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Fractional response analysis reveals logarithmic
cytokine responses in cellular populations
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Jan Rehwinkel 2 & Michał Komorowski 1✉

Although we can now measure single-cell signaling responses with multivariate, high-

throughput techniques our ability to interpret such measurements is still limited. Even

interpretation of dose–response based on single-cell data is not straightforward: signaling

responses can differ significantly between cells, encompass multiple signaling effectors, and

have dynamic character. Here, we use probabilistic modeling and information-theory to

introduce fractional response analysis (FRA), which quantifies changes in fractions of cells

with given response levels. FRA can be universally performed for heterogeneous, multivariate,

and dynamic measurements and, as we demonstrate, quantifies otherwise hidden patterns in

single-cell data. In particular, we show that fractional responses to type I interferon in human

peripheral blood mononuclear cells are very similar across different cell types, despite sig-

nificant differences in mean or median responses and degrees of cell-to-cell heterogeneity.

Further, we demonstrate that fractional responses to cytokines scale linearly with the log of

the cytokine dose, which uncovers that heterogeneous cellular populations are sensitive to

fold-changes in the dose, as opposed to additive changes.
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Many studies of signaling systems involve examining how
the intensity of a stimulus, e.g., cytokine dose, translates
into the activity of signaling effectors, e.g., transcription

factors1–7. This is usually done by exposing cells to a range of
doses and measuring responses either in bulk or at the single-cell
level. Results of such experiments are then represented and
interpreted in terms of dose–response curves. The standard
dose–response curve depicts how the mean, median, or a char-
acteristic of choice, changes with the increasing dose, and pro-
vides a basic, first-order model of how a signaling system
operates. Several aspects of cellular signaling are difficult to
analyze with mean/median dose–responses. For example, sig-
naling responses can differ significantly between cells, encompass
multiple signaling effectors, and are dynamic. First, outwardly
very similar cells exposed to the same stimulus exhibit substantial
cell-to-cell heterogeneity8–11 (see refs. 12–14 for review). There-
fore, the same mean/median response can result from a small
fraction of strongly responding cells or a significant fraction of
weakly responding cells1,2,15. Second, the highly interconnected
architecture typical for mammalian signaling usually results in a
single stimulus activating several primary signaling effectors or
downstream genes16–21. For example, effectors of type I inter-
ferons include six members of the signal transducer and activator
of transcription (STAT) family22, which are activated with dif-
ferent sensitivities at different doses. Therefore, the description of
dose–response in terms of an individual signaling effector is
incomplete23. Third, live-cell imaging experiments demonstrated
that the dose may not only alter the response at a single time-
point but can control temporal profiles of signaling
responses24,25. For instance, low doses of tumor necrosis factor-
alpha (TNF-α) may induce one peak of nuclear factor-κB sig-
naling activity, whereas higher doses may induce additional
peaks7,26. Besides, the dose may control the onset, shut off,
amplitude, or, in principle, any other characteristics of the
responses27–30. Overall, mean/median dose–response curves do
not capture the inherent complexity of single-cell high-through-
put data, and an alternative approach is required. We have used
probabilistic modeling and information-theory to develop a dif-
ferent analytic framework, fractional response analysis, involving
fractional cell counting, which is capable of deconvoluting
behaviors of heterogeneous cellular populations.

Results
Conventional dose–response analysis does not capture complex
data. To demonstrate the need and utility of FRA, we studied type
I interferon signaling in human peripheral blood mononuclear
cells (PBMCs), a system involving multiple signaling effectors,
cell-to-cell heterogeneity, and several cell types. Dose–responses
to the type I interferon variant IFN-α2a were analyzed via whole-
cell tyrosine phosphorylation levels of effector proteins STAT1,
STAT3, STAT4, STAT5, and STAT6 (pSTATs) measured jointly
in individual cells using mass cytometry (CyTOF). Cells were
collected from a healthy donor, and measurements were per-
formed 15 min after IFN-α2a stimulation, the time of maximal
response (Supplementary Fig. 1). Along with signaling effectors,
26 phenotypic markers (Supplementary Table 1), such as CD3
that marks T cells, were measured to allow for identification of
several cell types including B cells, CD4+ T cells, CD8+ T cells,
natural killer (NK) cells, and CD14+ monocytes31–33 (Supple-
mentary Fig. 2). Such multivariate data are often analyzed using t-
SNE plots to visualize multiple cell types and signaling
effectors32,33 (Fig. 1a, b, Supplementary Fig. 3), which is a pre-
requisite for a more-detailed quantitative analysis usually invol-
ving mean/median dose–responses and population response
distributions of individual signaling effectors. Following this

strategy, mean levels and distributions of pSTATs in B cells,
CD4+ T cells, CD8+ T cells, NK cells, and CD14+ monocytes
were calculated (Fig. 1c, d) and revealed that each STAT reached
different maximal phosphorylation level for different doses in a
particular cell type. Medians and means of the log-data (Sup-
plementary Fig. 4a, b) yielded similar conclusions. Plotting dis-
tributions of individual signaling effectors (Fig. 1d,
Supplementary Fig. 4c) exposed considerable differences in terms
of cell-to-cell heterogeneity between cell types and STATs.
Nonetheless, no pattern in the functioning of the signaling system
was apparent. However, the data involved five signaling effectors
measured in single cells of five different types resulting in a
tangible complexity possibly covering any existent regularities,
which highlights the need for comprehensive approaches capable
of handling complex data.

Fractional response curves. Outcomes of physiological processes,
e.g., of inflammation or stress responses, depend on the number
of cells with specific responses, rather than on their mean or
median, which constitutes the fraction of cells with a given
response as a biologically relevant variable. We proposed, there-
fore, to quantify dose–responses in terms of cellular fractions and
show here how this can be achieved for multivariate data.

We first introduced the fractional response curve (FRC) that
quantifies fractions of cells that exhibit different responses to a
change in dose, or in fact any other experimental condition. For
each subsequent dose, the increase of FRC reflects the fraction of
cells that exhibit responses different from lower doses. Adding
cumulatively distinct fractions results in counting the number of
distinct response distributions.

For an illustration of FRC, in addition to the formal definition
derived in Methods, we considered a simple hypothetical example
involving one signaling effector and three doses, although the
approach extends to a general multivariate scenario. Response
distributions to three doses, x1, x2, x3, which can be interpreted as
control, intermediate, and high dose, are shown in Fig. 2a. When
dose 1 was considered alone, fractions of cells with all possible
responses sum up to 1 (Fig. 2b). Therefore, we defined the value
of the FRC for dose 1 to be 1, and write r(x1)= 1. We then asked
what fraction of the cellular population exhibits different
responses after the change from dose 1 to dose 2. The fraction
of cells exhibiting different responses is equivalent to the overall
increase in the frequency of responses (Fig. 2c, green region). The
overall fractional increase, denoted as Δr, is calculated as the area
of the green region, and Δr= 0.31, represents the 31% of the
cellular population exhibiting different responses due to dose
increase. Therefore, we defined the value of the FRC for dose 2 to
be the sum of the previous value and the fractional increment,
r(x2)= r(x1) + Δr= 1.31. When dose 3 was considered, the
fraction of cells that exhibited different responses is again
equivalent to the overall increase in the frequency of different
responses, now compared with the two lower doses (Fig. 2d). As
before, the overall increase, Δr, is equivalent to the area of the
yellow region (Fig. 2d), with Δr= 0.74, representing 74% of cells
stimulated with dose 3 exhibiting responses different to
populations stimulated with lower doses. Again, the value of
the FRC for dose 3 was defined as the sum of the previous value
and the fractional increment, r(x3)= r(x2) + Δr= 2.05. Changes
in the FRC show what fraction of cells exhibit different responses
owing to the dose increase. Adding subsequent fractional
increments, Δr, leads to the value of FRC expressed in terms of
the cumulative fraction of cells that exhibit different responses
due to dose change.

The sum of the dose-to-dose increments, also, records the
number of distinct response distributions that were

ARTICLE NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-021-24449-2

2 NATURE COMMUNICATIONS |         (2021) 12:4175 | https://doi.org/10.1038/s41467-021-24449-2 | www.nature.com/naturecommunications

www.nature.com/naturecommunications


experimentally observed, which provides the second interpreta-
tion of the FRC. Precisely, for dose 1 considered alone, a single
response distribution was observed, r(x1)= 1. Dose 2 added 31%
of a distinct distribution, and r(x2)= 1.31 (the gray area, Fig. 2d).
Similarly, accounting for all three doses we had 2.05 distinct
response distributions (the gray area, Fig. 2e). The number of
distinct response distributions induced by changing dose

quantifies the number of programmed responses of a cellular
population, which appears to provide relevantly, yet, so far,
unexplored, quantitative characteristics of signaling systems
(Supplementary Fig. 5).

The FRC can be universally calculated for any type of signaling
data, i.e., an arbitrary number of signaling effectors, time points
of measurements, doses, or other experimentally varied
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parameters, as long as sufficient data are available. The
interpretation for univariate and multivariate data are the same
(compare Fig. 2 and Supplementary Fig. 6). The response
probability distributions do not need to be explicitly quantified,
as the distinct fractions can be estimated with logistic regression
(see Methods) or, in principle, other statistical classifiers, which is
particularly relevant for multivariate data.

In addition to the interpretations in terms of fractions of cells,
FRC has a rigorous mathematical definition in terms of Rényi
information, which, broadly speaking, counts probability dis-
tributions corresponding to outputs of a communication system
(see Supplementary Note 1 and Supplementary Table 2). It differs
from more frequently used Shannon information as discussed in

detail in Supplementary Note 2 using G protein-coupled
receptors (GPCRs) signaling data6 as well as theoretically.

Fractional cell-to-cell heterogeneity. The FRC quantifies frac-
tions of cells that exhibit different responses due to dose change
but does not quantify overall cell-to-cell heterogeneity: it does not
show what fraction of cells exposed to one dose exhibits responses
in the range characteristic for other doses. Therefore, within FRA,
we propose to augment the FRC with quantification of the
overlaps between distributions corresponding to different doses.
We call a given response as typical for a given dose if it is most
likely, i.e., most frequent, to arise for this specific dose compared

Fig. 1 Dose–responses to IFN-α2a in PBMCs. a t-SNE plots constructed based on phenotypic markers. Cell types are encoded by color and each dot
represents a single cell. b t-SNE plots of whole-cell pSTATs levels 15min after stimulation with two selected doses of IFN-α2a as well as in unstimulated
cells. Positions of dots corresponding to single cells are the same as in a allowing cell type identification. The color of each dot represents normalized (0 for
minimum and 1 for maximum) mass cytometry signal. Analogous t-SNE plots for all considered doses are shown in Supplementary Fig. 3. c Mean pSTATs
levels in five cell types as a function of the dose calculated from mass cytometry signals of single cells. The mean of log-data and medians are shown in
Supplementary Fig. 4a, b. d Distributions of responses in five cell types after stimulation with different doses of IFN-α2a in terms of pSTAT1 (top row) and
pSTAT5 (bottom row) as measured with mass cytometry. The shown probability density is proportional to the frequency of cells with a given level of the
pSTAT. The value of the probability density is proportional to the frequency of cells with given response levels. Distributions of other pSTATs are shown in
Supplementary Fig. 4c. Different doses correspond to different colors. Technical details: at least 2500 cells were measured per condition. The plot shows
one representative of two biological replicates.

Fig. 2 Fractional response analysis. a Hypothetical response distributions to three different doses encoded by colors. Distributions are represented as a
probability density, which is proportional to the frequency of cells with a given response level. b–d Quantification of the fraction of cells that exhibit
different responses due to dose increase, Δr, and constriction of FRC, for responses presented in a. Each panel from b to d corresponds to subsequent
changes in dose. The color regions mark the overall increase in frequency due to considering the dose marked by the color. The area of the colored region
quantifies Δr. The value of the FRC for each dose is obtained by adding the increment, Δr. e Quantification of the number of distinct distributions induced
by the three considered doses. f Dose-typical responses for the response distributions of a. g Dissection of the responses to dose 2 into responses typical
to any of the three doses. The fraction of cells typical to a given dose is marked with the corresponding color. The surface area of each color quantifies the
typical fraction. h The fractions of cells stimulated with one dose (rows) with responses typical to any of the doses (columns). i The FRC together with the
bands representing cell-to-cell heterogeneity as quantified in h. For each reference dose (x- axis), the fractions of cells stimulated with the reference dose
that exhibit responses typical to other doses can be plotted in the form of color bands around the curve. The color encodes the dose a given fraction refers
to. The height of the band marks the size of the fraction (y-axis). Fractions corresponding to doses higher than the reference dose are plotted above the
curve, whereas to doses lower than the reference dose below the curve.
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to all other doses. In the hypothetical example, low responses are
most likely, and therefore typical, for dose 1, intermediate
responses are typical for dose 2, and high responses for dose 3
(Fig. 2f). We can then divide responses to a given dose into
responses typical for any dose. For instance, for dose 2, 35% of
cells have responses typical for dose 1, 54% typical for dose 2, and
11% typical for dose 3 (Fig. 2g). The results, presented as pie-
charts, can be shown in a matrix as the fraction of cells stimulated
with one dose (rows) that has responses typical for other doses
(columns) (Fig. 2h). This pie-chart partitioning can be plotted
along with the FRC (Fig. 2i) so that the fractional increments, Δr,
and fractional cell-to-cell heterogeneity are concisely presented.
Similar to FRC, quantification of the fractional cell-to-cell het-
erogeneity structure can be performed for multivariate data
without quantification of the response distributions (see Methods
and Supplementary Fig. 6).

Populations of different types of PBMCs exhibit very similar
logarithmic dose–responses. FRA compresses complex
dose–response data into a simple quantitative description
accounting for cell-to-cell heterogeneity and multivariate mea-
surements. To determine the kinds of biological information that
can be uncovered, we performed FRA for IFN-α2a multivariate
dose–responses in different types of PBMCs, assuming that all
five measured pSTATs jointly constitute a cell’s response. The
FRC and fractional cell-to-cell heterogeneity (Fig. 3a, b) are very
similar for all cell types. Counter to the differences seen in the
analysis presented in Fig. 1a–d and Supplementary Fig. 4, the
dose–responses in different cell types follow the same logarithmic
pattern identifying a phenomenon that governs the behavior of
multivariate cellular responses of our system, which remains
hidden when inspecting data in the conventional way.

For all cell types, the FRC is linear and increases at the same
rate with respect to the log of the dose, which means that the
fraction of cells showing different responses is proportional to the
dose fold-change, over a broad range of doses, i.e., from 0 to 2500
U/mL. The linear increase of the FRC demonstrates that the
fraction of cells that exhibit different responses are very similar
from 0 to 25 U/mL, from 25 to 250 U/mL, and from 250 to 2500
U/mL. For each subsequent dose change, Δr ≈ 0.5 so that 50% of
cells have different responses. A given fold-change in the dose
induces a different response in the fixed fraction of cells, across a
broad range of doses. Therefore, cellular populations are sensitive
to fold-changes in the dose as opposed to additive changes.

Formally, FRC scales as the log of the dose

rðxÞ / logðxÞ; ð1Þ
which given incremental approximation, Δlog(x) = log(x+ Δx)
− log(x) ≈ Δx/x, implies fold-change sensitivity in the population

Δr / Δx=x; ð2Þ
which in the studied system universally describes dose–responses
in populations across different cell types.

The FRA, therefore, condenses the description of the complex
multivariate responses into a simple quantitative formula.
Furthermore, FRA uncovered that the number of programmed
response distributions, i.e., maximal value of FRC, and the
fractional cell-to-cell heterogeneity structure are very similar for
all cell types. This similarity indicates that the immune system
may precisely control responses of fractions of cells rather than
responses of individual cells. In multicellular organisms, a
fraction of cells with a given response level is a biologically
essential response variable. For example, the outcome of a viral
infection in tissue depends on the number of NK cells with given
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Fig. 3 Different types of PBMCs exhibit highly similar dose–responses to IFN-α2a. a FRA of IFN-α2a responses. Here, levels of all pSTATs were assumed
to jointly constitute cell’s response. Supplementary Fig. 7 shows FRA for individual STATs. b Pie-charts of the cell-to-cell heterogeneity structure used to
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shown in Supplementary Fig. 8.
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response levels and induced cytotoxic activity. Our analysis
revealed that in the studied system the fraction of cells that have
responses in a specific range is not only tightly controlled in the
population of a given cell type but is controlled in the same way
across different cell types, as opposed to responses of individual
cells that are largely heterogeneous within one cell type and across
cell types. The role for controlling the fractions of cells with
specific responses can, in principle, be tested by perturbing cell-
to-cell heterogeneity through genetic manipulation and observing
the phenotypic effects on the performance of the immune system.

Fold-change sensitivity of cellular populations is a recurrent
property of cytokine signaling. To explore how responses that
are qualitatively different translate into differences in FRA, we
examined responses to the cytokines interferon-gamma (IFN-γ)
and interleukin 10 (IL-10). As these are implicated in macrophage
phenotypic diversity34, we used the human monocyte cell line
U937, differentiated into macrophage-like cells, and immunos-
tained to measure responses via nuclear levels of the key signaling
effectors, phosphorylated STAT1 for IFN-γ, and phosphorylated
STAT3 for IL-10 at 30 min after stimulation (Fig. 4a, b). For IFN-
γ, response distributions shift gradually towards higher values as

the dose increases, which is referred to as the graded
response35–37. For IL-10, the distributions flatten over a broad
region as the dose increases reflecting the higher number of
responding cells for high doses, with the dose having a limited
impact on the level of the response, similar to a binary system2,37

where responses aggregate in “on” and “off” regions. The quali-
tative differences in the responses to IFN-γ and IL-10 cytokines
are mirrored by FRA (Fig. 4d, e and Supplementary Fig. 11a, b).
Compared with IL-10, FRC for IFN-γ increases faster and reaches
a higher value, which reflects the higher number of cells with
distinct responses for increasing doses. Besides, bands around
FRC for IFN-γ are narrower than for IL-10, indicating that the
response distributions are more distinct. Furthermore, for IL-10
the bands below the curve are broader than above the curve,
which reflects the large fractions of cells with response typical to
doses lower than encountered, which points to the similarity with
the binary system. In Supplementary Note 3, we used in silico
generated data of exact binary and graded responses, as well as
responses of lung cancer cell lines to IFN-γ to show in detail how
FRA can discriminate between different response modalities.
Overall, differences in the response distributions visible to the
naked eye are adequately mapped onto the FRA plot, which
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Fig. 4 IFN-γ, IL-10, and TNF-α exhibit logarithmic dose–responses in cell lines. a Distributions of responses 30min after stimulation with different doses
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indicates that similar phenomena hidden by the complexity of
multivariate data could be uncovered in the same way.

To further explore how generally applicable FRA is, we
examined time-series responses to cytokine stimulation. We
measured TNF-α dose–responses with live confocal imaging of a
murine embryonic fibroblast cell line stably expressing fluor-
escent NF-κB complex4, a key TNF-α signaling effector4,29, for 60
min (Fig. 4c). As the data constituting the time-series are
multivariate, it is not feasible to assess the fraction of cells with
distinct responses for increasing doses as well as overlaps between
response distributions using visual inspection alone. FRA, on the
other hand, enables the quantification and visualization of the
cell-to-cell heterogeneity structure (Fig. 4f and Supplementary
Fig. 11c). The overlaps between distributions are considerable.
The rate of the increase of FRC, as well as width of the bands
around FRC, are more similar to IFN-γ than for IL-10, which
cannot be seen here directly from the time-series data (Fig. 4c).
Primarily, however, FRC increases linearly with the log of TNF-α
dose, which again discloses the fold-change sensitivity of the
cellular population.

Despite differences in the responses to the above cytokines and
type of data used, FRC increases almost linearly with respect to
the log of the dose for all three cytokines. Therefore, similarly to
IFN-α2a in PBMCs, IFN-γ, IL-10, and TNF-α responses are
sensitive to fold-changes in the dose, as opposed to additive
changes, suggesting that this mode of the response may be a more
universal biological pattern that describes cytokine signaling in
cellular populations.

Discussion
Sensitivity to dose fold-changes in populations of cells resembles
the empirical Weber-Fechner law that characterizes the perfor-
mance of many psycho-physiological sensory systems. Minimal
detectable stimulus change, Δx, in the sense of weight, hearing,
vision, and smell, has been observed to be of fold-type. So far,
several pathways have been shown to follow some form of fold-
change sensitivity either by observing representative individual
cells or population averages. For instance, Wnt and TGF-β sig-
naling exhibit desensitization to background ligand concentration
and subsequent sensitivity to fold-changes38,39 with an incoherent
feed-forward loop motif being the explanatory mechanism40–42.
Also, single-cell gene expression induced by the nuclear signaling
effectors β-catenin, SMAD, or NF-κB, were shown to be sensitive
to fold-changes in their nuclear levels11,38,39. Similarly, changes in
inter-spike intervals in Ca2+ spike trains are proportional to
baseline inter-spike intervals in GPCRs signaling activated with
phospholipase C ligands43.

Here, FRA allowed us to make a considerably different
observation. We demonstrated that within heterogeneous popu-
lations of cells of a given type, and across types, the number of
cells that exhibit a different response is proportional to the fold-
change in the dose. We did not refer to a single signaling effector
in a representative cell or population average but to the state of
the heterogeneous population described by multivariate data.
Ultimate outcomes of multicellular processes like immunity are
not determined by individual cells alone or population averages
but by a heterogeneous collective. By accounting for cell-to-cell
heterogeneity, we showed that the distribution of the collective,
which encodes stimulation levels in multicellular systems, shifts
with the fold-changes of the dose. Therefore, the way in which
heterogeneous cell populations encode signals is quantitatively
similar to the way we perceive differences in certain sensations
(weight/light).

Weber-Fechner law is a pattern that can arise from a range of
different mechanisms44,45 with the underlying neural

implementations still being discovered45,46. Here also, a
mechanistic explanation of the fold-change sensitivity of cellular
populations is not clear and remains to be determined, possibly
by relating cell-to-cell heterogeneity with ligand sensitivity, which
might involve feed-forward loops, as in fold-change detection in
individual cells over a long time scale40–42.

Overall, FRA delivers a concise representation of complex
single-cell data, which is particularly relevant for high-throughput
techniques, which are increasingly allowing the measurement of a
high number of parameters per cell, generating very large, high-
dimensional datasets47. The high information content of multi-
variate, single-cell measurements makes biological discoveries
more likely. On the other hand, however, insights may be difficult
to extract due to data complexity. Therefore, making use of the
increasing amount of single-cell high-throughput measurements
requires approaches that can extract relevant insights in spite of
complexity. FRA is not limited to cytokine signaling, proteomic
data, or dose–responses, enabling the systematic investigation of
single-cell high-throughput data in a wide range of situations, in
which responses are measured in single cells at any “-omics”
scale. Accurate estimation requires, however, the number of
measured cells to considerably exceed the number of measures
signaling effectors, and a representative selection of doses (see
Supplementary Note 4 for caveats of FRA). Nonetheless, FRA
should yield insights into the structure of signaling heterogeneity
in immunology, developmental biology, cancer research, and
diverse other fields in which response analysis in single cells is of
relevance.

Methods
Software implementation. The methodology to perform and visualize FRA is
provided as a user-friendly R-package available for download at http://github.com/
sysbiosig/FRA. The package contains an installation guide and a brief user manual.

Formal definition of the FRC. Consider a series of doses x1,…,xi,…,xm and denote
a single-cell response as y. Depending on the context, y, may be a number or a
vector, e.g., the level of one or more measured signaling effectors. Suppose that
responses to a given dose, xi, are represented as the probability distribution,

PðY jxiÞ: ð3Þ
The FRC is then formally defined as

rðxiÞ ¼
Z
Y
max
xk ≤ xi

PðyjxkÞdy; ð4Þ

where integration takes place over Y, the set of all possible responses, y. The
integral quantifies the area under the curve (or under surface for multivariate data),
with respect to y, defined as maxxk ≤ xi P yjxk

� �
: For the calculations shown in Fig. 2

the integration corresponds to the calculation of the area of the gray regions in c–e.
As explained in Supplementary Note 1, the FRC defined as above is closely related
Rényi min-information capacity.

Formal definition of typical fractions. Having the responses represented in terms
of the probability distribution, Eq. 3, we can define which responses, y, are typical
to any of the doses. Precisely, we define the response, y, to be typical for dose xj if it
is most likely to arise for this dose, which writes as

PðyjxjÞ> PðyjxkÞ for all k other than j: ð5Þ
The above condition allows assigning any response, y, to a dose for which it is
typical. Therefore, for a given dose, xi, we can identify what fraction of cells
stimulated with this dose exhibits responses typical to any dose, xj, for j from 1 to
m. These fractions, denoted as vij, can be practically computed as explained below.

Calculation of typical fractions. The fractions of cells stimulated with dose i that
have responses typical to dose j, vij, can be easily calculated from data regardless of
the number of doses and the type of experimental measurements. We have that

vij ¼
number of cells stimulated with xi with responses typical for xj

number of cells stimulated with xi
: ð6Þ

Calculation of typical fractions, vij, with the above formula requires the possibility
to examine the condition P(y | xj) > P(y | xk) for any experimentally observed
response, y. The distributions P(y | xj) can be reconstructed from data using a
variety of probability density estimators48. The use of the available estimators,
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however, might be problematic for multivariate responses26,49. We, therefore,
propose a more convenient strategy. We replace the condition P(y | xj) > P(y | xk)
with an equivalent condition that is computationally much simpler to evaluate.
Precisely, we propose to use the Bayes formula

PðxjjyÞ ¼
PðyjxjÞPðxjÞ

∑
m

k¼1
PðyjxkÞPðxkÞ

: ð7Þ

If we set the equiprobable prior distribution, i.e., P(xj)= 1/m, we have that P(y|xj) is
proportional to P(xj|y) and the condition P(y|xj) > P(y|xk) is equivalent to

PðxjjyÞ>PðxkjyÞ: ð8Þ
The above strategy allows avoiding estimation of the response distributions, P(y|xj),
from data. For continuous and multivariate variable y the estimation of P(xj|y) is
generally simpler than estimation of P(y|xj)26,48. Precisely, an estimator

P̂ xjjY ¼ y
� �

of the distribution P(xj|y) can be built using a variety of Bayesian

statistical learning methods. For simplicity and efficiency, here we propose to use
logistic regression, which is known to work well in a range of applications48. In
principle, however, other classifiers could also be considered. The logistic regres-
sion estimators of P(xj|Y = y) arise from a simplifying assumption that log-ratio of
probabilities, P(xj|Y = y) and P(xm|Y = y) is linear. Precisely,

log
PðxjjY ¼ yÞ
PðxmjY ¼ yÞ

� �
� αj þ βTj y: ð9Þ

The above formulation allows fitting the logistic regression equations to experi-
mental data, i.e., finding values of the parameters, αj and βj that best represent the
data. The fitted logistic regression model allows assigning cellular responses to
typical doses based on conditions given by Eq. 8. Formally, the fractions vij defined
by Eq. 6 are calculated as

vij ¼
1
ni

∑
ni

l¼1
1

P̂ xj jY¼yð Þ>P̂ xk jY¼yð Þ:k≠j
� 	 yli

� �
; ð10Þ

where ni is the number of cells measured for the dose xi, yli denotes response of the

l-th cell, and 1
P̂ xj jY¼yð Þ>P̂ xk jY¼yð Þ:k≠j

� 	ðyliÞ is equal 1 if P̂ xjjY ¼ y
� �

>P̂ xkjY ¼ y
� �

for any k≠ j and 0 otherwise.

Calculation of the FRC. Calculation of the FRC can be conveniently performed
using the typical fractions, as defined above, rather than through integration of
Eq. 4. Precisely, to calculate the FRC for the dose, xi, consider doses x1,…,xi in
isolation from higher doses. Then, the sum of typical fractions v11,…,vii is
equivalent to FRC for the dose xi

rðxiÞ ¼ ∑
i

k¼1
vkk: ð11Þ

The equivalency of the above equation and Eq. 4 is derived in the Supplementary
Methods.

Mass cytometry (CyTOF). PBMCs were isolated from the peripheral blood of
healthy adult donors using Lymphoprep (Stemcell Technologies), according to the
manufacturer’s instructions. Cells were washed in serum-free Roswell Park Memorial
Institute (RPMI) then resuspended at 107 cells/mL in serum-free RPMI containing
0.5mM Cell-ID Cisplatin (Fluidigm) and incubated at 37 °C for 5 min. Cells were
washed with RPMI containing 10% (v/v) FCS (Sigma) and 2mM L-Glutamine (R10),
centrifuging at 300 × g for 5 min before being resuspended to 6 × 107 cells/mL in R10
and rested at 37 °C for 15min. 50mL of cells (3 × 106 cells) were transferred to 15mL
falcon tubes for stimulation and antibody staining. Antibodies and their dilutions are
listed in Supplementary Table 1. Staining for CD14, CCR6, CD56, CD45RO, CD27,
CCR7, CCR4, and CXCR3 was done before stimulation/fixation for 30min in R10 at
37 °C. Cells were stimulated with 0, 25, 250, 2500, or 25000 U/mL recombinant
human IFN-α2a (PBL Assay Science, #11100-1) diluted in R10 for 15min at 37 °C.
After washing with 5mL cold Maxpar PBS (Fluidigm), cells were fixed with 1×
Maxpar Fix I Buffer (Fluidigm) for 10min at RT before being washed with 1.5mL
Maxpar Cell Staining Buffer (CSB, Fluidigm). All centrifugation steps after this point
were at 800 × g for 5min. Cells were barcoded using Cell-ID 20-Plex Pd Barcoding Kit
(Fluidigm), according to the manufacturer’s instructions, and washed twice with CSB
before samples were pooled and counted. All further steps were performed on the
pooled cells. Fc receptors were blocked using Fc Receptor Binding Inhibitor Antibody
(eBioscience, #14-9161-73) diluted 1:10 in CSB for 10min at RT. Surface antibody
staining mixture was added directly to the blocking solution and incubated for 30min
at RT. Cells were washed twice with CSB, resuspended in ice-cold methanol, and
stored at −80 °C overnight. After washing twice with CSB, cells were stained with
intracellular antibody staining mixture for 30min at RT before two further washes in
CSB. Cells were resuspended in 1.6% (v/v) formaldehyde (Pierce, #28906) diluted in
Maxpar PBS and incubated for 10min at RT. Cells were resuspended in 125mMCell-
ID Intercalator (Fluidigm) diluted in Maxpar Fix and Perm Buffer (Fluidigm) and
incubated overnight at 4 °C. Compensation beads (OneComp eBeads Compensation
Beads, Invitrogen, #01-1111-42) stained with 1mL of each antibody were also

prepared. The next day, cells and compensation beads were washed twice with CSB
and twice with Maxpar water (Fluidigm), mixed with a 1:10 volume EQ Four Element
Calibration Beads (Fluidigm) before acquisition on a Helios Mass Cytometer (Flui-
digm) using the HT injector. Data were normalized, randomized, and concatenated
using Helios CyTOF Software v6.7 (Fluidigm), cytofCore v0.4, flowCore v1.46.2, and
Cytobank v6.2. Compensation and de-barcoding were performed using the CATA-
LYST v1.5.3.23 package50. Different immune cell subpopulations were gated in R
v3.5.1 from single, live, CD45+ cells as shown in Supplementary Fig. 2.

Collection and analysis of PBMCs were carried out in accordance with the EU
Directive 2004/23/EC and the UK Human Tissue Act 2004 (HTA), under the HTA
licence (number 12433) of the Weatherall Institute of Molecular Medicine.
Informed consent was obtained and the samples were fully anonymised.

U937 cells. U937 cells (CRL-1593.2, ATCC), a human monocyte cell line, were
cultured under standard conditions at 37 °C in a humidified atmosphere of 5%
CO2/95% air in low glucose RPMI 1640 (Corning, #10-040-CV) medium
supplemented with 10% fetal bovine serum (FBS, ThermoFisher, #10500064)
and 1% penicillin–streptomycin solution (P/S, ThermoFisher, #15140122). For
macrophage differentiation, U937 cells were suspended in a medium with 20
ng/mL phorbol 12-myristate 13-acetate (PMA, Sigma Aldrich, #P1585) and
plated in 96-well microplates with µClear®flat bottom (Greiner, #655090) in
density 2 × 104 cells per well. After 24 h medium with PMA was removed and
fresh medium was added to cells. 72 h after seeding on 96-well microplates
differentiated cells were incubated with recombinant human IFN-γ (Ther-
moFisher, #PHC4031) at concentrations 0DAPI10 ng/mL or recombinant
human IL-10 (PeproTech, #200-10) at concentrations 0–1000 ng/mL for 30
min. Afterwards, cells were fixed with 3.7% paraformaldehyde (PFA, Sigma
Aldrich, #P6148) for 10 min at room temperature, RT, then permeabilized with
90% ice-cold methanol (Sigma, #322415), for 30 min at −20 °C, blocked with
5% bovine serum albumin (BSA, Merck, #821006) and 0.3% Triton X-100
(Sigma Aldrich, #T9284) for 1 h at RT, and incubated with primary
antibody–phospho-STAT1 (Tyr701) (pSTAT1, Cell Signaling, #9167) diluted
1:100 or phospho-STAT3 (Tyr705) (pSTAT3, Cell Signaling, #4113) diluted
1:200 in 1% BSA with 0.3% Triton X-100 for 18 h at 4 °C. Next day, cells were
incubated with an appropriate secondary antibody–Alexa Fluor 488 (Life
Technologies, #A-21206) or Alexa Fluor 555 (Life Technologies, #A-31570)
diluted 1:500 in 1% BSA with 0.3% Triton X-100 for 1.5 h at RT and stained
with 2 µg/mL 4’,6-diamidino-2-phenylindole (Sigma Aldrich, #D9542) for 10
min at RT. The fluorescence signal was acquired using an automated confocal
microscope (Pathway 435, BD) and analyzed with Cell Profiler v2.1.1, R v3.5.1,
and ImageJ v1.48.

Murine immortalized fibroblasts. Murine embryonic fibroblasts 3T3 cell line,
previously used in several studies including4,26, expressing fluorescent fusion
proteins relA-dsRed as wells H2B-GFP for nuclei identification were cultured
in an incubator under standard conditions at 37 °C in a humidified atmosphere
of 5% CO2/95% air. The cell line was kindly provided by Professor S. Tay. The
cells were cultured in high glucose Dulbecco’s Modified Eagle’s Medium
without phenol red (ThermoFisher, #21063029) supplemented with 10% FBS
(ThermoFisher, #10500064) and 1% penicillin–streptomycin solution (P/S,
ThermoFisher, 15140122). Approximately 1.3 × 105 cells were plated on 35-
mm confocal dish for imaging. After 48 h in the incubator, cells were trans-
ferred to the environmental chamber in a microscope. At time 0, medium was
removed from cells and recombinant mouse TNF-α (Sigma Aldrich, #T7539)
was added at concentrations 0-100 ng/mL as a 5-minute pulse. Live imaging
was performed using a confocal microscope, Leica TCS SP5 X. During single
experiment, images have been captured every 3 min over 1 h in two channels
simultaneously at nine different positions on the plate. The experiment has
been repeated at least four times to test reproducibility and to allow for a
sufficient number of observations. Nuclear and cytoplasmic fluorescence (pixel
mean) was then quantified from microscopic images using Cell Profiler v2.1.1,
and R v3.5.1. The response of each cell was then represented as the ratio of
nuclear to cytoplasmic fluorescence in order to ensure the robustness of
measurements to changes in confocal plane over time. The data set is described
in detail in ref. 26, where it was initially published.

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability
Data generated during the study are available for download from https://github.com/
sysbiosig/FRA/ and are also deposited in the open-access repository https://doi.org/
10.5281/zenodo.4835622. The study also involves data published in ref. 26.

Code availability
FRA is made available as an R-package (see Supplementary Note 5) downloadable from
https://github.com/sysbiosig/FRA/ that is also deposited in the open-access repository
https://doi.org/10.5281/zenodo.4818586.
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