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The work presents an elasto-plastic material model with mixed hardening tak-
ing into account martensitic transformation. Modification of the kinematic hardening
rule is proposed by relating back stress to the generalized thermodynamic force by
a nonlinear function dependent on the fraction of martensite. The martensitic evo-
lution is expressed in terms of isotropic hardening parameter by introducing proper
free energy related force. The proposed model has been applied to predict hysteretic
response for cyclic tension and compression tests for austenitic steel.

1. Introduction

Material undergoing phase transformation, especially the martensite tran-
sition have been examined theoretically and experimentally for more than 50
years. Such phase transformation may occur in certain types of austenitic steels,
so-called metastable ones, such as high manganium or high nickel steels. This
transformation takes place as a result of varying temperature, applied stress or
by induced plastic strain. The transformation caused by stress or plastic strain,
so called athermal transformation, takes place even at room temperature (also
induced by cyclic loading). The ample literature in the area of athermal trans-
formation is devoted to the effect commonly known as TRIP (transformation
induced plasticity).

The present paper provides the discussion of another problem, namely the
martensitic transformation induced by plastic strain (PIMT). Such transforma-
tion can substantially affect mechanical properties by increasing the hardening
rate and the form of hysteresis loops, generated in the cyclic loading process.
Figure 1 presents the steady cyclic loops obtained for AS 304L steel at dif-
ferent strain amplitudes by Kaleta and Zie֒tek, [1]. The majority of papers,
especially the experimental ones devoted to this problem, examine mostly mono-
tonic loading (Lebedev et al. [2], Ganesh et al. [3], Piwecki, [4]). However
such transformation occurs also under cyclic loading (Mughrabi et al. [5],
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Sugimoto et al. [6], Kaleta et al. [1], Garion et al. [7]), and it can sub-
stantially affect material properties. Only microscopic observations and struc-
tural examinations performed, for example, by means of electron microscope
can determine the amount of existing martensite. The paper of Kaleta and
Zie֒tek [1], presents results of such examinations indicating appearance of the
α′ martensite inside austenite under uniaxial cyclic strain. It is seen that the
hardening modulus increases starting from some value of plastic strain in both
compressive and tensile semi-cycles. There is a characteristic inflection point on
the cyclic skeletal curve connecting the tips of hysteresis loops, Fig. 1.

Fig. 1. Cyclic stress-strain curve and steady state σ − ε loops for strain controlled cyclic
loading (from Kaleta and Zie֒tek, [1]).

Phenomenological constitutive equations are usually formulated within the
framework of irreversible thermodynamics with account for internal state vari-
ables ([8]). This allows for the analysis of kinetics of deformation processes as
well as of evolution of generalized thermodynamic forces. The two-phase mater-
ial is then treated as a thermodynamical system with two irreversible processes,
namely, phase transformation and plastic deformation. The selection of internal
variables and macroscopic parameters is essential for this approach. The volume
fraction of martensite ξ is the most popular macroscopic internal variable spec-
ifying the growth of martensitic phase [9, 10]. The derived evolution equation
for this parameter together with suitable model of material hardening provides
a complete set of equations specifying the response, with account for structural
changes induced by martensitic transformation. In Sec. 2 we propose a simple
constitutive model of plastic response with the combined isotropic-kinematic
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hardening and cyclic stress evolution dependent on martensite volume fraction ξ.
The specification of material functions and parameters is presented in Sec. 3.
The model is applied to simulate cyclic response of steel with some examples
presented in Sec. 4.

2. Elastic-plastic model

To formulate the constitutive relations, assume the combined (isotropic-
kinematic) hardening model. A familiar Huber–Mises yield condition takes the
form

(2.1) Fp =

√

3

2
(sij − fij)(sij − fij) −R(κ) ≤ 0,

where sij is the stress deviator, R(κ) denotes the yield surface radius (size) and
κ is the monotonically increasing accumulated plastic strain measure. The yield
surface centre is specified by the deviatoric tensor fij related to the back stress
Xij by the following equation:

(2.2) fij = Xij(1 + aXmnXmn), or f = X(1 + aX · X) = X(1 + aX2),

whereX2 = X·X and a = a(ξ) > 0 is the function of the martensite volume frac-
tion, so that a(0) = 0. Thus, for ξ = 0, we obtain the classical kinematic harden-
ing model with the back stress X = [Xij ] representing the yield surface centre.
The dot between two vector or tensor symbols denotes their scalar product.

The back stress Xij does not correspond to the yield surface centre for a > 0
(Fig. 2). It is shifted by the vector

(2.3) fij −Xij = (aXklXkl)Xij ,

which depends on the martensite volume fraction and is proportional to the
second invariant of the back stress.

The yield surface specifies the regimes of plastic flow and elastic deformation.
Additionally, we have to formulate the condition of martensite transformation
in the form

(2.4) Ftr = Σ −G(ξ, κ) ≤ 0,

where Σ denotes the generalized transformation force conjugate with ξ and
G(ξ, κ) is the dissipative force dependent on both plastic strain and martensite
volume fraction, thus allowing for the analysis of coupled effect of two irreversible
processes.
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Fig. 2. The yield surface with back stress shifted from the surface centre.

The elastic state of material can be specified in terms of state variables α1

and conjugate forces A1,

(2.5) α1 = (εe, T ) → A1 = (σ, S)

where εe =
[

εeij

]

is the elastic strain tensor, T denotes the temperature, σ = [σij ]

is the Cauchy stress tensor and S is the specific entropy per unit mass. The
hardening state is specified in terms of internal state variables and conjugate
generalized forces

(2.6) α2 = (η, ξ, κ) → A2 = (X, Σ,R)

where η = [ηij ] is the microstrain conjugate to the back stress X.
The specific free energy Ψ̃ per unit mass is assumed to be a function of state

and internal variables. For an isothermal process, assume the following form as
a sum of elastic and stored energies:

(2.7) ρΨ̃ = Ψ(α1,α2) =
1

2
Λijklε

e
ijε

e
kl +

1

2
C1ηijηij + ϕ(ξ, κ)

where ρ is the mass density. The conjugate forces are specified from the potential
relations, thus

(2.8)

σij =
∂Ψ

∂εeij
= Λijklε

e
kl, Xij =

∂Ψ

∂ηij
= C1ηij ,

Σ =
∂Ψ

∂ξ
=
∂ϕ

∂ξ
, R =

∂Ψ

∂κ
=
∂ϕ

∂κ
,

where Λijkl is the tensor of elastic stiffness moduli.
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Assume the total strain as a sum of elastic and inelastic components, thus

(2.9) εij = εeij + εpij

where

(2.10) εpij = εsij + εtrij .

Here εsij denotes the plastic strain due to polycrystalline slip and εtrij is the
transformation strain induced by martensite combined with twinning. In our
model formulation, we shall not make distinction between εsij and εtrij as it is
difficult to specify this irreversible strain decomposition experimentally.

For the increasing stress, we have first the case of plastic deformation, so
that

(2.11) Fp = 0, Ḟp = 0 and Ftr < 0

and no martensite transformation occurs. The associated flow rule specifies the
plastic strain rate and the non-associated evolution rules specify the microstrain
and the back stress rate, thus

ε̇pij = λ̇1
∂Fp

∂σij
= λ̇1

3(sij − fij)

2R
,(2.12)

η̇ij = −λ̇1

(
∂Fp

∂Xij
+
∂Ψ r

∂Xij

)

, Ψ r =
1

2
CXijXij(2.13)

and

(2.14) κ̇ = −λ̇1
∂Fp

∂R
= λ̇1.

In writing (2.13), we introduce the recovery potential Ψ r = Ψ r(Xij) by assum-
ing the evolution of back stress to be governed by the hardening and recovery
processes. In view of (2.8), we have

(2.15) Ẋij = C1η̇ij = C1Aijklε̇
p
kl − λ̇1C1CXij

where

(2.16) Aijkl = δijkl[1 + aXmnXmn] + 2aXijXkl

and δijkl is the unit tensor. Let us note that for a = 0, the back stress evolution
rule (2.15) becomes the familiar Frederick–Armstrong rule

(2.17) Ẋij = C1ε̇
p
ij − λ̇1C1CXij
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accounting in a simple way for hardening and recovery effects. It is clear that
for constant values of C1 and C, the back stress evolves to the limit surface
F l(X) = 0. In fact, setting Ẋij = 0 at the limit state, from (2.17) we obtain

(2.18) Xij =
1

C

3(sij −Xij)

2R

and in view of (2.1) there is a limit surface in the back stress space specified by

(2.19) F l(X) =

√

3

2
XijXij −Rx = 0, Rx =

3

2C
.

Similarly, in the stress space we have

(2.20) Fl(σ) =

√

3

2
sijsij −Rl = 0, Rl = R+

3

2C
.

Equations (2.19) and (2.20) specify the limit surface in respective spaces. The
transformation rule (2.17) can now be rewritten in the form

(2.21) Ẋ = λ̇1(sl − s)γ = λ̇1(Xl − X)CC1

where sl and Xl are the limit states on the surfaces Fl(σ) and Fl(X) correspond-
ing to the same normal vector of the yield surface at the current state, Fig. 3, thus

(2.22) sl = (s − X)

(

1 +
3

2RC

)

, Xl =
3

2RC
(s − X).

Figure 3a illustrates the evolution rule (2.21). The back stress evolves along the
vector (sl − s) or (Xl −X) tending to the limit state Xl for constant orientation

a) b)

Fig. 3. Evolution of the back stress X to the limit state Xl, specified by a) Eq. (2.21)
and b) Eq. (2.15).
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of the plastic strain rate vector. Let us note that the coaxiality rule occurs
at the limit state between Xl and ε̇p. Let us note that evolution rule (2.21)
is identical to that proposed by Mróz [11], in formulating the multisurface
hardening model, and next extended by Mróz and Rodzik [12], in order to
simulate quantitatively ratcheting and memory effects in cyclic deformation.

Consider now the evolution rule (2.15) which can be rewritten in the form

(2.23) Ẋij = C1λ̇1

[
3(sij − fij)

2R
(1 + aX2) + 3a

Xkl(skl − fkl)

R
Xij − CXij

]

.

If a limit state exists, then Ẋij = 0, and

(2.24)

[
3(sij − fij)

2R
(1 + aX2) + 3a

Xkl(skl − fkl)

R
Xij

]

− CXij = 0

so the coaxiality rule occurs, namely

(2.25)
1

1 + aX2

(

C − 3a
X · (s − f)

R

)

X =
3(s − f)

2R

and the transition rule (2.21) remains valid, see Fig. 3b.

Equations (2.24) multiplied by
3(sij − fij)

2R
and Xij provide the system of

two scalar equations

(2.26)

[

3

2
(1 + aX2) + 2a

(
3X · (s − f)

2R

)2
]

− C
3X · (s − f)

2R
= 0,

[

(1 + aX2)
3X · (s − f)

2R
+ 2a

(
3X · (s − f)

2R

)

X2

]

− CX2 = 0,

with two unknowns, X2 and
3X · (s − f)

2R
. After rearrangements, we arrive at

the equation specifying the size of the limit surface in the form

(2.27)
(
aX2 + 1

)

(

X2 − C2 − 9a− C
√
C2 − 18a

27a2

)

·
(

X2 − C2 − 9a+ C
√
C2 − 18a

27a2

)

= 0.

Equation (2.27) has no positive roots when

(2.28) 18a ≥ C2
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and then the limit surface does not exist. Thus when a = 0, ξ = 0 at the
initial transformation state, the evolution rule (2.17) or (2.21) predicts the usual
saturation value of the back stress. Assuming the monotonic function a = a(ξ),
the critical value ac = a(ξc) = C2/18 is reached and for a > ac the limit surface
does not exist. The hardening process is strongly affected by the increasing
martensite fraction and for ξ > ξc it dominates over the recovery process.

The hardening modulus H can be determined from the consistency condition

(2.29)
∂Fp

∂σij
σ̇ij − λ̇1H = 0,

and we obtain

(2.30) H = {Aijkl}
∂Fp

∂σkl

(

C1{Aijmn}
∂Fp

∂σmn
− γXij

)

+
∂R

∂κ

=
3

2

{

C1(1 + aX2)2 + 6aC1

(
X · (s − f)

R

)2

(1 + aX2)

+
X · (s − f)

R

(

X2C1(4a
2 − 2aC − 3

2
C
)}

+
∂R

∂κ
.

The parameter κ is proportional to the length of the plastic strain trajectory.
The martensitic transformation process proceeds when κ reaches the critical
value κc, and then we have

(2.31) Fp = 0, Ḟp = 0 and Ftr = 0, Ḟtr = 0.

The evolution rule for the volume fraction of martensite has a form

(2.32) ξ̇ = −λ̇2
∂Ftr

∂Σ
= −λ̇2.

In view of Eq. (2.4), we have

(2.33) λ̇2 =
Σκ −Gκ

Gξ −Σξ
κ̇

where

(2.34) Gκ =
∂G

∂κ
, Gξ =

∂G

∂ξ
, Σκ =

∂Σ

∂κ
, Σξ =

∂Σ

∂ξ
.
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3. Selection of free energy function and material parameters

Appropriate forms of the functions ϕ(ξ, κ) and G(ξ, κ) must be selected in

order to describe the coupled process of the martensitic transformation and the

plastic deformation. Assume the condition that both, the yield surface radius R

and the martensite volume fraction ξ tend to limit valuesR∗ and ξ∗ for increasing

accumulated plastic strain, κ→ ∞. Assume that the stored free energy function

is of the form

(3.1) ϕ(ξ, κ) = a1ξκ+ a2κ+ a3

(
e−a4κ − 1

)
,

where 0 ≤ ξ ≤ 1 and κ ≥ 0. The first term of (3.1) represents the stored free

energy associated with martensite transformation and the effective accumulated

plastic strain and the subsequent terms provide the variation of the radius R

due to plastic hardening, so that

(3.2)

R = a1ξ + a2 − a3a4e
−a4κ,

Σ =
∂ϕ

∂ξ
= a1κ.

Assuming the form of the function G(ξ, κ), we may obtain the relation between

the parameter ξ and the effective accumulated plastic strain

(3.3) G(ξ, κ) =
b1ξκ

b2 − e−b3κ
+Go.

Taking into account Eqs. (2.4), (3.2) and (3.3), we have the martensite evolution

rule in the form

(3.4)

ξ = ξ∗
(

1 − κc

κ

)(

1 − 1

b2
e−b3κ

)

, ξ∗ =
a1b2
b1

and κ ≥ κc =
Go

a1
.

The martensite volume fraction ξ and the yield surface radius converge asymp-

totically to limit values

(3.5) ξ −→
κ→∞

ξ∗ and R −→
κ→∞

a1ξ
∗ + a2.

The parameter a occurring in Eq. (2.3) is the function of the martensite volume

fraction ξ, so it converges to a limit value a∗

(3.6) a [ξ (κ)] −→
κ→∞

a∗ = a(ξ∗).
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a)

b)

Fig. 4. The form of functions a) ξ = ξ(κ), b) R = R(κ).

4. Application of constitutive model: evolution of hysteresis loops

in uniaxial cyclic straining

The model identification was performed for the exemplary martensitic trans-

formation in steel AISI 304L. The deformation process of cylindrical specimens
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was examined in the cyclic uniaxial tension – compression tests. The control

was imposed on the amplitude of the plastic strain εap. The measured quanti-

ties are total strain ε, elastic strain εe and the stress σ in the cyclic deforma-

tion process. The details of performed experiments and their results are pre-

sented in [1]. Approximation has been performed making use of the package

PLOT 4.0.

For the uniaxial tension-compression, Eqs. (2.1) and (2.15) take the form

(4.1)
∣
∣σ −X − a(ξ)X3

∣
∣ = R,

(4.2) Ẋ =
3

2
C1(1 + 2a(ξ)X2)ε̇p − C1CX |ε̇p|

where |ε̇p| = λ̇1. Denoting by Ẋ the derivative dX/dλ1 from (4.2) we obtain

two equations specifying the evolution of X for tension and compression events,

namely

(4.3)

Ẋt =
3

2
C1 − γX + 3Ca

1 (ξ)X2, ε̇p > 0,

Ẋc =
3

2
C1 + γX + 3Ca

1 (ξ)X2, ε̇p < 0

where γ = CC1.

Figure 5a presents the variation of Ẋ following the rules (4.3). It is seen

that for X = ±C/6a (points K and L in Fig. 5a) the rate of back stress in-

creases on both the tension and compression paths. The stress-strain hysteresis

loop then exhibits inflection points with increased rate of hardening (points

K ′′ and L′ in Fig. 5b). To preserve the positive values of Ẋt and Ẋc, the

discriminant of the quadratic forms (4.3) should be negative definite so that

a(ξc) > C2/18. This inequality is identical to (2.28) derived for the general

stress state.

When a(ξ) ≤ a(ξc), then the limit surface exists and recovery process domi-

nates over the hardening process, thus assuring the saturation state. There are

two real roots for the parabolas (4.3). The root

(4.4) Xlim =
C −

√
C2 − 18a

6a

determines the limit value of the back stress.Xlim −→
a→0

3

2C
andXlim (a(ξc)) =

3

C
,

so
3

2C
≤ Xlim ≤ 3

C
. Figure 6 presents the variation of Ẋ and the corresponding

back stress – strain hysteresis loop.
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a)

Fig. 5. Back stress evolution for a(ξ) > a(ξc) in cyclic deformation: a) variation of the rate
of back stress, b) back stress hysteresis loop.

b)

b)

a)

Fig. 6. Back stress evolution for the case a(ξ) ≤ a(ξc): a) variation of rate of back stress,
b) back stress hysteresis loop.
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Now there is no inflection point on the X, εp diagram. Starting from the value
ξ = ξc, the increasing martensite fraction induced the increase of hardening rate
and the radius of the limit surface tends to infinity.

The parameter a = a(ξ) is a function of martensite volume fraction ξ and
in view of Eq. (3.2), it can be expressed in term of plastic strain, so Eq. (4.3)
is the Riccati equation. This equation may be integrated exactly for a = const.
Assuming a∗ = a(ξ∗), Eqs. (4.3) can be integrated along the loading path CF
and the reverse loading path AC (Fig. 5). We may obtain for CF

(4.5) X(εp) = D tan

[

2a∗C1D(εp + εap) + arctan

(
Xa

D
− C

6a∗D

)]

+
C

6a∗
,

and for FC

(4.6) X(εp) = D tan

[

2a∗C1D(εp − εap) + arctan

(

−Xa

D
+

C

6a∗D

)]

− C

6a∗
,

where D =

√
18a∗ − C2

6a∗
and a∗ >

C2

18
.

Next, the relation between stress and plastic strain is specified, thus

(4.7) σ = R∗ +X(εp) + a∗X(εp)
3.

The first step of the identification was to find the values of parameters C1

and C in order to specify the steady state of the material, R = R∗, ξ = ξ∗,
a∗ = a(ξ∗). The constants R∗, C and C1 were determined, for different values
of a∗, making use of common approximation of the hysteresis loops chosen from
each load level (Fig. 1). The examples of approximation of the hysteresis loop
and the cyclic stress-strain curve are presented in Figs. 7 and 8.

Fig. 7. The hysteresis loop at constant value of a (a∗ = 0.0001). The case a(ξ) > a(ξc).
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Fig. 8. Cyclic stress-strain curve at constant value of a (a∗ = 0.0001). The case a(ξ) > a(ξc).

Next, we perform the simulation for two kinds of asymptotic convergence

of the function a(ξ), (Fig. 9). The values C1 = 48 GPa, C = 0.027 MPa−1 and

R∗ = 150 MPa are obtained as a result of identification of the experimental data

for the steady state.

a)

[Fig. 9a]
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b)

Fig. 9. The exemplary forms of the function a: a) a = a(ξ), b) a = a[ξ(κ)] = a(κ).

Results of the simulation for the constant strain amplitude εap and two
different kinds of the convergence of the function a = a(ξ) are presented in
Figs. 10 and 11.

However, the results of simulation for constant stress amplitude are presented
in Fig. 12. The hysteresis loops for constant strain amplitude and constant stress
amplitude stabilize very quickly, but we obtain the shift of the hysteresis loops
for constant stress amplitude. This shift depends on the direction of first cycle
(compression or tension).

a)

[Fig. 10a]
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b)

Fig. 10. The evolution of cyclic hysteresis loops for constant plastic strain amplitude
(εap = 0.006) and varying a(κ) = 0.0001(1− exp(−20κ)); a) plastic strain – back stress,

b) plastic strain – stress.

a)

b)

Fig. 11. The evolution of cyclic hysteresis loops for constant plastic strain amplitude
(εap = 0.006) and varying a(κ) = 0.0001(1− exp(−200κ)): a) plastic strain – back stress,

b) plastic strain – stress.
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a)

b)

Fig. 12. The evolution of cyclic hysteresis loops for constant stress amplitude
(σa = 300 MPa): a) plastic strain – back stress, b) plastic strain – stress.

5. Conclusions

The paper presents an elasto-plastic model with possible appearance of the
second phase – martensite in austenite. Constitutive equations were derived
making use of irreversible thermodynamics with internal parameters. The mod-
ification of the yield surface allows the description of evolution of the hardening
observed for such type of materials. The martensite volume fraction depends
on the effective accumulated strain. This parameter may be determined in mi-
croscopic experiments. Such experiments may assist in selecting an adequate
form of the evolution functions and offer information on the kinetics of phase
transformation. However, quantitative description requires values resulting from
the suitably designed macroscopic experiments. The function appearing in the
phenomenological description is selected to fit the experimental data.



20 Z. Mróz, G. Zie֒tek

References

1. J. Kaleta, and G. Zie֒tek, Representation of cyclic properties of austenitic steels with
plasticity-induced martensitic transformation (PIMT), Fatigue and Fracture of Engineer-
ing Materials and Structures, 21, 955–964, 1998.

2. A.A. Lebedev and V. V. Kosarchuk, Influence of phase transformations on the me-
chanical properties of austenitic stainless steels, Int. J. Plasticity, 16, 749–767, 2000.

3. S. Ganesh Sundara Raman, and K.A. Padmanabhan, Tensile deformation-induced
martensitic transformation in AISI 304LN austenitic stainless steel, J. Materials Science,
Letters, 13, 389–392, 1994.

4. M. Piwecki, Strain-induced austenite transformation in 1H18N9 stainless steel under
combined state of stress, Arch. Metallurgy, 32, 150–161, 1987.

5. H. Mughrabi and H-J. Christ, Cyclic deformation and fatigue of selected ferritic and
austenitic steels: specific aspects, LSIJ International. 37, 1145–1169, 1997.

6. K. I. Sugimoto, M. Kobayashi and S. I. Yasuki, Cyclic deformation behavior of a
transformation-induced plasticity-aided dual-phase steel, Metall. and Mater.s Trans. A,
28A, 2637–2644, 1997.
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12. Z. Mróz, and P. Rodzik, On multisurface and integral description of anisotropic hard-
ening evolution in metals, Eur. J. Mech., A/Solids, 15, 1–28, 1996.

Received February 14, 2006.


