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A cluster interaction model has been proposed to account for the spatial distribution and morphology of
particles when estimating the effective properties of elastic and thermoelastic composites (Molinari and
El Mouden, 1996). In the present paper this approach is extended to elastic-viscoplastic composites. To
this end the tangent linearization of the non-linear viscoplastic law and the concept of additive interac-
tion equation are used. Although the extension is formulated for the non-linear case, first applications are
considered for linear viscoelastic composites, a situation rich enough to evaluate the interest of the clus-
ter interaction approach. Results of the model are compared to numerical homogenization for periodic
unit cells with two cubic configurations.

� 2021 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license
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1. Introduction Early models have been proposed for evaluating the thermal
The role of inclusion packing in a composite has been a subject
of investigation in the literature since decades. Indeed, capturing
the effect of the spatial distribution of inclusions on the effective
properties of interest is crucial for the development of composite
materials, especially today with the material by design trend. This
research field concerns multiple domains of physics (heat transfer,
chemical diffusion, mechanics. . .). For mechanics, homogenization
approaches have been widely developed for characterizing the
overall response and local fields (stress and strain per phase). In
general, the internal structure of composite materials is character-
ized by the volume fraction of phases and by their morphological
configuration i.e. by the shape and orientation of inclusions. We
consider here the additional information provided by the topolog-
ical configuration of phases, i.e. their spatial distribution. This
aspect is getting a particular importance with the development
of architectured materials that is allowed by modern fabrication
techniques such as additive manufacturing. With these techniques
it is feasible to design the internal material configuration according
to a regular pattern. This pattern characterizes the topological con-
figuration of the composite.
conductivity and its link to the spatial distribution of inclusions.
Rayleigh (1892) considered a simple cubic lattice of spheres in a
homogeneous material and evaluated its conductivity. McKenzie
et al., 1978; McPhedran and McKenzie, 1978; Sangani and
Acrivos, 1982, derived the effective thermal conductivity of a peri-
odic array of spheres. Lu (1999) and Mercier et al. (2000) adopted a
rectangular array of spheroids. They were able to analyse the effect
of the unit cell aspect ratio on the conductivity predictions.

Similarly, several contributions have analyzed the effect of
inclusion arrangements on the overall mechanical response of
composites. Nemat-Nasser et al. (1982) were able to derive analyt-
ical expressions for the overall elastic moduli of a composite con-
taining periodically distributed inclusions in the elastic matrix.
The derived moduli were expressed in terms of series. Sangani
and Lu (1987) evaluated the elasticity tensor of a composite with
spherical elastic particles. Inclusions were distributed along sim-
ple, body-centered and face-centered cubic arrays. Rodin (1993)
proposed a different approach based on the eigenstrain method.
Predicted elastic moduli obtained by Rodin (1993) for a regular
periodic arrays of spheres were compared to finite element calcu-
lations. A good agreement was observed. A different approach was
proposed in Molinari and El Mouden (1996) and named hereafter
as the cluster interaction model. Elastic inclusions were embedded
in an isotropic elastic medium. The approach was based on the
Lippman-Schwinger-Dyson equation derived in the context of
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heterogeneous elasticity. The morphological and spatial distribu-
tions of particles were taken into account in this scheme. One of
the goals was to improve the predictions of classical homogeniza-
tion schemes at finite concentrations of inclusions (for instance
Mori-Tanaka scheme) by taking into account the interaction
between inclusions. El Mouden et al. (1998) extended the range
of applications of the cluster model by considering coated inclu-
sions. El Mouden and Molinari (2000) generalized the cluster
model to the case of ellipsoidal thermoelastic inclusions embedded
in an anisotropic thermoelastic matrix (under the assumption of
uniform temperature in the medium). As already mentioned above,
the cluster model was also adopted to derive the thermal conduc-
tivity of composite with coated inclusions in Mercier et al. (2000).
The effect of the spatial distribution and of the coating thickness
compared well with results of the literature (Hatta and Taya,
1986; Lu and Song, 1996). Based on the eigenstrain theory and
Eshelby’s equivalence principle, multiple inclusion interaction
was proposed by Schjødt-Thomsen and Pyrz (2005). By considering
a cubic arrangement, the predictions of the overall elastic response
were shown to be highly influenced by the inclusion separation
distance. Note that the packing effect, as described by a mean min-
imum distance of inclusions or its statistical distribution, can be
accounted for also by the so-called morphologically representative
pattern (MRP) approach developed by Bornert et al. (1996) and
Marcadon et al. (2007) and numerically validated by Majewski
et al. (2017) and Majewski et al. (2020) for elastic and elastic-
plastic composites, respectively. However, this mean-field scheme
is not able to account for the spatial distribution of inclusions.
Ponte Castañeda and Willis (1995) developed a variational
approach to account for spatial distribution of inclusions for partic-
ulate composites. The authors proposed new Hashin-Strickman
type of bounds for linear elasticity where inclusion shape and spa-
tial distribution can be chosen independently by assuming that the
spatial correlations of inclusion locations, described by joint prob-
ability density functions, take particular ‘‘ellipsoidal” forms and
performing ensemble averaging. Note that the proposed theory
was developed assuming that the composite is statistically homo-
geneous. Ma et al. (2004) extended the previous approach by con-
sidering various patterns. To do so, the position of the particles in
the pattern was described by an ad hoc distribution. The extension
to elastic-plastic behavior was also proposed adopting a secant lin-
earization technique.

Drugan and Willis (1996) adopted also a variational approach,
employing joint probability density functions, to derive the overall
behavior of composites when the applied loading is spatially-
varying. By approximating the ensemble average of the strain field
to its Taylor series (restricted to the third order component), it was
shown that the resulting macroscopic constitutive relation
involves higher order terms. When considering isotropic phase dis-
tribution, the non-local response of the material was obtained
explicitly. By studying the magnitude of this additional term,
authors were able to give guidelines for the selection of the mini-
mum size of a representative volume element. The procedure was
applied for random elastic composites containing aligned spheroi-
dal heterogeneities by Monetto and Drugan (2009). The impact of
residual stresses on the non-local behavior was investigated by
Dal Corso and Deseri (2013) and their effect on the minimum size
for the RVE was discussed. Note that conceptually related results
were found also by Bigoni and Drugan (2007). Indeed, the homog-
enized constitutive law for a dilute two-phase standard elastic
composite subject to slowly varying non-uniform load exhibits
non-local terms. Quadratic displacement fields were considered.
Approximate Cosserat moduli were found by comparing the elastic
energies of the heterogeneous medium and of the homogenized
one. In a more recent work, Bacca et al. (2013a) showed that the
gap between energies can be suppressed when considering a
2

second-gradient Mindlin and Eshel elastic material instead of a
Cosserat one. The outcome of the work was the analytical defini-
tion of the non-local term. Next, Bacca et al. (2013b) demonstrated
that an anisotropic non-local constitutive model may emerge from
particular distributions of inclusions (for instance, rectangular lat-
tice of spherical inclusions).

A different approach to account for spatial distribution of parti-
cles was adopted by Kushch et al. (2013). From Maxwell’s concept
of equivalent inhomogeneity, the effective elastic properties of par-
ticulate composites were estimated. The proposed solutions, devel-
oped in terms of series, accounted for the interactions between
particles of the composite. Accurate estimates of the effective elas-
tic moduli were found for specific geometrical arrangements like
simple cubic array or random dispersion of inclusions.

The literature concentrates mostly on elasticity and thermo-
elasticity. Here, we address the problem of particle interactions for
more complex constitutive behaviors. It was observed in the litera-
ture, see for instance (Lahellec and Suquet, 2007; Czarnota et al.,
2015), that in the case of compositeswith elastic-viscoplasticmatrix
and elastic inclusions, Mori-Tanaka types of approaches were not
capable of capturing accurately the overall response of the compos-
ite when the volume fraction of inclusionwas large. For that precise
configuration, it isworth to cite the contribution of Li andHu (2007).
They considered elastic inclusions with a linear-viscoelastic matrix.
They proposed to solve the two-particle interaction problem in the
Laplace domain, adopting the Kuster-Toksoz model. By considering
the direct interaction between particles and introducing the proba-
bility distribution function of presence of inclusion centers in the
composite, they developed an enhanced model valid for finite con-
centration of inclusions. They proved that the new model predicts
more stiff overall response than theMori-Tanaka approach. In addi-
tion, a strong effect of the particle distribution was detected, show-
ing that the packing of inclusions is a key ingredient for the
derivation of precise estimate.

In the present paper an extension of the cluster interaction
approach to elastic-viscoplastic heterogeneous media is proposed.
To this end the tangent linearization of non-linear viscoplastic law
(Molinari et al., 1987) and the additive interation law (Molinari,
2002) are used. The theory can be derived for several families of
inclusions, see Molinari and El Mouden (1996), but we focus here
on the case of a single family of inclusions.

In the model, non-linear Maxwell type behaviors are assumed
for matrix and inclusions. Applications are restricted in Section 4
to linear viscoelastic composites, a framework rich enough to eval-
uate the interest of the cluster approach. The specific case of elastic
inclusion is also particularly addressed and it is shown that the
predictions of the cluster model are clearly more accurate than
the classical Mori-Tanaka scheme when compared to finite ele-
ment simulations. The effect of spatial distribution of inclusions
is also illustrated by investigating the case of simple cubic (de-
noted regular cubic in the following) and body centered cubic
arrays of inclusions.

2. The interaction cluster model for a thermoelastic medium:
case of a single family of ellipsoidal heterogeneities

Molinari and El Mouden (1996) and El Mouden and Molinari
(2000) proposed a mean field interaction model (also denoted in
brief ‘‘cluster model”) for linear elastic and thermoelastic compos-
ites. The cluster model was aimed to describe interaction effects
between heterogeneities. Heterogeneities of ellipsoidal shape (also
denoted as inclusions) are embedded in a uniform matrix. Each
individual inclusion has uniform properties. A representative vol-
ume element (RVE) with a population of inclusions characterizing
the internal structure of the composite material is considered. The
RVE is reproduced by periodicity in order to fill the whole space.
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From this RVE a set of N families of equivalent inclusions are
defined. In a given family, the inclusions are regularly disposed
along a periodic array, belong to the same phase, and have same
shape, same size and same orientations of principal axes. Conse-
quently, all inclusions of a given family have same mean deforma-
tion. Then, the problem reduces to finding the solution of a system
of N linear equations providing the mean deformations of the rep-
resentative inclusions. In that way, simple to very complex internal
configurations can be analyzed by increasing the number of fami-
lies from N ¼ 1 to larger values. Complex particulate composites
can involve several phases, various inclusion shapes and orienta-
tions or some irregularities in the spatial distribution of inclusions.
An important outcome of this approach is that interactions
between inclusions are described by considering their spatial dis-
tribution. The approach developed by Ma et al. (2004) bears some
similarity with the mean field interaction model of Molinari and El
Mouden (1996), since interactions between inclusions are
described in the same way. However, the configuration analyzed
by Ma et al. (2004) is restricted to clusters of inclusions (packing
of inclusions), while any spatial configuration can be handled by
the approach of Molinari and El Mouden (1996), from disordered
to very ordered internal structures (architectured materials).

The purpose of the present paper is to extend the elastic mean
field interaction model of Molinari and El Mouden (1996) to
elastic-viscoplastic composites. The new difficulty is related to
the higher level of complexity of the material response (see the lit-
erature review of the introduction), and therefore it is enough to
restrict the presentation to a simple internal structure. Here, a sin-
gle family of inclusions is considered. For an arbitrary number of
families, we refer to Molinari and El Mouden (1996) and El
Mouden and Molinari (2000).

2.1. Basic equations of the thermoelastic interaction cluster model for a
single family of inclusions

We recall here basic equations of the thermoelastic interaction
cluster model that are needed later. A two-phase material is con-
sidered. Phase I is made up of a family of equivalent ellipsoidal
inclusions, as defined above, embedded in the matrix phase m.
The volume fraction of inclusions (phase I) is denoted by f. Each
phase is governed by the following thermoelastic law:1

r ¼ Ck � �þ bkh ð1Þ
with k ¼ I for inclusions and k ¼ m for matrix. r is the Cauchy
stress, � the strain, Ck the fourth order tensor of elastic moduli,
bkh the thermal stress, h a temperature variation with respect to a
reference value; h is taken as uniform.

Denoting by rI and �I , respectively, the stress and strain aver-
ages within an inclusion, we obtain from Eq. (1):

rI ¼ CI � �I þ bIh ð2Þ
By definition, all inclusions play an equivalent role in a given

family; therefore rI and �I are the same for all inclusions.
Similarly, for the matrix phase we have:

rm ¼ Cm � �m þ bmh ð3Þ
where rm and �m are respectively stress and strain averages.

The whole space R3 is filled by the composite material, and we
denote by R and E respectively the macroscopic strain and stress.
We take for homogeneous reference medium the unbounded space
having the matrix thermoelastic properties. By using the Green
function technique, the solution of the boundary value problem
1 Notation: � is a full contraction of the second order tensor with a fourth order
tensor, while �, appearing e.g. in Eq. (28), is a double contraction of two fourth order
tensors.

3

is obtained in the form of an LSD integral equation (Lipman-
Schwinger-Dyson equation), see Zeller and Dederichs (1973). Then,
an approximate solution for �I is derived, see El Mouden and
Molinari (2000):

�I ¼ �0 � PI
� � DCI � �I þ DbIhð Þ ð4Þ

with

DCI ¼ CI � Cm; ð5Þ

DbI ¼ bI � bm; ð6Þ

PI
� ¼ �CII �

X
J–I

CIJ ¼ �
X
J

CIJ ð7Þ

The symbol
P

J–I in Eq. (7) has the following meaning. Let us attri-
bute the label I to a given inclusion.

P
J–I represents the summation

made by considering all other inclusions of the family (an infinite
number theoretically). Since all inclusions are playing the same
role, PI

� is independent of the arbitrary choice of the inclusion I.
The fourth order tensors CIJ are defined by:

CIJ ¼ 1
VI

Z
VI

Z
VJ

C r� r0ð Þdr0dr ð8Þ

where integrations are performed on the domains VI and VJ occu-
pied by inclusions I and J respectively. CIJ depends on the shape of
inclusions and the relative distance between inclusion centers; CIJ

is invariant under homothetic transformations of the configuration.
CIJ is also function of Cm through the kernel C in Eq. (8) which is
obtained from Green functions related to the elastic stiffness Cm

of the reference medium. For two spherical inclusions embedded
in an isotropic elastic medium, CIJ can be analytically expressed,
Berveiller et al. (1987), see also Appendix A in Molinari and El
Mouden (1996).

The evaluation of PI
� involves an infinite series

P
JC

IJ . In practice,

PI
� is calculatedby taking afinitenumberof terms in this series. Thus,

we consider a sphere of radius Rc whose center coincides with the
one of inclusion I. The cluster C Rcð Þ is constituted by the ensemble
of inclusions whose center belongs to this sphere. We define:

PI
� Rcð Þ ¼ �

X
J2C Rcð Þ

CIJ ð9Þ

In applications, except otherwise specified, the cluster radius is
taken large enough in order to practically achieve the convergence
of the series

P
JC

IJ . The convergence when Rc ! 1 is demonstrated
in Molinari and El Mouden (1996), Appendix B. The case of a cluster
of zero radius containing the single inclusion I will be also analyzed
later in Section 2.2.

In Eq. (4), �0 is an integration constant that appears in the LSD
integral equation. By taking the volume average of the LSD integral
equation it was shown by El Mouden and Molinari (2000) that:

�0 ¼ Eþ P0 � DC � �þ Dbhh i; ð10Þ
where :h i designates volume average, DC ¼ DCI;Db ¼ DbI in inclu-
sions, see Eqs. (5,6), and DC ¼ 0;Db ¼ 0 in the matrix. Consequently,
Eq. (10) can be written as:

�0 ¼ Eþ fP0 � DCI � �I þ DbIhð Þ: ð11Þ
The polarization tensor P0 is defined by:

P0 Cmð Þ ¼ �CII sphereð Þ ð12Þ
where CII sphereð Þ is calculated with Eq. (8) (with I ¼ J) for an inclu-
sion of spherical shape and by using the tensor of elastic moduli Cm

of the reference medium. Therefore, P0 is solely function of Cm.
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The strains �I;�m and �0 are obtained in terms of E and h by
solving the linear set of Eqs. (4), (11) and (13) below:

E ¼ f�I þ 1� fð Þ�m ð13Þ
Eq. (4) and Eq. (11) are nowwritten in a form useful for address-

ing the elastic-viscoplastic problem. We define the stress r0 as
being related to �0 by the constitutive response of the matrix, Eq.
(3):

r0 ¼ Cm � �0 þ bmh ð14Þ
Substracting Eq. (14) from the inclusion’s constitutive law, Eq. (2),
we obtain:

rI � r0 ¼ CI � �I � Cm � �0 þ DbIh ð15Þ
Using this relationship to eliminate DbIh in Eq. (4), we end up with
the following interaction law and its inverted form:

rI � r0 ¼ �CI
� � �I � �0ð Þ ð16Þ

�I � �0 ¼ �MI
� � rI � r0ð Þ ð17Þ

with

CI
� ¼ PI

�
� ��1

� Cm ð18Þ

MI
� ¼ CI

�
� ��1

ð19Þ

It can be noted that PI
� and CI

� play similar roles as respectively the
polarization tensor and the Hill tensor in the classical elastic mean
field scheme based on the Eshelby solution of the ellipsoidal hetero-
geneity problem, Hill (1965).

Another result that is used in the following is obtained by trans-
forming Eq. (11) into (see Appendix A):

E� �0 ¼ �M0
� � R� r0ð Þ ð20Þ

with

M0
� ¼ P0

� ��1
� Cm

� ��1

ð21Þ
2.2. Comparison with the Mori-Tanaka model

It is shown here that the cluster model with Rc ¼ 0 (vanishing
cluster radius) coincides with the Mori-Tanaka model when inclu-
sions are spherical.

For Rc ¼ 0 , and with P0 defined by Eq. (12), we can write Eq. (7)
as:

PI
� ¼ �CII sphereð Þ ¼ P0 ð22Þ

Then, Eq. (4) reads:

�I ¼ �0 � P0 � DCI � �I þ DbIhð Þ: ð23Þ

By elimination of P0 � DCI � �I þ DbIhð Þ between Eq. (11) and Eq. (23)
we get 1� fð Þ�0 ¼ E� f�I. Then, Eq. (13) leads to:

�0 ¼ �m ð24Þ
Eq. (23) provides the following localization law for the strain within
inclusions:

�I ¼ Iþ P0 � DCI

� ��1
� �m � P0 � DbIh
� �

: ð25Þ

The strains �I and �m are given in terms of the macroscopic applied
strain E by Eq. (13) and (25). These strains are identical to those
derived from the Mori-Tanaka model.
4

2.3. Investigating interaction effects between inclusions through
different homogenization models

In the Mori-Tanaka model interactions between inclusions are
solely represented by their volume fraction f. In the cluster model
interaction effects are accounted for at a higher level through f and
the following interaction tensor:

P�I
int ¼ �

X
J–I

CIJ ð26Þ

This tensor appears in the definition (7) of PI
�:

PI
� ¼ �CII þ P�I

int ð27Þ
For the purpose of investigating interaction effects, we define

another model (for spherical inclusions), denoted henceforth as
hybrid model, based on the same equations as the cluster model
except for the definition of �0, Eq. (11), which is replaced by Eq.
(24) of the Mori-Tanaka model. In the following we shall denote
by CM1 the original cluster model and by CM2 the hybrid version.
The interest of model CM2 comes from the way interaction effects
are appearing in the localization law providing the strain in inclu-
sions in terms of E and h:

�I ¼ Iþ 1� fð ÞP0 þ 1� fð ÞP�I
int

� �
� DCI

h i�1

� E� 1� fð ÞP0 þ 1� fð ÞP�I
int

� �
� DbIh

� �
ð28Þ

This results is obtained for spherical inclusions, by combining Eq.
(4) of the cluster model with the condition �0 ¼ �m to obtain
�I ¼ �m � PI

�: DCI � �I þ DbIhð Þ. Eliminating �m with Eq. (13), we
obtain Eq. (28) for CM2.

For the cluster model CM1 we get with Eq. (4) and Eq. (11) the
following localization law:

�I ¼ Iþ 1� fð ÞP0 þ P�I
int

� �
� DCI

h i�1

� E� 1� fð ÞP0 þ P�I
int

� �
� DbIh

� �
ð29Þ

For the Mori-Tanaka model (MT) the localization law for spherical
inclusions reads:

�I ¼ Iþ 1� fð ÞP0 � DCI

h i�1
� E� 1� fð ÞP0 � DbIh
� �

ð30Þ

From the examination of these equations the following hierar-
chy between the models can be noticed, from higher to lower
interaction effects: CM1 ! CM2 ! MT according to the corre-
sponding weight of P�I

int in the localization laws

P�I
int ! 1� fð ÞP�I

int ! 0.
Differences between CM1, CM2 and MT models and predictive

capabilities are now assessed with respect to numerical simulation
results. In FE analyses a unit cell of prescribed arrangement of
inclusions subject to the micro-periodic boundary conditions is
considered as described in Majewski et al. (2017). In Fig. 1 predic-
tions of CM1, CM2 and MT models are compared with FE simula-
tions for the purely elastic problem (h ¼ 0). Inclusions are
assumed to be spherical with same radius. They are distributed
in a regular cubic configuration. The ratio between Young’s moduli
of inclusion and the matrix is 10 (hard inclusions case) or 0.1 (soft
inclusion case), Poisson’s ratio equal to 0.3 is assumed for both
phases. Note that for this configuration we have just a single family
of equivalent inclusions. The effective elasticity tensor of this com-
posite is of cubic symmetry. For such symmetry we have three

elastic constants: the bulk modulus K ¼ C1111 þ 2C1122

� �
=3 and

two shear moduli: �l1 ¼ C1111 � C1122

� �
=2; �l2 ¼ C1212.



Fig. 1. Effective shear moduli (elastic constants) �l1 ¼ C1111 � C1122

� �
=2 and

�l2 ¼ C1212 for a two-phase composite of regular cubic distribution of inclusions.
Comparison of cluster models CM1 and CM2 with FE calculations. As a reference
results for the classical MT model are shown for which �l1 ¼ �l2; a) hard inclusions:
Young’s moduli EI=Em ¼ 10, b) soft inclusions: EI=Em ¼ 1=10; Poisson’s ratio
mI ¼ mm ¼ 0:3 for both cases.
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In Fig. 1 the variation of the two shear moduli with volume frac-
tion is presented as predicted by cluster models CM1 and CM2 and
FE analysis. For CM1 and CM2 models the cluster size Rc is equal to
8d where d is a minimum distance between the inclusion centers
in a unit cell. It has been checked that convergence of the results
is reached for this sufficiently large cluster size and any configura-
tions adopted in the present paper. Note that for f ¼ 0:52, inclu-
sions in the regular cubic arrangement are in contact, so this is
the limit volume fraction we can consider for this configuration.
It is seen that for the case of stiff inclusions, results of numerical
simulations are in better agreement with the original cluster model
CM1 as compared to the hybrid model CM2. Very good accordance
is obtained up to 0:25 volume fraction. With an increasing volume
fraction the cluster model underestimates the composite stiffness.

For the soft inclusion case, both CM1 and CM2 models predict
well the overall shear moduli for the whole range of volume frac-
tion, with slightly better results for CM1 than for CM2, when com-
pared to FE results. It should be noted that, as concerns the bulk
modulus K the same value is predicted by CM1, CM2 and MT
models.

The accuracy of results appears to be related to the level of
interaction effects carried by models, from higher level (CM1),
intermediate level (CM2) and lower level (MT), as previously
described. Clearly a higher anisotropy degree of elastic stiffness,
measured by the ratio �l1=�l2, is obtained for CM1 than for CM2
model. Obviously elastic stiffness is isotropic for MT model.
5

3. Elastic-viscoplastic composite

The same configuration of the composite material is considered
as before, except for the constitutive behavior. Each phase is now
governed by an elastic-viscoplastic law of the Maxwell-type. For
phase I we have:

d ¼ de þ dv ¼ MI � _rþ FI sð Þ ð31Þ
The strain rate d is the sum of elastic and viscoplastic parts,

respectively de and dv. The fourth order tensor of elastic compli-
ance is designated by MI . In general dv is a nonlinear function of
s, the deviator of the Cauchy stress r.

Similarly, for the matrix phase we have:

d ¼ Mm � _rþ Fm sð Þ ð32Þ
We successively consider the purely viscoplastic and purely

elastic problems before addressing the elastic-viscoplastic case.

3.1. Viscoplastic case

We first consider the case of a viscoplastic response
(MI ¼ 0;Mm ¼ 0). Adopting the tangent linearization proposed by
Molinari et al. (1987), the nonlinear response of phase k,
dv ¼ Fk sð Þ (k ¼ I for inclusions, k ¼ m for matrix) is approximated
by:

dv ¼ Mtg
k skð Þ � sþ dref

k skð Þ ð33Þ
where sk is the mean deviatoric stress in phase k, and:

Mtg
k skð Þ ¼ @Fk

@s
skð Þ ð34Þ

dref
k skð Þ ¼ Fk skð Þ �Mtg

k skð Þ � sk ð35Þ
The mean strain rate associated to sk is given by:

dk
v ¼ Fk skð Þ ¼ Mtg

k skð Þ � sk þ dref
k skð Þ ð36Þ

We note that the second equality in Eq. (36) results from the fact
that the tangent law coincides at sk with the nonlinear response
Fk skð Þ as indicated by Eq. (35).

The relationship (33) can be inverted into:

s ¼ Ctg
k skð Þ � dv þ srefk skð Þ ð37Þ

with

srefk ¼ �Ctg
k � dref

k ð38Þ
The viscoplastic stiffness is defined by:

Ctg
k ¼ Mtg

k

� ��1 ð39Þ
Eq. (37) is formally equivalent to the thermoelastic Duhamel law,
Eq. (1), with dv and srefk playing respectively the role of strain and
thermal stress.

Taking as a reference medium the homogeneous material with
constitutive response given by the matrix tangent law (Eq. (37)
with k ¼ m), we obtain from the thermoelastic results of Section 2.1

(Eq. (4) with �I ! dI
v;DbIh ! DsrefI ;PI

� ! PI
�v):

dI
v ¼ d0

v � PI
�v � DCtg

I � dI
v þ DsrefI

� �
ð40Þ

with

DCtg
I ¼ Ctg

I � Ctg
m ; ð41Þ

DsrefI ¼ srefI � srefm ; ð42Þ
We have also introduced the following polarisation tensor:
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PI
�v Ctg

m

� � ¼ �
X
J

CIJ
v ð43Þ

The tensors CIJ
v J ¼ 1;2; . . .ð Þ are defined by Eq. (8) with C obtained

from the Green functions depending upon the tangent modulus Ctg
m

of the reference medium.

In this interaction model, d0
v is an integration constant appear-

ing in the LSD integral equation. As for the relationship (11) of the

thermoelastic cluster model we have (with �0 ! d0
v and E ! Dv):

d0
v ¼ Dv þ fP0

v � DCtg
I � dI

v þ DsrefI

� �
ð44Þ

where Dv is the macroscopic applied strain rate, and

P0
v ¼ �CII

v sphereð Þ ð45Þ
CII

v sphereð Þ is calculated with Eq. (8) for an inclusion of spherical
shape and with the tangent modulus Ctg

m of the reference medium.

Thus, P0
v is solely function of Ctg

m .

We define the deviatoric stress s0 as being related to d0
v by the

tangent law of the reference medium (Eq. (37) with k ¼ m):

s0 ¼ Ctg
m smð Þ � d0

v þ srefm smð Þ ð46Þ
Substracting Eq. (46) from the inclusion’s tangent law (Eq. (37)
with k ¼ I) we obtain:

sI � s0 ¼ Ctg
I � dI

v � Ctg
m � d0

v þ DsrefI ð47Þ
Using this relationship to eliminate DsrefI in Eq. (40), leads to the fol-
lowing interaction laws:

Ctg
m � PI

�v
� ��1

� �
� dI

v � d0
v

� �
¼ sI � s0 ð48Þ

or

dI
v � d0

v ¼ Ctg
m � PI

�v
� ��1

� ��1

� sI � s0ð Þ ð49Þ

The definition (44) of d0
v given by the cluster model can be written

as

Dv � d0
v ¼ Ctg

m � P0
v

� ��1
� ��1

� S� s0ð Þ ð50Þ

where S is the deviator of the macroscopic stress R. The derivation
of Eq. (50) follows the same lines as for Eq. (20) in the thermoelastic
case, see Appendix A.

Eqs. (49,50) can be written as:

dI
v � d0

v ¼ �MI
�v � sI � s0ð Þ ð51Þ

Dv � d0
v ¼ �M0

�v � sI � s0ð Þ ð52Þ
with

MI
�v ¼ PI

�v
� ��1

� Ctg
m

� ��1

ð53Þ

M0
�v ¼ P0

v

� ��1
� Ctg

m

� ��1

ð54Þ
3.2. Elastic case

A linear elastic response is now assumed. Thus, the results of
this section can be directly obtained by setting h ¼ 0 in the equa-
6

tions of the thermoelastic case, Section 2. We express here the
problem in rate form, having in view applications in elasto-
viscoplasticity. For the sake of notations, and for a better under-
standing of how the elastic-viscoplastic interaction cluster model
is built, it is convenient to explicit the equations of the elastic
problem.

For each phase the rate form of the Hooke’s law reads (k ¼ I for
inclusions, k ¼ m for matrix):

_rk ¼ Ck � dk
e ð55Þ

where Ck; _rk and dk
e are respectively the tensor of elastic moduli, the

stress rate and elastic strain rate in phase k. Here, we consider small
deformations and ‘‘dot” represents the material derivative. For large
deformations, an objective derivative (for instance Jaumann) should
be used. Averages of stress and strain rate per phases are
considered.

Relationships similar to Eq. (14), with h ¼ 0, and to Eq. (17) and
Eq. (20) are obtained in rate form:

� definition of _r0,
_r0 ¼ Cm � d0
e ð56Þ
� interaction law,
dI
e � d0

e ¼ Cm � PI
�e

� ��1
� ��1

� _rI � _r0ð Þ ð57Þ
� and relationship resulting from the definition of the integration

constant d0
e ,
De � d0
e ¼ Cm � P0

e

� ��1
� ��1

� _R� _r0
� � ð58Þ

As for Eq. (43) and Eq. (45) (or Eq. (9) and Eq. (12)) we have:
PI
�e ¼ �

X
J

CIJ
e ð59Þ

P0
e ¼ �CII

e sphereð Þ ð60Þ
Tensors CII

e sphereð Þ and CIJ
e (J ¼ 1;2; . . .) are defined by Eq. (8) with C

obtained from the Green functions associated to the elastic modulus
Cm of the reference medium (matrix response). CII

e sphereð Þ is calcu-
lated for a spherical shape and consequently is solely function of Cm.

The integration constant, d0
e , in the elastic cluster model is given

by:

d0
e ¼ De þ fP0

e � DCI � dI
e

� �
ð61Þ

Eq. (58) is obtained from Eq. (61) as Eq. (50) was derived from Eq.
(44) in the viscoplastic cluster model (or as Eq. (20) resulted from
Eq. (11) in the thermoelastic case of Section 2).

Eqs. (57,58) can be written as:

dI
e � d0

e ¼ �MI
�e � _rI � _r0ð Þ ð62Þ

De � d0
e ¼ �M0

�e � _R� _r0
� � ð63Þ

with

MI
�e ¼ PI

�e
� ��1

� Cm

� ��1

ð64Þ

M0
�e ¼ P0

e

� ��1
� Cm

� ��1

ð65Þ



Table 1
Elastic and viscous properties for the two phases. The matrix phase is viscoelastic.
Three different configurations are considered for the inclusions. Case 1: hard elastic
inclusion. Case 2: hard viscoelastic inclusion. The reference stress ~r0 will be varied in
a large range of parameter g > 1. Case 3: Soft viscoelastic inclusion. The inclusion
material properties (E and ~r0) are derived from those ofvf the matrix with a scaling
parameter f < 1.

E [GPa] m ~r0 [MPa] ~d0 [1=s]

Viscoelastic matrix 70 0.3 480 0.01
Hard elastic inclusion (case 1) 400 0.2 — —
Hard viscoelastic inclusion (case 2) 400 0.2 480g 0.01
Soft viscoelastic inclusion (case 3) 70f 0.3 480f 0.01

K. Kowalczyk-Gajewska, M. Majewski, S. Mercier et al. International Journal of Solids and Structures 224 (2021) 111040
3.3. Elastic-viscoplastic cluster model

An additive interaction law can be conceptually formed by add-
ing the elastic and viscoplastic interaction laws, Eq. (62) and Eq.
(51). Considering that:

dI ¼ dI
e þ dI

v ð66Þ
and defining d0 by

d0 ¼ d0
e þ d0

v ð67Þ
we obtain:

dI � d0 ¼ �MI
�e � _rI � _r0ð Þ �MI

�v � sI � s0ð Þ ð68Þ
where MI

�v and MI
�e are given by Eqs. (53) and (64).

In fact, this heuristically derived interaction law can be rational-
ized based on several arguments. Hashin (1969) found an analyti-
cal solution for the linear viscoelastic problem of a spherical
inclusion embedded in an infinite matrix. The material response
was of the Maxwell type in both phases and incompressibility
was assumed. This solution can be exactly retrieved by using an
additive interaction law having the same structure as Eq. (68),
see Kouddane et al. (1993).

An additive interaction law was later proposed for solving
inclusion problems, for non-linear, anisotropic, compressible
material responses, including elasto-viscoplasticity, Molinari
et al. (1997); Molinari, (2002). The instantaneous elastic response
due to a jump in the external solicitation appears to be well resti-
tuted by this type of additive interaction law. On the other hand,
for slow loading the quasi-nonlinear creep viscoplastic response
is also well restituted. Moreover, it was verified by Mercier et al.
(2005) that, for elastic-viscoplastic materials, the predictions of
the additive interaction law for the single inclusion problem were
in good agreement with Finite Element simulations for various
loading conditions and strain paths.

Homogenization schemes have been proposed based on the
additive form of the interaction law, Molinari et al. (1997),
Abdul-Latif et al. (1998), Molinari (2002), Mercier and Molinari
(2009), Kowalczyk-Gajewska and Petryk (2011), Abdul-Latif et al.
(2018), Wang et al. (2010), Zecevic and Lebensohn (2020). These
homogenization schemes have been validated by comparisons
with Finite Element calculations (Mercier et al., 2012; Mercier
et al., 2019) and experimental results (Girard et al., 2021).

Thus, it is appealing to extend the additive elastic-viscoplastic
interaction law to account for the spatial distribution of inclu-
sions in the framework of the interaction cluster model of
Molinari and El Mouden (1996) and El Mouden and Molinari
(2000).

Indeed, as for the interaction laws Eq. (62) and Eq. (51), all gov-
erning equations of the purely elastic and purely viscoplastic clus-
ter models can be remarkably blended together within the additive
formulation. Thus, the additive forms of Eq. (52) and Eq. (63) lead
to:

D� d0 ¼ �M0
�e � _R� _r0

� ��M0
�v � S� s0ð Þ ð69Þ

where M0
�e and M0

�v are given by Eq. (65) and (54).
Eq. (56) and Eq. (46) can be inverted into:

d0
e ¼ Mm � _r0 ð70Þ

d0
v ¼ Mtg

m � s0 þ dref
m ð71Þ

with Mm ¼ Cmð Þ�1
;Mtg

m ¼ Ctg
m

� ��1
and dref

m ¼ �Mtg
m � srefm . Combining

Eq. (70) and Eq. (71) with Eq. (67), we obtain:

d0 ¼ Mm � _r0 þMtg
m � s0 þ dref

m ð72Þ
7

With Eqs. (32,33), the linearized form of the matrix constitutive law
reads:

d ¼ Mm � _rþMtg
m � sþ dref

m ð73Þ
Therefore, Eq. (72) shows that r0 and d0 are related by the refer-
ence material response (matrix linearized law).

The macroscopic strain rate D tð Þ is assumed to be prescribed in
terms of time (similarly one could assume the macroscopic stress
R tð Þ to be prescribed). The relationship between D and microscopic
strain rates reads:

D ¼ fdI þ 1� fð Þdm ð74Þ
It is shown in Appendix B that Eq. (68), Eq. (69) and Eq. (74)

constitute a linear system of first order differential equations for
the stresses rI;rm and r0. These stresses appear to be the principal
variables of the homogenization problem to which all other vari-
ables are subordinated.
4. Validation of the interaction cluster model by comparison
with FE calculations

4.1. Basic configurations

The cluster model is applied here to two-phase composites. The
elastic response of the phases is linear and isotropic. Therefore, the
fourth order tensor of elastic compliance M involved in Eq. (1) is
only related to the Young’s modulus E and Poisson’s ratio m of each
phase. As in Lahellec and Suquet (2007), the viscoplastic behavior
of each phase is governed by the Mises plasticity rule with a Nor-
ton flow stress:

dv ¼ ~d0
req

~r0

� �1
m 3s
2req

; req ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
3
2
s � s

r
ð75Þ

with m the strain rate sensitivity parameter. Scalar parameters ~d0

and ~r0 are reference strain rate and stress, respectively. In this work
for model validation we concentrate on the linear case (m ¼ 1)
which is rich enough. The nonlinear case will be analyzed later.
Three cases of matrix-inclusion setting in the composite have been
selected, see Table 1.

Regular cubic (RC) and body centered cubic (BCC) spatial distri-
butions of inclusions are adopted for evaluating the accuracy of the
mean-field cluster model as compared to the results of full-field
finite element (FE) simulations. Fig. 2 presents RC and BCC unit
cells adopted in FE analysis for the volume fraction of inclusions
f ¼ 0:25. The size of the cubic unit cell is a, the radius of the inclu-
sion, R. Note that for the same volume fraction and the same unit
cell size a, the radius of the inclusion in the BCC unit cell is smaller

than for RC: RRC ¼ 21=3RBCC . Calculations were performed in AceFEM
environment (Korelc, 2002) using 3D tetrahedral elements with 10
nodes. Periodic boundary conditions are prescribed at the external
surface of the unit cells. Further details concerning FE calculations



Fig. 2. a) Regular cubic (RC) and (b) body centred cubic (BCC) unit cells adopted in
FE analysis (for better visibility FE mesh is displayed only for the inclusion phase).
The volume fraction of inclusions is f ¼ 0:25. The size of the cubic unit cell is a, the
radius of the inclusions is R. Note that for the same volume fraction and the same a,
the radius of the inclusions in the BCC unit cell is smaller than for RC.
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and mesh generation can be found in Majewski et al. (2017) and
Majewski et al. (2020).

4.2. Elastic inclusions

One of the goals of the present work is to increase the predicting
capability of mean field approaches for composite materials with
Fig. 3. Overall axial stress-strain response for uniaxial tension along (001) direction.
configuration, c) CM2 model and a RC configuration, d) CM2 model and a BCC configuratio
~d0 ¼ 0:01 s�1. The strain rate sensitivity is m ¼ 1 (linear viscoelasticity). Hard elastic inc
volume fractions of inclusions are considered: f ¼ 0:05;0:1;0:25;0:4f g. The predictions

8

elastic inclusion and viscoelastic or viscoplastic matrix. An inter-
esting trend was depicted in Lahellec and Suquet (2007) and
Czarnota et al. (2015), where some large discrepancy was observed
between the Mori-Tanaka approach (MT) and full field simulations
obtained by FFT or FEM calculations in the case of elastic inclusion
with linear viscoelastic matrix. For the full-field calculations, mate-
rial parameters of the matrix linear viscoelastic response and for
the linear elastic response of inclusions were those given in Table 1,
Case 1. The volume fraction of inclusions was f ¼ 0:25. Under uni-
axial tension at a longitudinal strain rate of 10�2s�1 and for a ran-
dom distribution of inclusions dispersed in the matrix, Czarnota
et al. (2015) observed that the prediction in terms of uniaxial stress
captured by the MT scheme underestimated the FE results by
around 25% (when m ¼ 1). It was also observed that as m was
decreased, the predictions of the MT scheme were more and more
accurate in terms of overall stress, see Fig. 6a) of Czarnota et al.
(2015). It was also seen that for a lower volume fraction of inclu-
sion f ¼ 0:1, the match for m ¼ 1 was more precise. Therefore
the authors were considering that the discrepancy between FE
results and homogenization technique was mostly inherited from
the averaging scheme. Note that the same configuration was previ-
ously proposed by Lahellec and Suquet (2007). Full-field calcula-
tions were performed with the FFT approach. The
homogenization procedure was carried out with the EIV þ HS
Predictions of a) CM1 model with a RC configuration, b) CM1 model with a BCC
n. The matrix has a viscoelastic response: Em ¼ 70 GPa, mm ¼ 0:3; ~rm

0 ¼ 480 MPa and
lusions are considered with EI ¼ 400 GPa and mI ¼ 0:2 (case 1 of Table 1). Different
of the two cluster models CM1 and CM2 are compared to finite element results.
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method (secant linearization and Hashin-Strickman bound). Simi-
lar discrepancy on the overall stress was found (around 25%). Note
that in the two examples, the inclusions were randomly and
isotropically distributed. With the viscoelastic cluster model, the
effects due to interaction between inclusions and to particle pack-
ing are accounted for. Therefore, as compared to the Mori-Tanaka
approach a much better prediction of the overall response is
expected, especially in the critical case wherem ¼ 1. Closer predic-
tions than Mori-Tanaka approach could be obtained. Validation of
the cluster model for linear viscoelasticity is conducted in the fol-
lowing of this section.

Fig. 3 presents the overall axial stress-strain response during a
(001) uniaxial tension. The volume fraction of inclusion is varying
from f ¼ 0:05 to f ¼ 0:4. The predictions of the cluster model CM1
for the RC configuration are displayed in Fig. 3 a) and for BCC in
Fig. 3 b). The predictions of the hybrid model CM2 are presented
in Fig. 3 c) for a RC array and in Fig. 3 d) for BCC array. FEM predic-
tions are also displayed in all figures. A clear effect of the topology
is observed as the stress-strain curves for RC and BCC configura-
tions are different. This is more marked as the volume fraction of
inclusions increases. From FE calculations, it is seen that in the case
of the RC geometry, the uniaxial stress reaches almost 3500 MPa at
0.1 uniaxial strain, while its value is lower than 1500 MPa for the
Fig. 4. Overall axial stress-strain response of a two-phase composite for a uniaxial tensio
of the Mori-Tanaka approach are compared to finite element simulations for: a) volume
f ¼ 0:25 and BCC array. Inclusions are elastic and the matrix has a linear viscoelastic beha
1.

9

BCC geometry. For the RC configuration, the cluster model CM1
is capable of accurate predictions up to f ¼ 0:25 and up to
f ¼ 0:2 for the CM2 approach. For the BCC configuration, the
results are still of good quality up to f ¼ 0:3 for both models
CM1 and CM2. Comparing results of CM1 and CM2 models allows
to evaluate the interaction effect between inclusions. With Eqs.
(29) and (28) it has been demonstrated that CM1 provides stronger
interaction effects than CM2. This is confirmed and quantified by
the results of Fig. 3. In the following, only predictions for f ¼ 0:1
and f ¼ 0:25 will be adopted.

Fig. 4 gathers in a more concise way, results of Fig. 3, where the
composite is facing uniaxial tension in the (001) direction. A com-
parison is presented between stress-strain curves evaluated by the
two cluster approaches and FE predictions, for two selected vol-
ume fractions f ¼ 0:1 and f ¼ 0:25. In addition results obtained
with the Mori-Tanaka approach for elastic-viscoplastic materials
(Mercier and Molinari, 2009; Kowalczyk-Gajewska and Petryk,
2011) are also depicted. For a BCC arrangement of inclusions, pre-
dictions of the three models (MT + Cluster models CM1 and CM2)
are quite accurate even for the largest volume fraction, see Fig. 4 b)
and d). More interesting is the analysis of results for the RC array.
Even for the lowest volume fraction of inclusions, one observes a
significant effect on the axial stress-strain curve of the adopted
n along (001) direction. Predictions of the two cluster approaches CM1 and CM2 and
fraction f ¼ 0:1 and RC array, b) f ¼ 0:1 and BCC array, c) f ¼ 0:25 and RC array, d)
vior (of the Maxwell type). Material parameters are those of Fig. 3, see Table 1, Case
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modeling route: i.e. the two cluster models versus the classical
Mori-Tanaka approach. Remember that the present Mori-Tanaka
scheme can be retrieved from the cluster models by considering
a cluster of zero radius (Rc ¼ 0), with the effect of much decreasing
the particle interaction. The MT approach is providing a poor esti-
mate of the overall stress level. For this volume fraction and the
adopted material parameters, an impact of the interactions
between inclusions is significant. As a consequence, the new clus-
ter approach provides a clear improvement of the predictions. Fur-
thermore, the cluster model CM1 generates better agreement
when compared to the cluster model CM2. This result is really an
important outcome of the present paper. Fig. 4 provides also an
illustration of the hierarchy between CM1, CM2 and MT models,
from larger to lower effect of particle interactions. Thus, it is clearly
seen in Fig. 4, that the effective response of the composite is better
described with the higher interaction effect carried by CM1. It
clearly shows that for elastic inclusions and linear viscoelastic
matrix, the interactions between inhomogeneities are a key fea-
ture, which need to be integrated in the model. Therefore, the pre-
sent work sheds light on why a strong difference was observed in
Lahellec and Suquet (2007) and Czarnota et al. (2015) when the
composite was made of elastic inclusion and linear viscoelastic
Fig. 5. Overall and local axial stress versus axial strain during uniaxial tension along (00
captured by finite element calculations: a) RC unit cell with f ¼ 0:1, b) BCC unit cell with
elastic and linear viscoelasticity is considered for the matrix. Material parameters are th
strain level at an intermediate overall strain E33 ¼ 0:05 and at the end of the deformatio
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matrix. Configurations for non-linear behavior (m < 1) will be
investigated in a future work.

It is also of interest to investigate how local mechanical fields
are captured. Fig. 5 presents the average local axial stress r33 ver-
sus axial strain �33 in both phases. The overall response is also dis-
played as a supplementary information. The hard inclusion phase
shows a stiff elastic response, while the stress-strain response is
non-linear in the matrix phase due to its viscoelastic behavior. It
is observed that for f ¼ 0:1, the stress-strain levels given by the
two cluster models are in close agreement with the numerical
results. The large dots in Fig. 5 (blue color for Cluster CM2, red
for cluster CM1 and black for FE) indicate the average stress-
strain fields at the intermediate overall axial strain E33 ¼ 0:05
and at the end of the deformation process (when the overall axial
strain is equal to 0:1). It is interesting to observe that the stress or
strain levels in the inclusion for overall strain E33 ¼ 0:05 or
E33 ¼ 0:1 are similar, meaning that for this configuration (elastic
inclusion and linear viscoelastic matrix), the overall deformation
is mostly accommodated by the matrix phase for E33 > 0:05. For
the BCC array, the three modeling routes lead to almost identical
predictions. A slight difference is seen in favour of CM1 approach
for the RC array, see Fig. 5a). The strain in the inclusion is
1) direction. Predictions of the two cluster models are compared to average values
f ¼ 0:1, c) RC unit cell and f ¼ 0:25 and d) BCC unit cell and f ¼ 0:25. Inclusions are
ose of Fig. 3 and listed in Table 1, Case 1. Note that large dots mark the stress and
n process E33 ¼ 0:1.
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underestimated, with a slightly better predictions for the cluster
CM1 approach. For the largest volume fraction of inclusion
f ¼ 0:25, it is important to notice that the local response is also
accurately predicted for a BCC array. For RC array and f ¼ 0:25,
the mismatch observed for the overall prediction is also present
for the average fields in the two phases. A better agreement is
found for the cluster approach CM1. We have checked that the pre-
sented results are not influenced by a larger cluster radius (here we
used Rc ¼ 8d, with d the minimum distance between centers in the
unit cell size). Therefore, a possible explanation could be the non-
homogeneous strain field in the inclusion which becomes more
pronounced for large volume fraction of inclusions.

The difference between RC and BCC arrays is due to packing
effect. Let us define for the RC array, the directional compacity
index k001RC ¼ R

d001RC
as the ratio of the inclusion radius R to the distance

between two centers of the closest inclusions d001
RC , this distance

being measured in the loading direction (001). It is easily seen from

Fig. 2a, that k001RC ¼ R
a ¼ 3f

4p

� �1=3
. For the BCC configuration, the same

ratio is k001BCC ¼ R
a ¼ 3f

8p

� �1=3
. For the same volume fraction this ratio is

larger than for RC, meaning that inclusions are closer (relatively to
the radius) for RC array than for BCC. Thus, for the (001) loading
direction, the interaction between inclusions is stronger for the
RC array. As hard inclusion is considered in this first series of cal-
culations, the overall stress level is also larger for RC than for
BCC. Note that inclusions are touching each other for k001RC ¼ 0:5
or equivalently for f ¼ 0:52. Such condition can not be satisfied
for BCC configuration. Indeed, the compacity of the unit cell is
reached for f ¼ 0:68, corresponding to k001BCC ¼ 0:348. An alternative
volumic (not directional) compacity index would be R

d, with d being
the closest distance between inclusion centers. But this volumic
index would not explain the difference of results related to the
direction of loading.

Next, the effect of the loading direction is investigated to
demonstrate the capability of the scheme to reproduce anisotropy
of the overall response inherited from the topological arrangement
of inclusions. Of course, such property cannot be reproduced by the
classical Mori-Tanaka scheme. For that purpose, an isochoric ten-
sion process is adopted instead of uniaxial tension (as in the previ-
ous calculations):
Fig. 6. Overall axial stress-strain response for isochoric tension along (111) direction
configuration are compared to finite element results. The matrix has a linear viscoelastic r
Table 1, case 1. Different volume fractions of inclusions are adopted: f ¼ 0:05;0:1;0:25f
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D ¼ _�e=2 3k� k� Ið Þ; ð76Þ

where the unit vector k corresponds to the loading direction. In the
following, the cell diagonal direction (111) or the direction (001)
will be considered only. The equivalent strain rate _�e is set to
10�2 s�1. Fig. 6 presents the stress-strain response for a volume
fraction of inclusion varying from f ¼ 0:05 to f ¼ 0:4 and (111)
direction. The predictions of the cluster model (CM1) for the RC
configuration are displayed in Fig. 6a) and for BCC in Fig. 6b). We
observe that the CM1 cluster model provides efficient estimates
up to 0.2 volume fraction of inclusion for BCC array and 0.4 for RC
array. This observation is exactly reversed when compared to
results of Fig. 3 (note that the response in isochoric tension in
(001) direction is qualitatively similar to the response in uniaxial
tension in the same direction studied previously). To understand
this trend, one should compare the directional compacity indexes

which are now k111RC ¼ 1ffiffi
3

p 3f
4p

� �1=3
and k111BCC ¼ 1ffiffi

3
p 3f

p

� �1=3
. Therefore one

has k111RC < k111BCC . Inclusions are relatively closer in the (111) loading
direction for BCC array than for RC one. Thus the interaction
between inclusions is more pronounced for BCC. The heterogeneity
within the inclusion is enhanced leading to larger discrepancy
between the predictions and the FE calculations when the volume
fraction of inclusions becomes large. In addition, as inclusions (hard
phase here) are directionally closer in the BCC cell, the overall stress
level k:R:k is larger for the BCC configuration than for RC when k is
parallel to (111).

Fig. 7 presents the local axial stress k:r:k and strain k:�:k (in
the (111) direction) for two volume fractions f ¼ 0:1 and
f ¼ 0:25. As the overall response was perfectly captured for the
two RC and BCC arrays and for the low volume fraction f ¼ 0:1,
see Fig. 6, the local response in the matrix and in the inclusion
appears to be sufficiently well predicted too, at least on average.
The stress in the inclusion is only slightly underpredicted. For
f ¼ 0:25 and the RC unit cell, the overall stress-strain curve is well
captured by the two cluster models. This is also the case at the
scale of individual phases. For the BCC case and f ¼ 0:25, the mis-
match between cluster models and FE results is mostly caused by
the limited capability of capturing in a proper manner the average
value of the strain and stress in the inclusion domain. Among all
configurations of this figure, the directional compacity index for
. Predictions of a) CM1 model with RC configuration, b) CM1 model with BCC
esponse. Hard elastic inclusions are considered. Material parameters are provided in
;0:4g.



Fig. 7. Overall and local axial stress – axial strain response during isochoric tension along (111) direction. Predictions of the cluster model CM1 are compared to average
values captured by finite element calculations: a) RC unit cell with f ¼ 0:1, b) BCC unit cell with f ¼ 0:1, c) RC unit cell and f ¼ 0:25 and d) BCC unit cell and f ¼ 0:25.
Inclusions are elastic and linear viscoelasticity is considered for the matrix. Material parameters are those of Fig. 3 or listed in Table 1, case 1. Note that large dots mark the
axial stress and strain level at the overall axial strain k � E � k ¼ 0:05 and at the end of the deformation process k � E � k ¼ 0:1. In the present calculations, k is the unit vector
parallel to (111) direction.
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this case (BCC and f ¼ 0:25) is the largest: k111BCC ¼ 0:358. Therefore,
the interactions between inclusions are strong, and the associated
heterogeneity in strain field is the largest.

Fig. 8 exemplifies the intensity of the topology-induced aniso-
tropy on the overall response when the volume fraction and the
packing are varied. For that purpose, two volume fractions
(f ¼ 0:1 and f ¼ 0:25) are considered as well as the two geometri-
cal configurations: RC and BCC arrays. Isochoric tensions along
(001) and (111) directions are prescribed to the composite mate-
rial. The predictions of the cluster model CM1, of the MT scheme
and FE results are displayed in Fig. 8. For f ¼ 0:1, almost no differ-
ence in the response for the two directions is observed for the BCC
cell and limited anisotropy is seen for the RC one. Indeed, the direc-
tional compacity index is: k111BCC ¼ 0:26; k111RC ¼ 0:166; k001BCC ¼ 0:23 and
k001RC ¼ 0:288, respectively. The variation of k is more pronounced
for the RC array, leading to stronger anisotropy. Results allow to
say that when the index is lower or around 0.3, the cluster model
and FE predict similar results. Trends are confirmed for f ¼ 0:25. In
that case, the four indexes are: k111BCC ¼ 0:358; k111RC ¼ 0:22; k001BCC ¼ 0:31
and k001RC ¼ 0:382, respectively. Note also that as the index is
approaching the critical value of 0.5 (in that configuration, inclu-
sions are touching each other), inclusions become so close that
12
strong interaction effects are produced. This is the case for RC
and (001) direction, where the MT approach cannot capture this
strong interaction effect. Only the cluster CM1 can provide reason-
able predictions. This effect was discussed earlier in the paper, and
already observed for isotropic distribution of inclusions in Lahellec
and Suquet (2007) and Czarnota et al. (2015). It is also interesting
to observe that the Mori-Tanaka approach provides good agree-
ment for the loading direction presenting the lowest directional
compacity index, i. e. (111) direction for RC array and (001) direc-
tion for BCC array.
4.3. Viscoelastic inclusions

In this subsection, both phases (inclusion and matrix) have vis-
coelastic behavior. The matrix material parameters are the same as
in the previous Section 4.2 and given in Table 1.
4.3.1. Hard inclusions
In this section, the case of hard viscoelastic inclusions in a vis-

coelastic matrix is investigated. Material properties of inclusions
are provided in Table 1, Case 2. It is seen that the elastic properties
of the inclusion are similar to the previous Section 4.2, but the



Fig. 8. Comparison of the overall stress-strain response during isochoric tension along (111) and (001) directions. The topology-induced anisotropy is illustrated for: a)
f ¼ 0:1 and RC array of inclusions, b) f ¼ 0:1 and BCC array of inclusions, c) f ¼ 0:25 and RC array, d) f ¼ 0:25 and BCC array. Predictions of the cluster model CM1, of the Mori-
Tanaka approach and of finite element calculations are compared. Inclusions are elastic and linear viscoelasticity is considered for the matrix. Material parameters are those of
Fig. 3 or listed in Table 1, case 1.
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viscous response of the inclusion phase is parametrized by the
coefficient g > 1. With the proposed definition, the inclusion phase
is still the hard one, but with a more or less pronounced viscous
contribution depending on the value of g. Note that the case 1
(elastic inclusion) depicted in the previous section is recovered
when g tends to 1. The volume fraction is set to f ¼ 0:25. Uniaxial
tension along (001) direction is only considered.

Effective responses are first provided for RC and BCC unit cells
in Fig. 9a) and b). It is seen that for both arrangement of inclusions,
the prediction of the cluster model is consistent with the FE predic-
tions in the considered range of viscous parameter (g takes values:
2;5;10); the parameter ~rI

0 being in the range [960–4800] MPa. As
the viscous parameter of the inclusion is larger, the inclusion
response is closer to an elastic one. Therefore, some mismatch
between the CM1 model prediction and numerical one is retrieved.
This is more visible for the RC array, where the directional compac-
ity index is larger (k001RC ¼ 0:382 and k001BCC ¼ 0:31).

Interestingly, it has been checked that overall stress-strain
responses are also accurately predicted by the CM1 model for a
volume fraction of f ¼ 0:4 and ~rI

0 ¼ 2400 MPa. Therefore depend-
ing on the constitutive law of the two phases, introducing the
interaction between inclusions in the modeling may be sufficient
13
to propose consistent results for large volume fraction of
inclusions.

Fig. 9c) and d) compare the average local stress-strain response
in each phase for the two configurations RC and BCC. The g param-
eter is set to 10 (~rI

0 ¼ 4800 MPa). For BCC array, it is seen in Fig. 9d)
that all modeling routes (cluster model CM1 + MT + FE) provide
consistent results for the overall composite but also for average
fields in the matrix phase. Concerning the inclusion phase, the
average axial stress level predicted by the MT approach is too large
while the cluster CM1 is well capturing this level. For the RC con-
figuration, the predicting capability of the CM1 approach is still
excellent for the overall response and also at the phase level. One
observes that the MT approach significantly underestimates the
overall stress level. Clearly, with the proposed figure, as the inter-
action between inclusion becomes more intense, the need for a
more advanced model, as the cluster model, is compulsory. One
can also mention that the viscoelastic transition in the FE calcula-
tions is more progressive than in the predictions based on CM1
model. This evidences the heterogeneity of the strain field in the
inclusion domain. An extension of the cluster model accounting
for second order moment could be a strategy to be tested in a near
future.



Fig. 9. Overall axial stress-strain response in uniaxial tension along (001) direction of a) RC array, b) BCC array. Both phases have viscoelastic behavior. The inclusion phase is
the hard one. The viscous stress parameter ~rI

0 of the inclusion takes values: 960;2400;4800 MPa. The case of elastic inclusion is also added (g ¼ 1). Local and overall axial
stress-strain response for ~rI

0 ¼ 4800 MPa and c) RC array, d) BCC array. The predictions of the cluster model CM1, of the Mori-Tanaka approach for elastic-viscoplastic
materials and of FE are compared. Material properties except ~rI

0 are provided in Table 1, Case 2. The volume fraction of inclusions is f ¼ 0:25.
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4.3.2. Soft inclusions
In the last example, we consider soft inclusions, case 3 of

Table 1. The matrix phase is kept identical as in the two previous
examples, see for instance Section 4.2. In this part, to soften the
inclusion behavior, a parameter n is introduced to scale both the
Young’s modulus and the viscous stress parameter ~rI

0. In the pre-
sent paper, the condition n < 1 is enforced. Note that for n ¼ 1,
inclusion and matrix phases have identical behavior and the com-
posite is homogeneous.

Fig. 10 a) and b) presents the overall predictions given by the
CM1 cluster model and FE calculations. The parameter n takes val-

ues: 1=2;1=5;1=10 (i.e. r
� I

0 ¼ 240;96;48 MPa). For all the cases and
for the two packing arrangements RC or BCC, the agreement is
accurate between predictions of CM1 and FE routes. Results of
the MT approach are presented only for the softer case n ¼ 1=10
or ~rI

0 ¼ 48MPa in Fig. 10c) and d). For BCC array, the MT approach
provides similar overall response as the one given by CM1 and FE
models. For the RC array, the MT scheme leads to an underestima-
tion of the overall stress level.

Even if the overall response is accurate, it is seen that at the
level of phases, the situation is different. Fig. 10c) and d) depict a
situation where the magnitude of the average strain in the inclu-
14
sion is quite satisfactorily predicted by the CM1 model but the cor-
responding average stress level in the inclusion is clearly
underestimated for RC and BCC arrays. For the MT approach, one
observes that the average strain in the inclusion is really too large
for the RC configuration, leading to an underestimation of the
strain level in the matrix phase also. For the BCC one, the situation
is reversed with a small strain amplitude in the inclusion phase.

Finally, the anisotropy induced by the inclusion arrangement is
also tested for soft inclusions, see Figure 11. For illustrative pur-
pose, the parameter n ¼ 1=10 is prescribed and the volume fraction
of inclusions is f ¼ 0:25. In this example, the composite is subject
to isochoric tension, as described in Eq. (76) with the equivalent
plastic strain rate _�e ¼ 10�2 s�1. The two directions (001) and
(111) are selected. Remember that the directional compacity
indexes are: k111BCC ¼ 0:358; k111RC ¼ 0:22; k001BCC ¼ 0:31 and k001RC ¼
0:382. For the BCC configuration, the two indexes are quite similar
and as a consequence, limited anisotropy is obtained. This trend
captured by FE calculations is well reproduced by the cluster
model CM1. Note also that the Mori-Tanaka approach is providing
satisfactorily predictions. For the RC array, the uniaxial response is
clearly direction dependent. Indeed, the distance between neigh-
bouring inclusions is varying with the loading direction, so is the



Fig. 10. Overall axial stress versus axial strain in uniaxial tension along (001) direction of a) RC array, b) BCC array. Both phases have viscoelastic behavior. The inclusion
phase is the soft one. The viscous stress parameter ~rI

0 of the inclusion takes values: 48;96;240 MPa and Young’s modulus is 7;14;35 GPa, correspondingly. Local and overall
axial stres versus strain response for ~rI

0 ¼ 48 MPa, EI ¼ 7 GPa and c) RC array, d) BCC array. The predictions of the cluster model (CM1), of the Mori-Tanaka approach for
elastic-viscoplastic materials and of FE are compared. Material properties are provided in Table 1, Case 3. The volume fraction of inclusions is f ¼ 0:25.
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directional compacity index k (0.22 for (111) and 0.382 for (001)).
In this figure, it is shown that the cluster model can capture with a
good accuracy the FE results, also when soft inclusions are consid-
ered. In that case, the Mori-Tanaka model is capturing an interme-
diate response.

5. Conclusions

A mean field interaction model has been proposed for describ-
ing the global response of an elastic-viscoplastic composite and
for estimating the average stresses and strains per phases. The pre-
sent work appears as an extension to elasto-viscoplasticity of the
mean field interaction model (known also as cluster model) origi-
nally developed for linear thermoelasticity.

A two-phase composite made up of inclusions embedded in a
uniform matrix is considered. The main features of the model are
the following:

(i) Topological aspect: the spatial distribution of phases is
accounted for.

(ii) Morphological aspects: shapes of inclusions are considered
(ellipsoidal shape).
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(iii) Material aspects: phases are governed by non-linear Max-
well laws with hardening.

(iv) The tangent linearization of non-linear viscoplastic laws
(Molinari et al., 1987) is used to formulate interaction laws.

(v) Interactions between phases are described by using the con-
cept of additive interaction laws where elastic and viscoplas-
tic response are blended together. Such laws provide
relationships between local fields (intra-phase) and macro-
scopic fields.

(vi) The time evolution problem is reduced to solving a system of
first order differential equations.

The proposed approach has been validated by comparison with
unit-cell Finite Element simulations. Although the model was pre-
sented for non-linear Maxwell type responses, applications were
focused here on the linear viscoelastic case which by itself provides
a rich field of investigations. Applications to non-linear responses
is the object of future developments. For illustration, simple inter-
nal structures were considered: a single family of inclusions spa-
tially distributed according to a BCC or a RC array. Generalization
to more complex internal structures can be achieved by following
the lines proposed by Molinari and El Mouden (1996) for elastic



Fig. 11. Comparison of the overall axial stress versus axial strain during isochoric tension along (111) and (001) directions. The induced anisotropy is illustrated for: a) RC
array of inclusions, b) BCC array of inclusions. Predictions of the cluster model (CM1), of the Mori-Tanaka (MT) approach and of finite element calculations are compared. The
volume fraction of inclusions is f ¼ 0:25. Inclusion and matrix phases have a linear viscoelastic behavior, with material parameters listed in Table 1, Case 3. Inclusion is the
soft phase. The viscous stress parameter and Young’s modulus for the inclusion phases are set to ~rI

0 ¼ 48 MPa and EI ¼ 7 GPa.
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composites. The approach can be also adopted to study random
distributions described by a given probability density function.

The viscoelastic case is known to offer difficulties when treated
with available approaches, see e.g. Czarnota et al., 2015; Lahellec
and Suquet, 2007, especially when elastic inclusions of finite vol-
ume fraction are embedded in a viscoelastic matrix. As concerns
material properties of inclusions, three cases were analyzed: elas-
tic and viscoelastic inclusions which are stiffer or softer than the
matrix. Comparisons with Finite Element simulations have shown
that accounting for particle-to-particle interactions enables to sig-
nificantly improve accuracy of estimates (both in terms of overall
and per phase responses) with respect to schemes ignoring these
interaction effects (for instance the Mori-Tanaka model).

Moreover, the proposed interaction cluster model correctly pre-
dicts the overall anisotropy induced by the internal architecture of
the composite (topology-induced anisotropy).

The model was shown to provide accurate results for the global
response and for local fields up to relatively large volume fractions
of inclusions (volume fraction of 0.25 in the worst case). Thus, at
finite volume fractions of inclusions, taking account for inclusion-
to-inclusion interactions is an essential aspect that cannot be
achieved by classical homogenization schemes. To improve the
quality of results for volume fractions of inclusion larger than
0.3, a strategy could be to enrich the present model by accounting
for second order moments of local fields per phases.

All results were obtained under the framework of uniform
strain boundary condition. It could be of interest to investigate
the case of spatially slowly-varying strain field (quadratic displace-
ment field) to capture the non-local effective response.

Altogether, the capacities of the proposed mean field interaction
model to capture topological effects are opening interesting per-
spectives for architectured materials. In particular, the model could
be used as an efficient tool for tuning the internal structure of com-
posite materials to tailor desirable overall properties.
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Appendix A. Derivation of Eq. (20)

From Eq. (11) we have:

P0
� ��1

� �0 � Eð Þ ¼ f CI � �I � Cm � �Ið Þ þ fDbIh ðA:1Þ

Then, by using the strain average equation, f�I ¼ E� 1� fð Þ�m, and
the constitutive laws for inclusion and matrix phases, Eqs. (2,3), we
obtain:

P0
� ��1

� �0 � Eð Þ ¼ frI þ 1� fð Þrm � Cm � E� bmh ðA:2Þ

With the stress average equality and the definition of r0, Eq. (14), to
eliminate bmh in Eq. (A.2), it follows that:

P0
� ��1

� �0 � Eð Þ ¼ R� r0 þ Cm � �0 � Eð Þ ðA:3Þ

from which Eq. (20) results.

Appendix B. System of first order differential equations
governing the principal variables rI ;rm and r0.

It is shown here that Eq. (68), Eq. (69) and Eq. (74) provide a lin-
ear system of first order differential equations governing the time
evolution of the stresses rI;rm and r0.

Consider for instance Eq. (68). All terms are seen to be function
of the principal variables rI;rm;r0 and their time derivatives. This
results from: (i) Eq. (70) for d0, (ii) Eq. (74) for D, (iii) Eq. (54) for
M0

v smð Þ and (iv) R ¼ frI þ 1� fð Þrm. Note that according to Eq.
(70), d0 is linearly related to _r0 and is depending upon r0 and

rm through s0 ¼ dev r0ð Þ and sm ¼ dev rmð Þ, since Mtg
m and dref

m are
function of sm. Similarly, dI and dm are functions respectively of
_rI;rI , and _rm;rm, through the constitutive law: dk ¼ Mk � _rkþ
Fk skð Þ, (k ¼ I for inclusion, k ¼ m for matrix). Thus, it appears
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clearly that Eq. (68) is linearly dependent upon the stress rates
_rI; _rm and _r0.

Similar considerations can be developed for Eq. (69) and Eq. (74).
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