

Z
@Bt

t � dudS 8du; ð16Þ

where r ¼ @F=@e is the stress tensor. Following the standard proce-
dure, the strong from of the mechanical equilibrium is recovered as

r � r ¼ 0 in B; rn ¼ t on @Bt ; ð17Þ
where n denotes the unit outward normal.

On the other hand, stationarity of Ps with respect to g leads to
the time-discrete evolution equation for g in the following weak
form,

0 ¼ dgPs u;g½ � ¼
Z

B

@F
@g

þ @Ds

@g

� �
dgþ @F

@rg � rdg
� �

dV 8dg:
ð18Þ

By applying the Gauss theorem and taking into account the homo-
geneous Neumann boundary condition rg � n ¼ 0 on the whole
boundary @B, the weak form (18) retrieves the local Ginzburg–Lan-
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dau equation (1) under the approximation _g � g� gnð Þ=s and with
dF=dg given by

dF
dg

¼ DF0 � r � Det þ 12c
‘

g 1� gð Þ 1� 2gð Þ � 3c‘r2g; ð19Þ

where DF0 ¼ F0
2 � F0

1 and Det ¼ et2 � et1. The time-discrete Ginzburg–
Landau equation is thus a PDE with the order parameter g as the
unknown, which is coupled with the displacement u through the
stress r in the driving force, Eq. (19).

2.3. Micromorphic regularization

The classical phase-field model presented above is now cast
in the context of the micromorphic framework (Forest, 2009,
2016). To this end, a new variable v, the micromorphic counter-
part of the order parameter g is introduced and the gradient rg
is replaced by rv. The coupling between g and v is then pro-
vided by an additional penalization term in the Helmholtz free
energy. Coupling the two fields using Lagrange multipliers could
be considered as an alternative approach (e.g., Scherer et al.,
2020), which, however, is not pursued here since the penalty-
based micromorphic approach performs satisfactorily, as shown
in Section 5.

With reference to Eq. (2), the Helmholtz free energy F is modi-
fied as,

F e;g;v;rvð Þ ¼ Fchem gð Þ þ Fel e;gð Þ þ F int g;rvð Þ þ Fl g;vð Þ: ð20Þ
The term Fl penalizes the difference between g and v,

Fl g;vð Þ ¼ 1
2
�l g� vð Þ2; ð21Þ

with the penalty parameter �l > 0. It is stressed that the interfacial
energy F int, given by Eq. (6), is now expressed in terms ofrv instead
of rg.

Next, the evolution problem (10) is reformulated in the micro-
morphic framework. We will skip the presentation of the rate-
problem and only formulate the problem in the incremental form.
In analogy to Eq. (13), we have

u;g;vf g ¼ argmin
u;g;v

Ps u;g;v½ �; ð22Þ

with the incremental potential Ps defined accordingly, see Eqs.
(14), (7) and (2).

However, as a result of the micromorphic regularization, the
Helmholtz free energy F, Eq. (20), depends only on g and not on
its gradient. Accordingly, g can be viewed as a local quantity, and
thus can be determined locally at each material point. The evolu-
tion of g is thus governed by the following local (pointwise) mini-
mization problem,

g ¼ argmin
g

ps e;g;v;rvð Þ; ð23Þ

where e;v and rv are fixed, and the local incremental potential ps

is expressed as

ps e;g;v;rvð Þ ¼ F e;g;v;rvð Þ � F en;gn;vn;rvn

� �þ Ds gð Þ: ð24Þ
The condition of stationarity of ps with respect to g yields the evo-
lution equation for g in the form of the Ginzburg–Landau equation
(1) with _g � g� gnð Þ=s and

dF
dg

¼ @F
@g

¼ DF0 � r � Det þ 12c
‘

g 1� gð Þ 1� 2gð Þ þ �l g� vð Þ: ð25Þ

It follows that, as a result of the micromorphic regularization,
the driving force for transformation involves now the term
4

�l g� vð Þ which replaces the term with the Laplacian of g in Eq.
(19). Accordingly, the minimization problem (23) can be solved
locally, which yields g as a function of e and v (note that g does
not explicitly depend on rv, cf. Eq. (25)). A reduced incremental
potential pred

s can thus be defined,

pred
s e;v;rvð Þ ¼ min

g
ps e;g;v;rvð Þ: ð26Þ

The global variables u and v are then governed by minimization of

the reduced global potential Pred
s ,

u;vf g ¼ argmin
u;v

Pred
s u;v½ �; ð27Þ

where

Pred
s u;v½ � ¼

Z
B
pred
s rsu;v;rvð ÞdV þ DX u½ �: ð28Þ

As in the case of the conventional phase-field model, minimiza-

tion of Pred
s with respect to the displacement field u leads to the

mechanical equilibrium, see Eqs. (16) and (17). Minimization of

Pred
s with respect to v yields the stationarity condition,

0 ¼ dvP
red
s u;v½ � ¼

Z
B
3c‘rv � rdv� �l g� vð Þdv� �

dV 8dv;
ð29Þ

which is a weak form of the following Helmholtz-type PDE,

v� ‘2lr2v ¼ g; ‘l ¼
ffiffiffiffiffiffiffiffi
3c‘
�l

s
; ð30Þ

with ‘l as a characteristic length-scale associated with the micro-
morphic regularization. Eq. (30) is supplemented by the homoge-
neous Neumann boundary condition rv � n ¼ 0 on the boundary
@B, which implies

R
BvdV ¼ R BgdV . The Helmholz-type PDE (30)

results in a natural way from the micromorphic approach (Forest,
2009; Forest, 2016). It also appears in other contexts in which it is
postulated directly, e.g., in implicit-gradient damage models
(Peerlings et al., 1996), softening plasticity (Engelen et al., 2003),
and gradient-enhanced crystal plasticity (Stupkiewicz and Petryk,
2016).

Eq. (30) indicates that the term �l g� vð Þ in Eq. (25) is equal to

and thus can be substituted by�3c‘r2v. Given that �l is adequately
large (so thatrg � rv), the incremental governing equation forg in
the original phase-field model, Eq. (19), is then recovered.
3. A finite-deformation phase-field model for multiphase
systems

The prototype phase-field model presented in Section 2 is
extended here, within the finite-deformation framework, to a sys-
tem with N þ 1 phases. A conventional model is presented in Sec-
tion 3.1, and its micromorphic version is then introduced in
Section 3.2. In Section 3.3, the dissipation potential is extended
to incorporate both viscous and rate-independent dissipation
contributions.

3.1. Conventional phase-field model

In this section, we briefly summarize the model developed
recently by Rezaee-Hajidehi and Stupkiewicz (2020). The model
possesses N þ 1 order parameters gi, representing the austenite
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and N variants of martensite. The following inequality and sum-to-
unity constraints are imposed on the order parameters,

0 6 gi i ¼ 0; . . . ;Nð Þ and
XN
i¼0

gi ¼ 1: ð31Þ

The kinematic description is based on the multiplicative split of
the deformation gradient F into the elastic part Fe and the transfor-
mation part Ft,

F ¼ FeFt; F ¼ ru ¼ Iþru; ð32Þ
where r represents the spatial gradient with respect to the refer-
ence configuration, u represents the deformation mapping from
the reference to the current configuration, and I is the second-
order identity tensor. The transformation part Ft is defined as a lin-
ear combination of the transformation stretch (Bain) tensors Ut

i ,

Ft gð Þ ¼
XN
i¼0

giU
t
i ; g ¼ g0;g1; . . . ;gNf g; ð33Þ

where Ut
i are calculated from the crystallographic lattice parame-

ters. We assume the undeformed austenite as the reference state,
thus Ft ¼ Ut

0 ¼ I for a pure austenitic state, i.e. for g0 ¼ 1.
In analogy to Eq. (2), the Helmholtz free energy function is now

defined as

F F;g;rgð Þ ¼ Fchem gð Þ þ Fel F;gð Þ þ F int g;rgð Þ: ð34Þ
The chemical energy contribution in Eq. (34) is defined as a
weighted sum of the chemical energy of the pure phases F0

i , i.e.

Fchem gð Þ ¼
XN
i¼0

giF
0
i : ð35Þ

The elastic strain energy Fel is expressed as a quadratic function of

the Hencky (logarithmic) strain He ¼ 1
2 logCe, where Ce ¼ Feð ÞTFe is

the elastic right Cauchy-Green tensor and Fe ¼ F Ft� ��1
,

Fel F;gð Þ ¼ 1
2

detFt� �
He � L gð ÞHe; L gð Þ ¼

XN
i¼0

giLi; ð36Þ

with Li as the fourth-order elastic stiffness tensor of the phase i.
The interfacial energy F int is employed here in the form of the

so-called double-obstacle potential (Steinbach, 2009),

F int g;rgð Þ ¼
XN
i¼0

XN
j¼iþ1

4cij
p‘ij

gigj � ‘2ijrgi � rgj

� �
; ð37Þ

where cij and ‘ij denote, respectively, the interfacial energy density
and the interface thickness parameter associated with the diffuse
interface between the phases i and j.

The viscous-type dissipation potential is adopted in the follow-
ing form,

D _gð Þ ¼ Dv _gð Þ ¼
XN
i¼0

_g2
i

2mi
; ð38Þ

with mi as the mobility parameter associated with the phase i. The
effective mobility of the interface separating the phases i and j is
equal to mij ¼ mimj= mi þmj

� �
(Rezaee-Hajidehi and Stupkiewicz,

2020).
The evolution problem is formulated next by following the vari-

ational framework described in Section 2. Here, we only present
the incremental form of the evolution problem. In analogy to Eq.
(14), the global incremental potential is defined as

Ps u;g½ � ¼ E u;g½ � � E un;gn

	 
þDs g½ �; ð39Þ
5

where the potential energy functional E is specified as

E u;g½ � ¼ F u;g½ � þX u½ �; F u;g½ � ¼
Z

B
F ru;g;rgð ÞdV ; ð40Þ

and the global incremental dissipation potential Ds takes the form

Ds g½ � ¼
Z
B
Ds gð ÞdV ;

Ds gð Þ ¼ sD g� gn

s

� �
¼
XN
i¼0

s
2mi

gi � gi;n

s

� �2

: ð41Þ

Consequently, the evolution problem is formulated as the mini-
mization of the constrained global incremental potential PD

s with
respect to the fields u and g, viz.

u;gf g ¼ argmin
u;g

PD
s u;g½ �; PD

s u;g½ � ¼ Ps u;g½ � þ ID g½ �; ð42Þ

where the functional ID imposes the physical constraints on the
order parameters, see Eq. (31),

ID g½ � ¼
Z

B
ID gð ÞdV ; ID gð Þ ¼ 0 g 2 DN;

þ1 otherwise:

(
ð43Þ

and ID is the indicator function of the admissible set DN (N-simplex),

DN ¼ g 2 RNþ1 : 0 6 gi;
XN
i¼0

gi ¼ 1

( )
: ð44Þ

In the computer implementation, the inequality constraints intro-
duced here through ID are regularized using the penalty method,
see Section 4.1.

3.2. Micromorphic regularization

Following the general scheme presented in Section 2.3, a micro-
morphic extension of the model presented above will now be
developed. Micromorphic variables v ¼ v0;v1; . . . ;vN

� �
are thus

introduced, which are one-by-one coupled to the order parameters
g ¼ g0;g1; . . . ;gNf g. Accordingly, the Helmholtz free energy in Eq.
(34) is modified as

F F;g;v;rvð Þ ¼ Fchem gð Þ þ Fel F;gð Þ þ F int g;rvð Þ þ Fl g;vð Þ: ð45Þ
With reference to Eq. (21), the micromorphic energy term Fl is
adopted in the following form

Fl g;vð Þ ¼
XN
i¼0

1
2
�l;i gi � vi

� �2
; ð46Þ

where parameter �l;i is assigned to penalize the difference between
gi and vi.

With this modification, the incremental energy minimization
problem analogous to that in Eq. (42) can now be formulated. This
is omitted here for brevity. As discussed in Section 2.3, upon the
micromorphic regularization, the order parameters g are treated
as local quantities and are solved through a local minimization
problem. We thus introduce the local incremental potential ps,

ps F;g;v;rvð Þ ¼ F F;g;v;rvð Þ � F Fn;gn;vn;rvn

� �þ Ds gð Þ: ð47Þ
In order to account for the physical constraints on the order param-
eters g, the indicator function ID is added to the local potential ps

thus yielding the local constrained incremental potential pD
s ,

pD
s F;g;v;rvð Þ ¼ ps F;g;v;rvð Þ þ ID gð Þ: ð48Þ

For given F;v and rv, the following local constrained minimization
problem is solved for the local order parameters g,
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g ¼ argmin
g

pD
s F;g;v;rvð Þ; ð49Þ

which leads to the local reduced potential pD;red
s ,

pD;red
s F;v;rvð Þ ¼ min

g
pD
s F;g;v;rvð Þ: ð50Þ

Consequently, the global evolution problem is governed by the

minimization of the global reduced potential PD;red
s with respect to

the fields of u and v,

u;vf g ¼ argmin
u;v

PD;red
s u;v½ �; ð51Þ

where

PD;red
s u;v½ � ¼

Z
B
pD;red
s ru;v;rvð ÞdV þ DX u½ �: ð52Þ

As before, stationarity of PD;red
s with respect to u implies mechani-

cal equilibrium and stationarity with respect to v results in a PDE
that links the micromorphic variables v with the local order param-
eters g, Eq. (30).

3.3. Inclusion of rate-independent dissipation

Up to now, only the viscous dissipation has been considered.
Here, we extend the model to account for the rate-independent
dissipation effects. The corresponding mixed-type dissipation
potential reads

D _gð Þ ¼ Dv _gð Þ þ Din _gð Þ; ð53Þ
where Dv represents the viscous contribution and takes the form

(38), while the rate-independent contribution Din is defined as

Din _gð Þ ¼ k _gkD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_g � D _g

q
; D ¼ diag j2

0;j
2
1; . . . ;j

2
N

� �
: ð54Þ

In Eq. (54), k _gkD represents the elliptic norm of _g with respect to D,
a symmetric positive-definite matrix composed of the material
parameters ji > 0, where ji characterizes the rate-independent
threshold for the driving force associated with the order parameter
gi. Considering an interface between the phases i and j, while no
other phases coexist, the rate-independent dissipation takes the

form Din ¼ jijj _gij, in view of gi ¼ 1� gj and thus _gi ¼ � _gj, where
the effective rate-independent threshold jij is equal to

jij ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j2

i þ j2
j

q
.

In the case of the viscous dissipation, the transformation is trig-
gered by a vanishingly small driving force, see the related classical
Ginzburg–Landau equation (1). The mixed-type dissipation of the
form (53) introduces a rate-independent threshold on the driving
force that must be overcome to trigger the transformation. Once
the threshold is exceeded, the response is rate dependent (in some
sense, similar to the Perzyna-type overstress viscoplasticity).

Upon time-discretization, the mixed-type dissipation potential
is transformed to

Ds gð Þ ¼ Dv
s gð Þ þ Din

s gð Þ; Din
s gð Þ ¼ kDgkD ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Dg � DDg

p
; ð55Þ

where the viscous part Dv
s takes the form as in Eq. (41)2 and

Dg ¼ g� gn.
The incremental dissipation potential Ds of the form (55) can

now be used instead of the viscous dissipation potential (41)2 in
the global minimization problem (42) of the conventional phase-
field model and in the local minimization problem (49) of the
micromorphic model, while the general structure of the incremen-
tal energy minimization framework remains intact. However,
inclusion of the rate-independent dissipation renders the
minimization problems (42) and (49) non-smooth, due to the
6

non-differentiability of Din
s at Dg ¼ 0. To address this issue, the

augmented Lagrangian technique is employed in this work, see
Section 4.2.

A phase-field model with a mixed-type dissipation of the gen-
eral form (53) has been developed by Tůma et al., 2018 for the case
of two phases (one order parameter). The dissipation potential
(53)–(54) is an extension of that model to the case of multivariant
transformation. While the extension itself is straightforward, its
computational treatment is by far more involved. In particular, as
shown later, the micromorphic formulation of the phase-field
model is highly beneficial when it comes to computer
implementation.

4. Finite-element implementation

The two main issues in the finite-element implementation of
the presented models are the enforcement of the inequality con-
straints on the order parameters and the treatment of the non-
smooth minimization as a result of including the rate-
independent dissipation. These are addressed here by employing,
respectively, the standard penalty regularization (Section 4.1)
and the augmented Lagrangian technique (Section 4.2). For con-
ciseness, the respective details are presented for the micromorphic
model only, since the respective formulations for the conventional
phase-field model follow a similar procedure. The solution proce-
dure and the computer implementation in the finite-element
method are commented in Sections 4.3 and 4.4, respectively.

4.1. Penalty regularization

In the computer implementation, the order parameter g0 corre-
sponding to the austenite phase is considered as a dependent vari-
able. In view of the sum-to-unity constraint, Eq. (31)2, g0 is simply
defined as a function of the other order parameters, i.e.

g0 ¼ g0 ĝð Þ ¼ 1�
XN
i¼1

gi; g ¼ g ĝð Þ; ĝ ¼ g1; . . . ;gNf g; ð56Þ

with ĝ denoting the vector of condensed order parameters. In a sim-
ilar way, the micromorphic variable v0 is defined as

v0 ¼ v0 v̂ð Þ ¼ 1�PN
i¼1vi and thus v ¼ v v̂ð Þ, where v̂ ¼ v1; . . . ;vN

� �
.

Accordingly, the local incremental potential, Eq. (47), is expressed
in terms of the condensed variables ĝ and v̂ as

p̂s F; ĝ; v̂;rv̂ð Þ ¼ ps F;g ĝð Þ;v v̂ð Þ;rv rv̂ð Þð Þ: ð57Þ
The penalty regularization of the inequality constraints gi P 0

is now performed by replacing the indicator function ID in the
incremental potential pD

s , see Eq. (48), by the respective penalty
term IpenD ,

IpenD ¼
XN
i¼0

1
2
�ghgii2�; ð58Þ

thus yielding the regularized potential p̂pen
s ,

p̂pen
s F; ĝ; v̂;rv̂ð Þ ¼ p̂s F; ĝ; v̂;rv̂ð Þ þ IpenD ĝð Þ: ð59Þ

Here �g is the penalty regularization parameter, and the angular
bracket xi�



returns only the negative value of x,

i.e. xi� ¼ x� jxjð Þ=2

. The constrained minimization problem (49)

is thus transformed into an unconstrained problem,

ĝ ¼ argmin
ĝ

p̂pen
s F; ĝ; v̂;rv̂ð Þ: ð60Þ

The subsequent steps of the incremental energy minimization
scheme, in particular the minimization of the reduced global
potential, Eq. (51), are then executed as described in Section 3.2,
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except that the micromorphic variables v are replaced by the con-
densed variables v̂.

The results reported recently for 2D problems (Rezaee-Hajidehi
and Stupkiewicz, 2020) and for large-scale 3D problems (Tůma
et al., 2021), the latter obtained using an iterative multigrid solver,
indicate that the penalty method performs reasonably well in com-
bination with the double-obstacle potential. Specifically, the com-
putational efficiency is not seriously affected for sufficiently large
values of the penalty parameter �g that result in an insignificant
violation of the inequality constraints gi P 0.

4.2. Augmented Lagrangian technique

When the mixed-type dissipation is considered, the minimiza-
tion problem (60) is non-smooth and therefore requires a special
treatment on account of the rate-independent dissipation term

Din
s , see Eq. (55), in the incremental potential ps, see Eqs. (47)

and (57). The augmented Lagrangian technique has been employed
in this work as an efficient computational tool that transforms the
non-smooth minimization problem (60) to an equivalent smooth
saddle-point problem. To this end, a set of Lagrange multipliers
k̂ ¼ fk̂1; . . . ; k̂Ng is introduced and the following Lagrange function
is formulated,

L F; ĝ; v̂;rv̂; k̂
� �

¼ bF F; ĝ; v̂;rv̂ð Þ þ bDv
s ĝð Þ þ Lin ĝ; k̂

� �
þ IpenD ĝð Þ;

ð61Þ
in which the non-differentiable rate-independent dissipation termbDin
s ĝð Þ ¼ Din

s g ĝð Þð Þ in the incremental potential p̂s, see Eqs. (47),
(55) and (57), has been replaced by a continuously differentiable

function Lin, see Appendix A,

Linðĝ; k̂Þ ¼
k̂þ 1

2.DDĝ
� �

� Dĝ if kk̂augkD�1 6 1;

� 1
2. kk̂k2D�1 � 2kk̂augkD�1 þ 1
� �

otherwise;

8><>:
ð62Þ

where k̂aug ¼ k̂þ .DDĝ is the vector of augmented Lagrange multi-

pliers and . > 0 is a regularization parameter. Functions bF and bDv
s

in Eq. (61) correspond to the respective functions F and Dv
s with

the arguments g and v replaced by their condensed counterparts
ĝ and v̂, as in Eq. (57). Note that the constant term representing
the free energy at the previous time step has been discarded in
Eq. (61).

The solution of the local problem is now obtained by solving the
following smooth and unconstrained saddle-point problem,

fĝ; k̂g ¼ argmin
ĝ

max
k̂

L F; ĝ; v̂;rv̂; k̂
� �

: ð63Þ

Considering that the Lagrangian L is continuously differentiable,
the solution can be obtained by directly solving the stationarity
conditions, see Eq. (A.13), using the Newton method.

The condition of stationarity of L with respect to ĝ and k̂ can be
written in the following form,

Q g Eg ;hg
� � ¼ 0; Q g Eg ;hg

� � ¼ @~L Eg ;hg
� �
@hg

; ð64Þ

where the local unknowns have been gathered in the vector
hg ¼ fĝg ; k̂gg, and the local independent variables in the vector
Eg ¼ Fg ; v̂g ;rv̂g

� �
, so that L ¼ ~L Eg ;hg

� �
. Here, anticipating that in

the finite-element setting the local problem will be solved at
element Gauss points, the subscript g has been added as the
Gauss-point index.
7

The stationarity condition (64) is then solved using the Newton
method,

Dhj
g ¼ � @Q g

@hg

� ��1

Q g Eg ;h
j
g

� �
; hjþ1

g ¼ hj
g þ Dhj

g ; ð65Þ

where @Q g=@hg is the local tangent matrix and the iterative scheme
(with j denoting the iteration number) is repeated until conver-
gence is obtained. Recall that the Lagrangian L is continuously dif-
ferentiable and hence the residual Q g is a continuous function of hg .

The solution hg depends on the independent variables Eg ,
i.e. hg ¼ hg Eg

� �
, and the derivative of this implicit dependence is

needed to compute the global tangent matrix, see Section 4.3. This
derivative is obtained by taking the total derivative of the local
residual Q g Eg ;hg Eg

� �� � ¼ 0, Eq. (64), with respect to Eg , which
leads to (Michaleris et al., 1994; Korelc, 2009)

@hg

@Eg
¼ � @Q g

@hg

� ��1 @Q g

@Eg
: ð66Þ

It can be checked that rv̂g does not appear in the stationarity con-
dition (64), see Eq. (25) of the prototype model in Section 2.3, so
that the solution hg does not depend on rv̂g . Accordingly, rv̂g is
only formally included in Eg .

The beneficial feature of the augmented Lagrangian method is
that the solution of the saddle-point problem (63) does not depend
on the regularization parameter .. The value of . may affect the
convergence of the iterative Newton scheme (65), however, in
practice there is quite some freedom in choosing .with no consid-
erable impact on the performance of the computational scheme.
Such behaviour has been observed for the micromorphic formula-
tion in which the saddle-point problem is solved locally at each
Gauss point. For instance, in the case of one order parameter, the
value of . can be safely varied by several orders of magnitude.
On the other hand, in the case of the conventional formulation in
which the saddle-point problem is solved at the global level, see
Section 4.3.2, . turns out to have a narrower range of suitable
values.

Function Lin in Eq. (62) has been derived in Appendix A by gen-
eralizing the augmented Lagrangian treatment of the pure friction
problem following Alart and Curnier (1991), see also Pietrzak and
Curnier (1999). In a scalar case, which would correspond here to
a single order parameter, a similar approach has been employed
by Stupkiewicz and Petryk (2013) in the macroscopic model of
pseudoelasticity, where a single Lagrange multiplier has been used
to handle both the rate-independent dissipation and the bound
constraints on the martensite volume fraction, see also Tůma
et al. (2018) for the application of the method in a phase-field
model with the mixed-type dissipation. A generalization of this
approach to the case of multiple order parameters is not available,
and for this reason the inequality constraints in the present work
are regularized using the penalty method.
4.3. Finite-element discretization and solution procedure

The simulations are carried out in this work for two formula-
tions (conventional and micromorphic) and for two types of dissi-
pation (viscous and mixed-type), which gives the total of four
different models. The finite-element discretization and the related
solution procedure are briefly described below for the most com-
plex case of the micromorphic phase-field model with the
mixed-type dissipation. The remaining models are then com-
mented by pointing out the differences with respect to this case.
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4.3.1. Micromorphic model with the mixed-type dissipation
In the micromorphic formulation, the finite-element approxi-

mation is introduced for the global fields u and v̂, namely

uh ¼
X
i

N uð Þ
i ui; v̂h ¼

X
i

N vð Þ
i v̂i; ð67Þ

where ui and v̂i are the nodal quantities and N uð Þ
i and N vð Þ

i are the
corresponding basis functions. The global incremental potential

PD;red
s , Eq. (52), is then evaluated in terms of the discretized fields

uh and vh ¼ vh v̂h
� �

, which leads to the following discrete incremen-
tal potential,

Ph
s p;hð Þ ¼ PD;red

s uh;vh
	 


; ð68Þ
where p ¼ fpu;pvg is the global vector of unknowns with pu denot-
ing the global vector of nodal displacements ui ¼ ui � Xi and pv
denoting the global vector of nodal micromorphic variables v̂i. Fol-

lowing the standard approach, the discrete potential Ph
s is evalu-

ated by performing a numerical integration (Gauss quadrature)
over individual finite elements.

In Eq. (68), it is indicated that the discrete potentialPh
s depends

also on the vector h that collects all the local (Gauss-point) vari-
ables hg ¼ fĝg ; k̂gg, see Section 4.2. As described in Section 4.2,
the local variables implicitly depend on the global variables p, so
that we have h ¼ h pð Þ as the global counterpart of the local depen-
dence hg ¼ hg Eg

� �
since we have Eg ¼ Eg peð Þ, where pe denotes the

local vector of nodal unknowns that the Gauss-point variables Eg

depend on (Korelc, 2009).

The discrete potential Ph
s is minimized using the Newton

method. Stationarity of Ph
s with respect to p yields the global

residual,

R p;h pð Þð Þ ¼ 0; R p;hð Þ ¼ @Ph
s p;hð Þ
@p

; ð69Þ

which is solved using the following iterative scheme,

Dpk ¼ �K�1R pk;h pk
� �� �

; pkþ1 ¼ pk þ Dpk: ð70Þ
In Eq. (70), K denotes the global tangent matrix,

K ¼ @R
@p

þ @R
@h

@h
@p

¼ @R
@p

� @R
@h

@Q
@h

� ��1
@Q
@p

; ð71Þ

and the following implicit derivative has been taken into account,

@h
@p

¼ � @Q
@h

� ��1
@Q
@p

: ð72Þ

The above expression is obtained as the global counterpart of Eq.
(66) formulated here for the global residual Q p;hð Þ ¼ 0.

Concluding, the computational scheme described above leads to
a nested iterative-subiterative scheme, similar to that commonly
used in the classical elastoplasticity (Michaleris et al., 1994;
Korelc, 2009). The lower-level Newton scheme (65), which is
solved at the element Gauss points, results from the micromorphic
formulation introduced in Section 3.2 and corresponds to the local
minimization problem (60) which has been transformed to the
saddle-point problem (63) using the augmented Lagrangian
method. The upper-level Newton scheme (70) is solved on the glo-
bal level and corresponds to the minimization (51) of the reduced
global potential. The resulting coupled problem involving the dis-
placements and the micromorphic variables is solved in a mono-
lithic manner simultaneously with respect to all global
unknowns. Thanks to the micromorphic formulation, the complex-
ity, which is here related to the non-smooth rate-independent dis-
sipation contribution, is shifted to the local problem that can be
8

solved in an efficient and robust manner (here using the the aug-
mented Lagrangian method). Moreover, special techniques, such
as line search or substepping, can be additionally used at the
Gauss-point level to improve the robustness of the computational
scheme. This is facilitated by the micromorphic formulation, while
such techniques would be less efficient when applied at the global
level in the conventional formulation discussed below.

4.3.2. Conventional model with the mixed-type dissipation
The augmented Lagrangian treatment of the mixed-type dissi-

pation can also be applied in the case of the conventional formula-
tion. The non-smooth minimization problem (42) with the
incremental mixed-type dissipation potential (55) is then trans-
formed to a global saddle-point problem similar to that in Eq.
(63). Upon the finite-element discretization, the global problem
is thus formulated as the condition of stationarity of the corre-
sponding Lagrangian function with respect to the nodal displace-
ments, order parameters and Lagrange multipliers. This is in
contrast to the micromorphic formulation in which the Lagrange
multipliers are local unknowns. Recall that the number of Lagrange
multipliers is equal to the number of (condensed) order parame-
ters. Hence, in the case of a multivariant transformation (with mul-
tiple order parameters), the size of the problem increases
significantly for the conventional formulation.

According to our experience, the global formulation of the aug-
mented Lagrangian method is also significantly less robust com-
pared to the local one that results from the micromorphic
formulation. This manifests itself in a strong sensitivity of the con-
vergence behaviour to the value of the regularization parameter .
and severe convergence issues in the case of a multivariant
transformation.

Due to the above drawbacks of the conventional formulation, its
applications reported in this paper are limited to the case of a sin-
gle order parameter, see Section 5.2. The corresponding conven-
tional model is similar to that developed by Tůma et al. (2018)
for the case of a single order parameter and a single Lagrange
multiplier, where the latter was also used to handle the bound
constraints on the order parameter (0 6 g 6 1), see Stupkiewicz
and Petryk (2013) for the details of the respective augmented
Lagrangian treatment.

4.3.3. Micromorphic model with the viscous dissipation
In the case of the viscous dissipation, the micromorphic formu-

lation leads to a nested iterative-subiterative Newton scheme, as in
the case of the mixed-type dissipation, Section 4.3.1. However, this
time, the local problem does not require any special treatment and
simply amounts to solving nonlinear equations that express the
condition of stationarity of the local incremental potential (59)
with respect to the local order parameters. At the same time, the
global problem is solved with respect to the nodal displacements
and micromorphic variables, as outlined in Section 4.3.1.

Note that, in the case of the viscous dissipation, the micromor-
phic formulation does not bring any benefit with respect to the
conventional formulation which is straightforward and the corre-
sponding computational scheme behaves well. This case is thus
considered for completeness only.

4.3.4. Conventional model with the viscous dissipation
In this case, the finite-element discretization and the solution

procedure are straightforward. Upon the penalty regularization,
as described in Section 4.1, the global incremental potential (42)
is directly evaluated in terms of the global unknowns representing
the nodal displacements and order parameters, and the Newton
method is applied to solve the global equations resulting from
the respective stationarity condition. The corresponding model is
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the same as that introduced in our recent work (Rezaee-Hajidehi
and Stupkiewicz, 2020), see also Tůma et al. (2021).
4.4. Details of the finite-element implementation

The spatial discretization of the body domain B is carried out by
using the standard four-noded quadrilateral finite elements and
the piecewise-bilinear basis functions are employed for all the
fields. The global residual vector and the corresponding global tan-
gent matrix required in the Newton method are evaluated and
assembled efficiently using the automatic differentiation (AD)
technique and the symbolic code generation tool AceGen (Korelc
and Wriggers, 2016). To perform the finite-element simulations,
the resulting computer codes are then incorporated into the
finite-element environment AceFEM, which is closely interfaced
with AceGen. An adaptive time-stepping strategy is employed in
the simulations in order to adjust the size of the current time step
based on the number of Newton iterations needed to converge to
the solution at the previous time step. The direct MKL PARDISO sol-
ver is employed to solve the linear system of equations at each
Newton iteration. All the computations are conducted on a 12-
core workstation equipped with Intel i9-10920X CPU and 128 GB
RAM.

A closed-form representation of the matrix logarithm along
with an exact and computationally efficient derivation of its first
and second derivatives are facilitated by AceGen (Hudobivnik and
Korelc, 2016). On account of this, evaluation of the Hencky strain,
see Eq. (36), and its derivatives are done in a straightforward
manner.

In the conventional formulation, spurious stresses may develop
within the diffuse interfaces due to an inconsistent approximation
of the deformation gradient F ¼ ru and its transformation part Ft.
To circumvent this, Ft is then assumed constant within each ele-
ment and is evaluated at the center of the element, see Tůma
et al. (2016). In the micromorphic formulation, such an inconsis-
tency is much weaker and the related treatment is not needed.

In the numerical studies presented in Section 5, the external
load (indentation) is exerted on the body through a frictionless
contact interaction with a rigid circular indenter. The contact con-
straint, i.e. the impenetrability condition, is enforced by using the
standard penalty method (Wriggers, 2006).
Fig. 1. Geometry and boundary conditions of the 2D nano-indentation problem.
5. Illustrative numerical examples

5.1. Problem setup

In this section, we report the results of numerical studies car-
ried out using the micromorphic phase-field model presented in
Section 3.2. Microstructure evolution during nano-indentation
has been chosen as a model problem. The first study concerns
the computational efficiency of the micromorphic model as com-
pared to the conventional one. For this purpose, the computational
performance is tested for a simple system with two phases
(austenite and a single variant of martensite). In the second study,
we consider the problem examined in our recent work (Rezaee-
Hajidehi and Stupkiewicz, 2020), where the microstructure evolu-
tion and the related pseudoelastic response were studied for a sys-
tem with 5 phases (austenite and 4 variants of martensite), and
show the impact of the rate-independent dissipation contribution
on the simulation results. In the last study, we extend the setup
of the second example and investigate further the effect of the
rate-independent dissipation on the martensite microstructure
relaxation and on the subsequent microstructure rearrangement
during the indentation loading–unloading cycle.
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Fig. 1 depicts the sketch of the 2D plane-strain nano-
indentation problem. The simulations are performed for a rectan-
gular computational domain with dimensions W � H discretized
by a uniform mesh of quadrilateral elements of the size h. The
loading is applied at the top boundary by the frictionless contact
with a rigid circular indenter of the radius R, up to the maximum
indentation depth dmax, followed by the withdrawal of the indenter
to its initial position. The displacement of the indenter is pre-
scribed at a constant speed of v ¼ 5 nm/s during the loading–un-
loading cycle. The vertical displacement is constrained at the
bottom boundary and the horizontal displacement is constrained
at the lateral boundaries. The details of the problem setup are pro-
vided in Table 1.

The material parameters adopted in the simulations are as fol-
lows (unless stated otherwise). The interfacial energy densities
that characterize the austenite–martensite and martensite–
martensite interfaces are adopted as c0i ¼ cam ¼ 0:4 J/m2 and
cij ¼ cmm ¼ 0:2 J/m2, respectively, see Section 4.1 in Rezaee-
Hajidehi and Stupkiewicz (2020) for the discussion regarding the
justification of the choice of cam and cmm. It is assumed that all
austenite–martensite and martensite–martensite diffuse interfaces
possess the same theoretical thickness with the thickness parame-
ter ‘ij ¼ ‘ ¼ 4 nm so that the theoretical equilibrium interface
thickness is equal to p‘ � 12:5 nm, see Appendix A in Tůma et al.
(2018). In order to maintain the austenite as the stable phase in
stress-free conditions, the chemical energy of transformation is
taken as DF0 ¼ F0

m � F0
a ¼ 10 MPa, where F0

0 ¼ F0
a and F0

i ¼ F0
m are

the respective values for the austenite and for the martensite vari-
ants. An anisotropic elastic stiffness tensor of cubic symmetry is
considered for all phases, and the elastic constants of a CuAlNi sin-
gle crystal have been used, i.e. c11 ¼ 142 GPa, c12 ¼ 126 GPa and
c44 ¼ 96 GPa (Suezawa and Sumino, 1976). The same mobility
parameter is set for all phases, namely mi ¼ m ¼ 1 (MPa s)�1. The
penalty regularization parameter �g ¼ 103 GPa is adopted as a
result of the trade-off between the violation of the inequality con-
straints gi P 0 and the computational efficiency. Finally, the regu-
larization parameter involved in the augmented Lagrangian
treatment of the rate-independent dissipation is selected as
. ¼ 100 GPa.
5.2. Numerical study #1: micromorphic vs. conventional phase-field
model

The aim of the first study is to compare the computational per-
formance of the micromorphic phase-field model with the conven-
tional one (in the sequel, referred to as ‘lPF’ and ‘PF’, respectively)
for a possibly simple problem for which both models perform sat-



Table 1
Details of the problem setup for different numerical studies.

W � H [nm2] R [nm] dmax [nm] h [nm]

Numerical study #1 1500� 750 50 50 1.8
Numerical study #2 1000� 1000 50 30 1.8
Numerical study #3 1000� 1000 150 30 1.5
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isfactorily. Accordingly, simulations are carried out using both
models for a system with a single order parameter in two scenar-
ios, namely for the purely viscous dissipation and for the mixed-
type dissipation. In the case of the viscous dissipation, implemen-
tation of the conventional formulation is straightforward, hence
there is no need of employing the micromorphic regularization
(and no related benefit is expected). The corresponding lPF model
is included in this study for completeness and to show that the
micromorphic formulation behaves well also in this case. In the
case of the mixed-type dissipation, the results reported below
clearly highlight the computational benefits delivered by the
micromorphic formulation. A comparison of the two formulations
for a more general case of several order parameters is not reported
here for the reasons explained at the end of this subsection.

In this study, we consider a computational domain of
W � H ¼ 1500� 750 nm2, and the element size is h ¼ 1:8 nm.
The element size has been adopted such that the diffuse interfaces
can be properly resolved by the finite-element mesh (recall that
the theoretical interface thickness is 12.5 nm). In the actual com-
putations, only one half of the domain is computed, with the
proper boundary conditions imposed on the symmetry axis. This
results in 168 000 elements and approximately 505600 degrees
of freedom. Note that in the case of the PF model with the
mixed-type dissipation, the Lagrange multipliers constitute the
global unknowns, in addition to the nodal displacements and order
parameters. Accordingly, the corresponding number of degrees of
freedom reaches approximately 674 500. The radius of the inden-
ter is selected as R ¼ 50 nm and the maximum indentation depth
is prescribed as dmax ¼ 50 nm. For the simulations with the
mixed-type dissipation, the rate-independent thresholds are
adopted as ji ¼ j ¼ 10 MPa.

The square-to-rectangle martensitic transformation addressed
here is described by the following transformation stretch
tensor,

Ut
1 ¼ a 0

0 b

� �
; ð73Þ
Fig. 2. Numerical study #1: (a) microstructure at the maximum indentation depth d ¼ 5
and the diffuse interface in the vicinity of the indenter, and (c) the P–d responses.
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where the stretch parameters a ¼ 1:05 and b ¼ 0:95 are adopted
such that the transformation is associated with a negligible volume
change, typical for shape memory alloys. According to the crystallo-
graphic theory of martensite (Bhattacharya, 2003), the austenite–
martensite interface in this case is oriented at approximately �45�.

Fig. 2(a) shows a snapshot of the microstructure evolution (rep-
resented by the volume fraction of martensite g ¼ g1) at the max-
imum indentation depth d ¼ 50 nm for the case with the viscous
dissipation. It has been observed that the inclusion of the rate-
independent dissipation does not cause a qualitatively different
microstructure evolution, as only the size of the transformed
domain is slightly smaller, and some minor changes are noticeable
at the end of the reverse transformation (not shown here). These
small differences are also reflected in the indentation load–depth
(P–d) response, Fig. 2(c). In particular, the nucleation event associ-
ated with the transformation onset is delayed and a larger hystere-
sis loop is observed in the case of the mixed-type dissipation.

Before discussing the computational performance, we first eval-
uate the error induced by the micromorphic regularization. To
illustrate this, we consider the case of the purely viscous dissipa-
tion and examine the difference between the volume fraction g
and its micromorphic counterpart v at the maximum indentation
depth d ¼ 50 nm for different values of the micromorphic penalty
parameter �l, namely for �l ¼ 1;2 and 5 GPa. The corresponding
distributions of g� v are shown in Fig. 3. It follows that within
the range of �l considered here, the difference between g and v
is not severe, and it is reduced as �l is increased. For instance,
the maximum value of the absolute difference jg� vj is obtained
equal to 0:11 and 0:03 for �l ¼ 1 GPa and �l ¼ 5 GPa, respectively.
Note that the effect of �l on the microstructure (the size and shape
of the transformed domain) and on the P–d response has been
found to be negligibly small. The corresponding results are thus
not provided here.

Fig. 4 summarizes the computational performance of the PF and
lPF models, with the latter examined for several values of the
micromorphic penalty parameter �l. It can be seen that, in the case
of the viscous dissipation, Fig. 4(a), the lPF model with moderate
0 nm for the case with the viscous dissipation, (b) a close-up of the deformed mesh



Fig. 4. Numerical study #1: comparison of the computational performance of the lPF model with the PF model for different values of the micromorphic penalty parameter �l
(given in GPa) in the case of (a) the viscous dissipation and (b) the mixed-type dissipation.

Fig. 3. Numerical study #1: distribution of the difference between g and v for different values of the micromorphic penalty parameter �l (viscous dissipation, d ¼ 50 nm). The
insets show an enlarged view of the interface.
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�l (say for �l 	 5 GPa) exhibits a level of robustness close to that of
the PF model. Recall that an adaptive time-stepping strategy is
employed in the computations, thus the total number of time steps
can be used as an indicator of the robustness of the computational
scheme. Concerning the linear-solver time, the performance of the
lPF model with moderate �l is similar to that of the PF model.
Regarding the assembly time, i.e. the time needed to assemble
the global residual vector and the global tangent matrix, the PF
model outperforms the lPF model for all �l. This is expected since,
unlike in the PF model, at each iteration in the lPF model, the local
problem (49) is solved at each Gauss point.

On the other hand, in the case of the mixed-type dissipation, the
lPF model outperforms the PF model in terms of the linear-solver
time for a wide range of �l between 1 and 10 GPa, and only for very
large �l ¼ 50 GPa the linear-solver time is visibly higher for the
lPF model. The reason is that the total number of unknowns for
the PF model, which additionally involves the Lagrange multipliers
as the global unknowns, is higher, and hence the increased linear-
solver time. It can be seen that for relatively small values of �l,
namely �l ¼ 1 and 2 GPa, the total CPU time (the sum of the
assembly and linear-solver times) is lower for the lPF model than
for the PF model.

In the analysis above, a simple case with only one order param-
eter has been considered in order to illustrate the main features of
the lPF model. We have also examined the computational perfor-
mance of the PF and lPF models for more complex cases of two
and four order parameters. The results, not reported here in detail,
show that, in the case of the viscous dissipation, PF and lPF models
perform nearly the same, and the general features reported above
apply also in the case of multiple order parameters. However, in
11
the case of the mixed-type dissipation, the computational perfor-
mance of the PF model was considerably weaker compared to
the corresponding lPF model. Firstly, since the Lagrange multipli-
ers are the global unknowns in the conventional formulation, the
computational cost of the linear solver increases significantly.
More importantly, severe convergence issues are encountered
when the rate-independent dissipation is included in the PF model.
In fact, the corresponding simulations could not be completed due
to the failure of the Newton scheme.

In conclusion, the results reported above and our supplemen-
tary computations demonstrate the superior performance of the
micromorphic formulation over the conventional one in the case
of a more complex evolution law, such as the one associated with
the mixed-type dissipation. The superiority is significantly more
pronounced in the case of multiple order parameters.
5.3. Numerical study #2: the effect of the rate-independent dissipation

The second study focuses on the physical aspects of the rate-
independent dissipation. For this purpose, we examine the effect
of the rate-independent threshold ji, see Eq. (54), on the
microstructure evolution during nano-indentation and on the
associated indentation load–depth response for a system with 5
phases, i.e. for the square-to-parallelogram transformation with 4
variants of martensite. As the baseline for the study, we consider
the case of the viscous dissipation, which has been previously stud-
ied by using the conventional phase-field model (Rezaee-Hajidehi
and Stupkiewicz, 2020). For consistency, the corresponding simu-
lation has been also performed here by using the presented micro-
morphic phase-field model. A related study, limited to only one
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order parameter, has been performed by Tůma et al. (2018), where
the effect of the rate-independent dissipation has been examined
for a pseudoelastic micro-pillar subjected to compression.

The computational domain is set to W � H ¼ 1000� 1000 nm2

and the element size to h ¼ 1:8 nm. In contrast to the previous
example, we do not impose the symmetry constraint so that the
simulations are performed for the entire computational domain.
Accordingly, the total number of elements is about 300000 result-
ing in the total number of degrees of freedom of approximately 1.8
million. The radius of the indenter is adopted as R ¼ 50 nm and the
maximum indentation depth is prescribed to dmax ¼ 30 nm.

Note that a spontaneous microstructure symmetry breakdown,
which may occur as an energy-lowering mechanism, has been
encountered for the system under study (Rezaee-Hajidehi and
Stupkiewicz, 2020).Hence, the symmetryof the setup isnot exploited
here. As it is discussed later, in a few cases investigated here, the
microstructure indeed develops in a non-symmetric manner.

The martensite variants associated with the square-to-
parallelogram transformation are characterized by the non-
symmetric transformation deformation tensors,

Ft
1 ¼ a �c

0 b

� �
; Ft

2 ¼ a c
0 b

� �
; Ft

3 ¼ b 0
�c b

� �
; Ft

4 ¼ b 0
c b

� �
;

ð74Þ
where the stretch parameters a ¼ 1:05 and b ¼ 0:95 are assumed as
in the previous example and the shear parameter c ¼ 0:05 is
adopted. Thereby, in analogy to Eq. (33), the transformation defor-
mation gradient is defined as Ft ¼ g0Iþ

PN
i¼1giF

t
i .

Simulations are carried out for different values of the rate-
independent threshold, namely ji ¼ j ¼ 2;5 and 10 MPa. Follow-
ing the computational study reported in Section 5.2, the micromor-
phic penalty parameter �l ¼ 5 GPa is adopted, see Figs. 3 and 4.
The other material and model parameters are the same as those
specified in Section 5.1.

Selected snapshots of the microstructure evolution along with
the P–d responses are depicted in Fig. 5. The microstructure is rep-
resented by the martensite variant domains of the volume fraction
gi P 0:5. Each martensite variant i, denoted by Vi, is recognized by
a specific color, while the remaining white space is occupied by the
austenite. It has been observed that in all cases the microstructure
Fig. 5. Numerical study #2: the effect of the rate-independent dissipat
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evolves in a qualitatively similar fashion. The transformation initi-
ates by a concurrent nucleation of all martensite variants, followed
by their subsequent growth in a symmetric manner. During
unloading, all the martensite variants shrink simultaneously, again
in a symmetric manner.

The effect of the rate-independent dissipation is qualitatively
similar to that briefly described in Section 5.2 for the case with
two phases, but here in a more pronounced way, with the maxi-
mum effect observed for j ¼ 10 MPa (the microstructure evolution
for j ¼ 2 and 5 MPa exhibits a similar, but weaker effect, and thus
is not shown in Fig. 5(a)). The first observation is that the area of
the hysteresis loop becomes larger as j increases, see Fig. 5(b).
At the same time, the forward transformation initiates and pro-
ceeds at a higher indentation load P. Accordingly, the size of the
transformed domain during loading is smaller compared to that
of the viscous dissipation at the same indentation depth d. The sit-
uation is more complex during unloading. At the beginning of
unloading, due to the viscous contribution in the dissipation poten-
tial, the transformed domain continues to grow in size, with the
largest growth observed for the viscous dissipation. An elastic
response is then observed for the mixed-type dissipation (although
this is not clearly visible in the P–d response). The extent of the
elastic response increases as j increases, and the reverse transfor-
mation initiates when the driving force overcomes the rate-
independent threshold. This is in contrast to the viscous dissipa-
tion, where the reverse transformation occurs with no intermedi-
ate purely elastic response. To better delineate these
observations, the evolution of the area of the transformed domain
is shown in Fig. 6. Interestingly, for a very high rate-independent
threshold j ¼ 20 MPa, an almost complete arrest of the reverse
transformation is observed during unloading.

It has been observed that for j ¼ 10 MPa, the indenter sepa-
rates from the contact surface during unloading at the indentation
depth of about d ¼ 8 nm. Approximately at this instant, two small
nuclei of variants V1 and V2 appear, see the arrows pointing
upward in Fig. 5(a) indicating the nucleation sites, and immedi-
ately vanish as the transformed domain shrinks further.

The effect of the indentation speed v has been also studied and
the results are presented in Fig. 7. Lower indentation speeds,
v ¼ 1:5 and 0.5 nm/s, have been examined, and the corresponding
ion on (a) the microstructure evolution and (b) the P–d response.



Fig. 6. Numerical study #2: time evolution of the area of the transformed domain.
The dashed line indicates the end of the loading stage.
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simulations have been carried out for the viscous dissipation and
for the mixed-type dissipation with j ¼ 5 MPa. The results show
that as v decreases, the area of the hysteresis loop decreases, such
that for the viscous dissipation the area tends to zero (except for
the initial nucleation event, which is only slightly dependent on
v). However, for the mixed-type dissipation, the area of the hys-
teresis loop approaches a finite value, which is controlled by the
rate-independent threshold j. Similar effects have been reported
by Tůma et al. (2018) and, in the case of the viscous dissipation,
by Rezaee-Hajidehi and Stupkiewicz (2020).

It is worthwhile to mention that the microstructure symmetry
breakdown has been observed in some cases, namely for the vis-
cous dissipation with v ¼ 1:5 and 0.5 nm/s and for the mixed-
type dissipation with v ¼ 0:5 nm/s. In fact, the sudden load rise,
which appears in the corresponding P–d responses during unload-
ing, is associated with the annihilation of the martensite variant
V2, see the inset in Fig. 7(b).

Finally, to illustrate the performance of the micromorphic for-
mulation, the difference between the order parameters g and their
micromorphic counterparts v, measured by the norm kg� vk, is
Fig. 7. Numerical study #2: the effect of the indentation speed v on the P–d response for
inset in panel (b) shows the non-symmetric microstructure at the final stage of unloadi
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depicted in Fig. 8. It shows that the difference is small, with the
maximum value of 0.023, which is consistent with that obtained
for the case with a single order parameter, see the snapshot related
to �l ¼ 5 GPa in Fig. 3. It can be observed that the difference is lar-
ger within the austenite–martensite interfaces compared to the
martensite–martensite interfaces, which is possibly related to a
higher interfacial energy of the austenite–martensite interfaces.
5.4. Numerical study #3: relaxation and rearrangement of self-
accommodated martensite

In the previous study, we have shown how the microstructure
evolution and the related pseudoelastic response are affected by
the rate-independent dissipation. With the aim to provide further
insights, in this study we extend the setup of the previous example
and apply the indentation load to a relaxed self-accommodated
martensite microstructure. In order to ensure that the martensite
is a stable phase in the stress-free conditions and the austenite
does not develop during the relaxation stage, the chemical energy
of transformation is set to a negative value, DF0 ¼ �20 MPa. The
initial state of the system is then generated by a random distribu-
tion of the order parameters gi within the entire computational
domain. Specifically, each random assignment of the Gauss-point
values corresponds either to 0:4 6 g1 6 0:6 (with g2 ¼ 1� g1) or
to 0:4 6 g3 6 0:6 (with g4 ¼ 1� g3), while g0 ¼ 0 everywhere.
Note that the same initial random seed has been used in all the
computations. The microstructure is then allowed to evolve in time
(with no external loading applied) until a relaxed (steady-state)
microstructure is reached. Subsequently, the resulting relaxed
self-accommodated microstructure is subjected to an indentation
loading–unloading cycle.

The procedure described above is roughly equivalent to a very
quick cooling of the system below the transformation temperature.
Although the extension of the model to the thermomechanically
coupled case is rather straightforward, such an extension is not
attempted here and the (uniform) temperature is controlled
implicitly by varying the chemical energy.

To allow formation of fine microstructures (especially at the
early stage of the relaxation when the microstructure evolves from
the initial random state), the interfaces are chosen to be thinner.
Accordingly, the interface thickness parameter is reduced by one
(a) the viscous dissipation and (b) the mixed-type dissipation with j ¼ 5 MPa. The
ng for v ¼ 0:5 nm/s.



Fig. 8. Numerical study #2: distribution of the difference between g and v,
measured by kg� vk, at the indentation depth d ¼ 30 nm (mixed-type dissipation,
j ¼ 5 MPa).
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half, i.e. ‘ij ¼ ‘ ¼ 2 nm (and thus the theoretical interface thickness
is equal to p‘ � 6:3 nm). To gain a sufficient resolution of the inter-
faces, the element size is set to h ¼ 1:5 nm, which leads to the total
number of elements of approximately 445000 and the total num-
ber of degrees of freedom of approximately 2.7 million. A bigger
indenter with the radius R ¼ 150 nm is considered, so that, as it
is shown below, the microstructure rearrangement during the
indentation cycle extends over a larger portion of the
microstructure.

During the relaxation process, the microstructure evolves until
a steady state is achieved. Note that the local driving forces for
transformation are not necessarily equal to zero in the steady state,
but further microstructure evolution is stopped due to the thresh-
old on the driving force that results from the rate-independent dis-
sipation. The variation of the total elastic strain energy
F el ¼

R
BFeldV and the total interfacial energy F int ¼

R
BF intdV dur-

ing the relaxation stage are illustrated in Fig. 9(a) where the sum
of the two contributions, F el þF int, as well as F el alone are shown
(note that the chemical energy Fchem is constant and is not included
in the figure).

At the beginning, the interfacial energy is at its highest value,
whereas the elastic strain energy is relatively small. As time pro-
gresses, the microstructure coarsens and hence the interfacial
energy decreases significantly at the cost of a rapid increase of
the elastic strain energy. Henceforth, while descending gradually,
Fig. 9. Numerical study #3: (a) variation of the sum F el þ F int (solid lines) and F el (da
indentation. The energy contributions are normalized by the initial value of F el þF int . Th
which the indentation load is applied.
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both energy contributions tend towards a constant value. The
effect of the rate-independent threshold j is reflected on the level
of coarsening of the microstructure during relaxation. It can be
seen that, as j decreases, the relaxed microstructure becomes
coarser, see the corresponding snapshots in Fig. 10, and thus it
takes a longer physical time for the system to achieve the steady
state.

Note that the computational cost varies depending on the value
of the rate-independent threshold j. For the lowest j ¼ 2 MPa,
which was the most computationally demanding case, the relax-
ation process took nearly 96 hours, as compared to about 39 hours
for j ¼ 10 MPa.

Fig. 10 depicts the microstructure rearrangement during the
indentation loading–unloading cycle. It can be seen that, as
expected, the microstructure rearrangement mainly takes place
in the area close to the indenter, while only some minor changes
are noted at the bottom part of the domain. The overall pattern
of the final microstructure (in terms of the distribution and shape
of the martensite variants) is qualitatively similar in all cases, see
the snapshots corresponding to d ¼ 30 nm in Fig. 10, and does
not really resemble that observed in the previous example, see
Fig. 5. Although the microstructure changes slightly during unload-
ing, the response is mostly elastic. In all cases, around the indenta-
tion depth of d ¼ 22 nm during unloading, the indenter is
separated from the contact surface (the corresponding snapshots
are denoted as P ¼ 0 in Fig. 10), and as time advances, no further
appreciable change in the microstructure is observed.

A number of distinct events, e.g. in the form of a sudden load
drop, are apparent in the indentation P–d responses, see Fig. 9(b).
These events typically reflect prominent changes of the
microstructure during the rearrangement. It is also evident that
the dependence of the P–d response on j does not follow a consis-
tent trend. This is related to the fact that the relaxed microstruc-
tures are significantly different for each j, and the subsequent
microstructure rearrangement is accompanied by events with
qualitatively different features.

To illustrate the effect of the rate-independent threshold j on
the P–d response, we have performed an additional study in which
the same relaxed microstructure (the coarsest one, obtained for
j ¼ 2 MPa) is used for all simulations. The corresponding results
are presented in Fig. 11. It follows that, except for some marginal
shed lines) over time during the relaxation stage and (b) the P–d response during
e circles in panel (a) indicate the instant at which the steady state is achieved, after



Fig. 11. Numerical study #3: the effect of j on the microstructure rearrangement (a) and the P–d response (b) when indentation is performed for the same initial relaxed
microstructure. For the color coding of the martensite variants, see the legend in Fig. 10.

Fig. 10. Numerical study #3: the effect of the rate-independent threshold j on the relaxed microstructure and the indentation-induced microstructure rearrangement.
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changes, the microstructure at the maximum indentation depth
d ¼ 30 nm is essentially the same for all j. At the same time, the
same sequence of events is observed in all P–d responses. It can
also be seen that, as j increases, the microstructure rearrangement
proceeds at a higher load P, similar to what has been observed in
the previous study, see Fig. 5.

The full transformation cycle is accomplished by inducing the
reverse transformation to the austenite via heating. Here, the tem-
perature is implicitly controlled by increasing the chemical energy
of transformation to DF0 ¼ 200 MPa. Subsequently, the system is
15
allowed to evolve in time. Note that a large value of DF0, which
is equivalent to severe overheating, is needed in order to overcome
the transformation barrier of the double-obstacle potential and
thus to initiate the reverse transformation. The full transformation
cycle for the case with j ¼ 5 MPa is illustrated in Fig. 12. During
the heating-up process, the nucleation of the austenite occurs at
several places, and eventually the stress-free austenite state is
recovered. Note that the reverse transformation is completed in a
relatively short time, as a result of the severe overheating and
the related high driving force for transformation.



Fig. 12. Numerical study #3: the full transformation cycle for j ¼ 5 MPa. The white areas in snapshot 1 represent the diffuse interfaces between the martensite variants,
while those in snapshops 11 and 12 represent the austenite. For the color coding of the martensite variants, see the legend in Fig. 10.
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6. Conclusion

We have employed the micromorphic approach to reformulate
the phase-field model of multivariant martensitic transformation
such that the microstructure evolution equations can be solved
locally at each material point. This is in contrast to the conven-
tional formulation in which microstructure evolution is governed
by partial differential equations that must be solved on the global
level. The micromorphic formulation is computationally beneficial,
for instance, when the evolution equations are more complex than
those corresponding to the simple and commonly used viscous dis-
sipation. The complexity is thereby shifted to the local level where
it can be handled in a more efficient and robust manner.
16
As an illustration, we have applied the micromorphic approach
to the finite-strain multivariant phase-field model with the mixed-
type dissipation in which the dissipation potential combines vis-
cous and rate-independent contributions. The minimization prob-
lem which results from the incremental energy minimization
framework is then non-smooth due to the rate-independent dissi-
pation term. We have used the augmented Lagrangian method to
transform the non-smooth minimization problem to a smooth
and unconstrained saddle-point problem that in the finite-
element setting can be efficiently solved locally at the Gauss-
point level. The corresponding conventional formulation, which
leads to a global saddle-point problem, can also be developed;
however, it is not competitive to the micromorphic one in terms



M. Rezaee-Hajidehi and S. Stupkiewicz International Journal of Solids and Structures 222–223 (2021) 111027
of robustness and computational efficiency, especially when multi-
ple order parameters are considered.
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Appendix A. Augmented Lagrangian treatment of rate-
independent dissipation

A.1. Primal and dual formulation

In order to make the presentation concise, the formulation is
provided here in the rate form. The incremental finite-step form
can then be obtained by introducing the approximation
_g � Dg=Dt. In the notation, we disregard the hat indicating the
condensed variables, i.e. ĝ! g and likewise for other variables
and the related functions. In addition, for simplicity, only the
rate-independent dissipation is taken into account, i.e. Dv ¼ 0.

In the rate formulation, the local (pointwise) minimization
problem, cf. Eq. (60), takes the form

ppen _gð Þ ¼ d
dt

F F;g;v;rvð Þ þ IpenD gð Þ� �þ Din _gð Þ ! min; ðA:1Þ

where Din _gð Þ ¼ k _gkD ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
_g � D _g

p
and D is a symmetric positive-

definite matrix. Neglecting the terms that do not depend on _g, the
rate-potential ppen can be rewritten in the form

ppen _gð Þ ¼ �f � _gþ Din _gð Þ; f ¼ � @ F þ IpenD

� �
@g

; ðA:2Þ

where f is the thermodynamic driving force conjugate to g.
Minimization of ppen leads to the following inclusion, which can

also be written in the dual form,

f 2 @Din _gð Þ; _g 2 @IC fð Þ; ðA:3Þ
where IC is the indicator function of the convex set C such that

I
C ¼ Din is the Fenchel conjugate of the indicator function IC , and

@Din and @IC are the subdifferentials of Din and IC , respectively, see
Moreau (1970), Rockafellar (1970). It can be checked that the con-
vex set C is given by

C ¼ f 2 RN : kfkD�1 6 1
� �

; ðA:4Þ

where kfkD�1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
f � D�1f

p
.

As an illustration, consider the case of active transformation
with non-zero _g, i.e. k _gk > 0. The inclusions in Eq. (A.3) imply then

f ¼ D _g
k _gkD

; _g ¼ fD�1f; ðA:5Þ

where the multiplier f > 0 is immediately found to be equal to
f ¼ k _gkD. For k _gk ¼ 0, we have f 2 C.

A.2. Transformed variables and augmented Lagrangian formulation

We now introduce the transformed variables _g0 and f 0,

_g0 ¼ D1=2 _g; f 0 ¼ D�1=2f; ðA:6Þ
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such that k _gkD ¼ k _g0k and kfkD�1 ¼ kf 0k. Note that, with this trans-
formation, the convex set C becomes a unit ball in RN ,

C0 ¼ f 0 2 RN : kf 0k 6 1
� �

; ðA:7Þ
and Eq. (A.5)1 takes the form

f 0 ¼ _g0

k _g0k when k _g0k > 0: ðA:8Þ

Accordingly, the minimization problem (A.1) converts to

p0 _g0ð Þ ¼ �f 0 � _g0 þ k _g0k ! min : ðA:9Þ
To efficiently solve the above minimization problem, we

employ the augmented Lagrangian technique and develop a for-
mulation based on that of Alart and Curnier (1991) for the case
of pure friction, see also Pietrzak and Curnier (1999). The mini-
mization problem (A.9) is thus replaced by a smooth and uncon-
strained saddle-point problem

_g0; k0f g ¼ argmin
_g0

max
k0

L0 _g0; k0ð Þ; ðA:10Þ

formulated for the following Lagrangian,

L0 _g0; k0ð Þ ¼ �f 0 � _g0 þ L0 _g0; k0ð Þ; ðA:11Þ
where

L0 _g0; k0ð Þ ¼
k0 þ 1

2. _g
0� � � _g0 if kk0

augk 6 1;

� 1
2. kk0k2 � 2kk0augk þ 1
� �

otherwise:

8<: ðA:12Þ

Here, k0 is the vector of Lagrange multipliers, k0aug ¼ k0 þ . _g0 is the
augmented Lagrange multiplier, and . > 0 is a regularization
parameter. Since L0 is a continuously differentiable function, the
solution of the saddle-point problem (A.10) can be found by solving
the equations expressing the stationarity of L0, viz.

@L0

@ _g0 ¼ �f 0 þ @L0

@ _g0 ¼ 0;
@L0

@k0
¼ @L0

@k0
¼ 0: ðA:13Þ

It can be checked that, at the solution of Eqs. (A.13), the Lagrange
multiplier k0 is equal to the driving force f 0, i.e. f 0 ¼ k0, and f 0 satisfies
the inclusion f 0 2 @I
C0 that results from the minimization problem
(A.9). Importantly, the solution does not depend on the regulariza-
tion parameter ., and the method does not introduce any
approximation.

The augmented Lagrangian formulation of the original mini-
mization problem (A.1) is obtained by transforming the variables
back to the physical space, i.e. _g ¼ D�1=2 _g0; f ¼ D1=2f 0 and
k ¼ D1=2

k0. In particular, function L0 in Eq. (A.12) can in this way

be transformed to function Lin in Eq. (62).
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Tůma, K., Stupkiewicz, S., Petryk, H., 2016. Size effects in martensitic
microstructures: finite-strain phase field model versus sharp-interface
approach. J. Mech. Phys. Solids 95, 284–307.
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