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Simple Summary: B-mode US is a widely available, inexpensive, and non-invasive technique. This
method is used in monitoring the neoadjuvant chemotherapy (NAC) in breast cancer (BC). In the
presented study we combined the result from B-mode ultrasound examination with quantitative
information about the characteristics and structure of the tissue in predicting the response to neoad-
juvant chemotherapy in BC patients. We used echogenicity (∆Echo) as B-mode features and the
Kullback-Leibler divergence (∆KLD) method as a quantitative parameter to provide information on
changes in image echogenicity, to determine differences between the distributions of the ultrasound
echo amplitude from tumor during NAC. The ∆KLD parameter alone is an accurate predictor of
response to treatment after the second course of therapy (cut-off ≥70%, AUC = 0.85). Combining
both parameters (∆KLD and ∆Echo) led to an increase in sensitivity without significant deterioration
of other statistical parameters and allowed to accurately predict non-responding tumors.

Abstract: The aim of the study was to improve monitoring the treatment response in breast cancer
patients undergoing neoadjuvant chemotherapy (NAC). The IRB approved this prospective study.
Ultrasound examinations were performed prior to treatment and 7 days after four consecutive NAC
cycles. Residual malignant cell (RMC) measurement at surgery was the standard of reference. Alter-
ation in B-mode ultrasound (tumor echogenicity and volume) and the Kullback-Leibler divergence
(kld), as a quantitative measure of amplitude difference, were used. Correlations of these parameters
with RMC were assessed and Receiver Operating Characteristic curve (ROC) analysis was performed.
Thirty-nine patients (mean age 57 y.) with 50 tumors were included. There was a significant correla-
tion between RMC and changes in quantitative parameters (KLD) after the second, third and fourth
course of NAC, and alteration in echogenicity after the third and fourth course. Multivariate analysis
of the echogenicity and KLD after the third NAC course revealed a sensitivity of 91%, specificity
of 92%, PPV = 77%, NPV = 97%, accuracy = 91%, and AUC of 0.92 for non-responding tumors
(RMC ≥ 70%). In conclusion, monitoring the echogenicity and KLD parameters made it possible to
accurately predict the treatment response from the second course of NAC.

Keywords: quantitative ultrasound; B-mode ultrasound; echogenicity; breast cancer; neoadju-
vant chemotherapy

1. Introduction

Breast cancer (BC) is a disease of significant social importance and is the most common
malignant neoplasm in women in Poland and worldwide. The incidence of BC in women

Cancers 2021, 13, 3546. https://doi.org/10.3390/cancers13143546 https://www.mdpi.com/journal/cancers

https://www.mdpi.com/journal/cancers
https://www.mdpi.com
https://orcid.org/0000-0003-3978-9099
https://doi.org/10.3390/cancers13143546
https://doi.org/10.3390/cancers13143546
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cancers13143546
https://www.mdpi.com/journal/cancers
https://www.mdpi.com/article/10.3390/cancers13143546?type=check_update&version=1


Cancers 2021, 13, 3546 2 of 22

over the age of 30 is systematically increasing. In Poland in 2018, 18,869 BC cases were
diagnosed in women and 154 in men [1].

The methods of treating BC, in particular systemic treatment, as well as the techniques
used to monitor it, have changed significantly in recent years. Neoadjuvant chemotherapy
(NAC), introduced in 1970, was initially used in locally advanced breast cancer (LABC)
and in inflammatory BC to reduce the size of the tumor and improve the radicality of
surgical treatment, including conserving breast conserving therapy (BCT). Currently, NAC
is increasingly recommended in the early stages of BC, in the following subtypes: triple-
negative cancer (TNBC) and with the presence of HER2 + receptors [2]. The goal of
preoperative treatment is to achieve pathological complete response (pCR), which is a
surrogate for overall survival (OS), event free survival (EFS), and long-term survival in
TNBC and HER2 + subtypes [3].

The targeted HER2 + BC treatment regimen and new improved TNBC chemotherapy
regimens significantly improved the pathology complete response (pCR) rate. However,
the response to preoperative chemotherapy is variable, and complete tumor regression, con-
firmed by histopathology as pCR, occurs in an average of 19% of patients (range 0.3–50.3%,
depending on the immunohistochemical subtype of BC) [4,5]. Approximately 20–30% of
BCs remain insensitive to NAC, and chemotherapy delays the necessary surgical treatment,
increases the risk of metastasis, and may contribute to side effects [3–5]. In addition, the
largest group is that of partial responders, which is significantly heterogeneous, and as a
result, the prediction of the precise rate of response is difficult. The most accurate method
for monitoring treatment is a multi-parameter magnetic resonance imaging (MRI), espe-
cially in comparison to mammography (MMG) or ultrasonography (USG) [5]. In MRI, as
in USG, the tumor size assessment according to RECIST 1.1 (response evaluation criteria in
solid tumors) is not sufficiently sensitive in treatment monitoring due to the presence of
necrotic lesions, which, although it responds well to treatment, does not change the size of
the tumor [5]. Similarly, the assessment of the response to treatment based on the analysis
of tumor vascularity in dynamic contrast-enhanced MRI (DCE-MRI) has several limitations
that have been shown in a meta-analysis of 14 studies, with an average sensitivity and
specificity of 84% and 83%, respectively [6]. However, in the meta-analysis assessing
the diagnostic efficacy of CE-MMG (contrast-enhanced mammography) and CE-MRI, in
the assessment of the response to NAC, CE-MMG was shown to be more sensitive and
specificity was similar for both techniques [7].

For this reason, the introduction into common clinical practice of a non-invasive func-
tional imaging system capable of monitoring the early tumor response to cancer therapy is
a priority. Such an approach will enable the personalization of treatment of oncological
patients and, consequently, will contribute to the optimization of the therapeutic outcome
and relapse-free survival. It should be noted that the collection of data in the NAC mon-
itoring studies is slow, laborious, and with varying incidence of certain types of cancer.
This in turn limits the number and variety of tumors included in each study. In previous
studies, the authors focused on a group of LABC patients. The current recommendations
allow to qualify to NAC patients with early stage of BC with HER2 + and TNBC, which we
included in our study [8,9].

Ultrasound imaging is a widely available, inexpensive, and non-invasive technique.
The use of quantitative ultrasound (QUS) methods can supplement traditional imaging
ultrasounds (considered to be a less objective method, as the test result largely depends on
the quality of the equipment and the operator’s experience) with additional quantitative
parameters [8,9]. These parameters are not based on a subjective assessment of changes
in tissue echogenicity, but characterize its condition on the basis of information about
its microstructure. Quantitative ultrasound is a tissue characterization technique that
examines the “content” of ultrasound signals. According to the theory of ultrasound
scattering, the backscattered signal returning from the tissue is influenced by parameters
such as size, spatial distribution of the scatterers, and their properties.
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Experiments using ultrasound data collected from cell pellets exposed to chemother-
apeutics that induce apoptosis have shown a significant effect of apoptosis on ultra-
sound scattering and the echogenicity of ultrasound images [10,11]. These results en-
courage the use of Quantitative Ultrasound (QUS) in the context of monitoring the effects
of chemotherapy.

The possibilities of using QUS methods in NAC monitoring have recently been widely
explored. For example, Quiaoit et al. proposed a multi-parameter approach to the problem
of detecting a positive response to therapy [12]. In this study, the authors generated
parametric images using the spectral and backscattering parameters of the signals scattered
within the tumor. Then they used the texture features of these images to develop multi-
parametric models to predict pathological tumor response.

The best model was able to predict positive response to NAC with area under the
ROC curve (AUC) value equal 0.87 after the first week of the therapy. Dasgupta et al. used
textural features of QUS parametric images of spectral and scattering parameters of a tumor
for predicting the response to NAC with AUC of 0.86 [13]. In other work, Tadayyon et al.
showed the potential of combining QUS analysis with artificial neural networks as a source
of diagnostic biomarkers [14]. The authors reported high performance of their model in
predicting the pathological response (AUC = 0.96) and 5-year recurrence-free survival (RFS)
of patients (AUC = 0.89) prior to the start of treatment. Despite high efficiency reported
in those studies, there is still much room for improvement. Each new parameter that
is reported to perform decent in predicting the response to NAC, is valuable, as it can
potentially be included in a multi-parametric model, improving its performance.

In our study, we focused on the characterization of the tumor echogenicity, which
is related to its structure and cellularity, as is the ADC in the MRI image [15,16]. In the
classic B-mode examination, echogenicity is assessed in relation to adipose tissue, which
makes the assessment more objective and independent of the ultrasonic scanner settings.
The echogenicity of a given area of the examined tissue translates into the amplitude of
the scattered signal and affects the average value of the amplitude distribution. Tissue
signal amplitude distribution depends on tissue structure, and their mean values may
differ depending on the tissue. Moreover, with a similar mean value, they can describe
different tissue structures. Therefore, the differences between the distributions are more
accurately determined using statistical measures of variation than by their mean values.

We used the Kullback-Leibler divergence (kld) method [17] to determine differences
between the distributions of the ultrasound echo amplitude from tumor tissue undergoing
successive cycles of NAC therapy, and, ultimately, to predict the effects of NAC. Amplitude
distributions were determined from raw radio-frequency (RF) signals, which ensured inde-
pendence from the processing methods used by scanners for image enhancement. At the
same time, we investigated the possibility of predicting the effects of NAC using changes
in B-mode image echogenicity and tumor size and the combination of both parameters.
The results were assessed in relation to postoperative residual malignant cells (RMC) rate.

2. Materials and Methods
2.1. Patients

This prospective, single-center study was conducted in accordance with the Decla-
ration of Helsinki, and the protocol was approved by the Ethics Committee of Maria
Skłodowska–Curie National Institute of Oncology, Scientific Centre, Warsaw, Poland
(Project identification code 49/2018). All participants provided informed consent for
inclusion before participation in the study.

Breast ultrasound examinations were performed on 39 patients with a total of 50 BCs
(seven women had bifocal lesions and two had trifocal lesions) from April 2016 to July 2020.

The inclusion criteria were as follows: inclusion in the NAC by an oncologist during
multidisciplinary meeting (MDM); maximum tumor diameter <4 cm, minimum tumor
diameter 5 mm; and multicenter ≤3 if in another quadrant and/or breast, regardless of the
immunohistological subtype and lymph node status.
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Ultrasound examinations were performed before NAC and 7 days after subsequent
NAC courses (first to fourth). NAC was administered according to international guidelines,
according to a previously detailed protocol [18]. AC (doxorubicin, cyclophosphamide)
was used from the first to the fourth course, and then treatment was continued with taxol.
Patients with HER2+ receptor-positive tumors were treated with trastuzumab and taxol.
One patient with a history of contralateral BC 5 years prior to the study, was treated
with AT (doxorubicin and docetaxel), 37 patients underwent mastectomy, 2 underwent
BCT, 37 underwent lymphadenectomy, and 2 underwent sentinel lymph node dissection
(SLND) at the end of chemotherapy. Four patients did not complete the study, which
resulted in modification of the NAC data. All remaining patients underwent a full course
of NAC therapy.

2.2. Histology

In all patients, core needle biopsies (CNB) were performed after administration of 2%
lidocaine before qualification to NAC treatment (14GA diameter biopsy needle, three to five
cores; Pro-Mag). An experienced pathologist with 25 years’ experience in breast oncological
pathology assessed the cores from CNB and excisable tumors or residual intramammary
target lesions with clip markers after NAC. Cancer subtypes (molecular subtypes and
grade of malignancy) were obtained by pathological assessment after CNB. RMC rates
in the residual malignant tumor were estimated by a pathologist based on postoperative
histopathology and served as a reference of tumor response to NAC. RMC is one of the
six features of the residual cancer burden (RCB) index that is a quantitative parameter
evaluating the response to NAC that can be calculated using an on-line calculator. The
percentage of RMC ranged from 0 to 100% and was determined after surgery [19]. In
the statistical analysis, we evaluated the following cut-off values for RMC: ≤30% for
responding tumors and ≥70% for non-responding tumors.

2.3. Ultrasonic Data Registration

The acquisition of RF ultrasound echoes from patients was performed using an Ultra-
sonix SonixTOUCH ultrasound scanner (Ultrasonix Medical Corporation, Richmond, BC,
Canada). The breast lesions were assessed according to American College of Radiology
(BI-RADS-lexicon) and the standards of Polish Ultrasound Society [20,21]. The scanner
was equipped with an ultrasound research interface enabling the recording of raw post-
beamformed RF data. The measurements were made using a linear probe (L14-5/38) at a
frequency of 10 MHz. In accordance with the measurement protocol, the ultrasound RF
data were recorded for each tumor in the following planes: radial, radial +45◦, anti-radial,
and anti-radial +45◦. Classic amplitude images (B-mode) were generated from these data,
with no additional post-processing applied. This is important because commercial scan-
ners usually perform additional image processing to improve the images, for example, to
increase contrast. Such operations influence the statistics of the image amplitudes to such a
degree that they are difficult to assess. Therefore, in these studies, non-post-processed data
were used.

Data registration was performed before the start of treatment and 7 days after each
course of chemotherapy. In each B-mode image, a tumor was indicated by a radiologist
with 20 years of experience in breast ultrasound. Data from four cross sections of the
tumor were analyzed as a single set. This approach allowed for a more detailed analysis
of changes in the tumor microstructure than was possible by examining only a single
cross-section.

2.4. Quantitative Analysis of Ultrasound Data

The physical properties and spatial distribution of scatterers influence the statistical
distribution of the amplitudes of the received echoes. A diagram of the ultrasonic signal
generation is shown in Figure 1. Thus, the amplitude distribution of the ultrasonic signal
received by the transducer contains information about the microstructure of the examined
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tissue. For example, if breast microcalcifications are present (a source of strong ultrasound
scattering), higher amplitude values may be expected (Figure 1).
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Figure 1. Diagram of ultrasonic radio frequency (RF) signal formation as a result of scattering on inhomogeneities present
in the tissue.

Changes in the microstructure of the tumor occur as a result of the NAC effect. Remod-
eling is a multi-stage process, involving changes to cancer cells (cellular organization, cell
death) and changes in the stroma. The degree of change in tumor depends on individual
factors. However, large changes in the microstructure of responding tumors and small
changes in tumors resistant to treatment with NAC can be expected. Therefore, it can be
assumed that the degree of change in the amplitude distributions of the received signals
is directly related to the degree of change at the microstructure level. This assumption
forms the basis of the method presented in this study. The amplitude distributions were
estimated using kernel density estimation (KDE) [22,23]. Amplitude distributions deter-
mined for responder (RMC ≤ 30%) and non-responder (RMC ≥ 70%) patients are shown
in Figure 2, respectively.
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The Kullback–Leibler divergence (kld) [13] was used to quantify the differences be-
tween two distributions of amplitudes (where hn and hm denote the amplitude distributions
after the n-th and m-th treatment courses), which is given by the equation:

kld(hn, hm) = ∑
i

hn(i) log2
hn(i)
hm(i)

where i is a sample index in the amplitude distribution. The values of kld are always
non-negative; a value of 0 indicates that the distributions hn and hm are identical. The kld
was used to define three parameters:

KLD0(n) = log10[kld(hn, h0)]; n ∈ {1, 2, 3, 4}

KLD1(n) = log10[kld(hn, h1)]; n ∈ {2, 3, 4}

∆KLD(n) = KLD0(n)−KLD0(1) = log10

[
kld(hn, h0)

kld(h1, h0)

]
; n ∈ {2, 3, 4}

where h is the estimated amplitude distribution, its subscript of 0 indicates pre-treatment
data, and a positive subscript n indicates the NAC course at which the data were recorded.
The use of logarithms in the above formulas results from highly asymmetric distributions
of the KLD parameters if they are devoid of logarithm. After application of the logarithm,
these distributions were close to normal.

To evaluate the effectiveness of NAC therapy, three quantitative parameters, all
based on the KLD method, were used. The KLD0 parameter estimates the changes in
the amplitude distributions in the tumor after particular NAC courses in relation to the
distributions before the start of therapy. The KLD1 parameter describes the changes in
amplitude distributions with respect to the amplitude distribution after the first NAC,
and the ∆KLD parameter describes the differences between the distributions in relation
to the difference between the distribution after the first NAC and the distribution before
treatment initiation.

2.5. Tumor Echogenicity

Tumor echogenicity (Echo) was assessed by a physician based on gray-level standard B-
mode images compared to fat tissue in the preglandular zones. The following echogenicity
levels were assigned to the images of each tumor:

1. Hypoechoic
2. Hypo and isoechoic (mixed)
3. Isoechoic
4. Hyperechoic

The Echo change (∆Echo) was determined in relation to pre-treatment value Echo(0)
using the following equation:

∆Echo(n) = Echo(n)− Echo(0); n ∈ {1, 2, 3, 4}

where n indicates the NAC course

2.6. Tumor Volume

The volume (V) of the tumor was calculated assuming an ellipsoidal shape using the
following equation:

V =
4π

3
× w

2
× d

2
× h

2
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where w, d, and h represent the width, depth, and height of the tumor, respectively, assessed
based on the B-mode images. The volume change (∆V) was determined in relation to pre-
treatment value V(0) using the following formula:

∆V(n) = log10

[
V(n)
V(0)

]
; n ∈ {1, 2, 3, 4}

where n indicates the NAC course. For the same reason as KLD, ∆V is subjected to
logarithm. In order to enable an intuitive evaluation of volume changes, a percentage
change in volume ∆V% was defined as:

∆V%(n) =
[

V(n)
V(0)

− 1
]
× 100%; n ∈ {1, 2, 3, 4}

2.7. Statistical Analysis

All of the considered parameters were examined in terms of their correlation with
the RMC at particular stages of therapy. As none of the abovementioned parameters met
the normality criterion at all stages of the therapy (Shapiro–Wilk test, significance level
0.05), the Spearman’s rank correlation coefficient rS was used to assess the correlation.
Subsequently, individual parameters were analyzed in the context of tumor classification
as “responding” and “non-responding.” Tumors with RMC ≤ 30% were considered re-
sponders, and those with RMC ≥ 70% were considered non-responders. Each of the above
parameters was analyzed as a single-parameter classifier. In addition, the ∆Echo and ∆V
parameters were combined in a two-parameter classifier using linear discriminant analysis
(LDA), which is a generalization of Fisher’s linear discriminant [24]. The tested classifiers
were cross-validated using the leave-one-out (LOO) method [25]. The only exception was
the classifier based solely on ∆Echo, where, because of the coarse discretization of the
parameter, the cross-validation algorithm led to a distortion of the analysis results and was
therefore omitted.

The effectiveness of the classification was assessed based on the receiver operating
characteristics (ROC) curve, which demonstrated a trade-off between the true positive
rate (TPR) and the false positive rate (FPR) for a classifier. The area under the ROC curve
(AUC) was used for an overall assessment of the entire ROC curve [26]. For a random
classifier, the AUC is close to 0.5, whereas for the ideal classifier, the AUC is equal to 1.
The confidence intervals for the AUC were determined using the bootstrap method. The
number of bootstrap samples was 104, and the confidence level was 0.95. Each classifier
was assessed in terms of its sensitivity, specificity, accuracy, positive predictive value (PPV),
and negative predictive value (NPV). These features were determined for the optimal
operating point, which was chosen as the point on the classifier’s ROC curve closest to the
point (FPR = 0, TPR = 1) in the Euclidean sense [27].

3. Results

The mean age of the patients was 57 years (range, 32–83 years; median, 56 years;
SD, 15). Histopathological verification before surgery revealed that the tumors comprised
invasive carcinoma NST G2 (22 tumors), G3 (9 tumors), and G1 (11 tumors). Moreover,
there were 9 luminal A cancers, 24 luminal B, 9 TNBC, and 8 HER2+ tumors. In our group
of patients, the structure of the breasts was as follows: glandular (n = 9), fatty (n = 11) or
mixed (n = 19).

The clinical details of the patients are shown in Table 1. Histopathological examination
after final NAC and surgery revealed 28 tumors with 0–30% RMC, including 14 tumors
with RMC = 0 (pathological complete response pCR), 9 tumors with RMC of 31%–69%, and
13 with RMC ≥ 70% (Table 1).
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Table 1. Characteristic of the patients group, including histological findings.

Category Characteristic Count/Value

Patients

Number of patients 39

Mean age (years) 57

Age range (years) 32–83

Tumor histology
Invasive ductal carcinoma (IDC) 50

IDC with ductal carcinoma in situ 20

Receptor status

Luminal A 9

Luminal B 24

TNBC 9

HER 2+ 8

Pathological response
(RMC%)

0 14

≤30 28

31–69 9

≥70 13

Surgical treatment Mastectomy 37

Surgical treatment BCT 2
BCT—breast conserving therapy, RMC—Residual Malignant Cell, TNBC—triple-negative breast cancer, HER2+—
human epidermal growth factor receptor.

3.1. Tumor Echogenicity

Before treatment, 47 tumors were hypoechoic, and three presented mixed echogenicity.
After three courses of NAC, only 11 of the remaining 47 tumors were hypoechogenic, 26
presented mixed echogenicity, 8 were isoechogenic, and 2 were hyperechogenic (Figure 3).
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Before treatment, the average RMC calculated for 47 hypoechogenic tumors (Echo = 1)
was 35%, compared with 57% after three courses of NAC (n = 11) and 76% after four courses
of NAC (n = 9). In tumors that become isoechogenic (Echo = 3), the average RMC value
was 13% after three courses of NAC (n = 8) and 28% after four courses of NAC (n = 15)
(Figures 3 and 4, Table 2).
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Table 2. Average (µRMC) and standard deviation (σRMC) of RMC in relation to echogenicity after successive courses
of NAC.

Echogenicity
Pre-Treatment 1st NAC Course 2nd NAC Course 3rd NAC Course 4th NAC Course

n µRMC σRMC n µRMC σRMC n µRMC σRMC n µRMC σRMC n µRMC σRMC

Echo = 1 47 35 37 37 40 37 20 41 39 11 57 45 9 76 34
Echo = 2 3 37 40 11 26 32 24 38 36 26 34 32 18 28 31
Echo = 3 0 - - 2 0 0 6 8 20 8 13 18 15 28 30
Echo = 4 0 - - 0 - - 0 - - 2 0 0 3 10 16

All 50 35 36 50 35 36 50 35 36 47 34 36 45 37 36

3.2. Tumor Size

The mean size of the lesion before the treatment (n = 50) was 5.0 cm3 (median, 2.8 cm3;
range, 0.04–27 cm3; SD, 5.7 cm3), and after three courses of NAC (n = 47) it was 2.0 cm3

(median, 0.67 cm3; range, 0.02–14 cm3; SD, 2.8 cm3). When analyzing changes in the volume
of neoplastic tumors, decreases were observed in the entire group of tumors after the first
and second courses of NAC, while a reversal of this trend was observed after the third
course of NAC. For tumors that responded poorly to treatment (RMC ≥ 70%), an increase
in tumor volume was observed in relation to the previous courses, although they were still
smaller than the pre-treatment measurement (Figure 5).
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Figure 5. Statistics of the volume change ∆V% after subsequent courses of neoadjuvant chemotherapy (NAC). The tumors
are divided into responding (RMC ≤ 30%), partially-responding (30% < RMC < 70%), and non-responding (RMC ≥ 70%).
(RMC—Residual Malignant Cell).

3.3. The Kullback–Leibler Divergence Based Parameters

The statistics of the Kullback–Leibler divergence (kld)—related parameters are shown
in Figure 6. Distributions of each parameter show improvement in the separation of
responders and non-responders with subsequent courses of NAC. The best separation is
observed for the ∆KLD parameter.
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Figure 6. Statistics of the kld-based parameters: KLD0 (top), KLD1 (bottom left), and ∆KLD (bottom right), after subsequent
courses of neoadjuvant chemotherapy (NAC). The tumors are divided into responding (RMC ≤ 30%), partially-responding
(30% < RMC < 70%), and non-responding (RMC ≥ 70%) (RMC—Residual Malignant Cell).
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3.4. Correlation

Prior to analyzing the usefulness of the parameters as predictors of the efficacy of
NAC, their correlations with the RMC results were assessed. After the first course of NAC,
the ∆Echo, ∆V, and KLD0 parameters showed weak and mostly statistically insignificant
correlations, which only slightly improved with subsequent NAC courses. The KLD1
and ∆KLD parameters, which were available starting from the second course of NAC,
demonstrated statistically significant, mostly moderate or strong correlations (Figure 7).
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Figure 7. Correlation values for the five analyzed parameters (∆Echo, ∆V, KLD0, KLD1, and ∆KLD) as a function of
chemotherapy courses. Statistical insignificance (p-value ≥ 0.05) marked with asterisks.

A table demonstrating the resulting Spearman correlations and p-values is available
in Appendix A (Table A1).

3.5. Classification

Two RMC thresholds (RMC ≤ 30% and RMC ≥ 70%) were analyzed in order to
divide the tumors into “responder” and “non-responder” groups. Figure 8 shows the AUC
values together with confidence intervals for the analyzed parameters, as a function of
chemotherapy courses. The corresponding ROC curves are included in the Appendix A
(Figure A1). The Appendix A also includes complete tables of classification performance of
responders and non-responders (Tables A2 and A3, respectively). Their essential parts are
presented in the main body of the article as Tables 3–5, for later discussion.

Table 3. Results of statistical analysis of changes in echogenicity, volume, and ∆KLD parameter after two, three, and four
courses of NAC for non-responding tumors (RMC ≥ 70%).

Measure of
Performance

2nd NAC Course 3rd NAC Course 4th NAC Course

∆Echo ∆V ∆KLD ∆Echo ∆V ∆KLD ∆Echo ∆V ∆KLD

AUC 0.60
0.75

0.57
0.74

0.85
0.96

0.81
0.91

0.63
0.80

0.90
0.99

0.79
0.92

0.70
0.88

0.89
0.99

0.46 0.37 0.69 0.66 0.42 0.75 0.60 0.48 0.73
Sensitivity 0.54 0.62 0.85 0.64 0.73 0.82 0.58 0.67 0.82
Specificity 0.62 0.57 0.83 0.86 0.50 0.94 0.94 0.73 0.91
Accuracy 0.60 0.58 0.84 0.81 0.55 0.91 0.84 0.71 0.88

PPV 0.33 0.33 0.65 0.58 0.31 0.82 0.78 0.47 0.75
NPV 0.79 0.81 0.94 0.89 0.86 0.94 0.86 0.86 0.94
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Table 4. Results of statistical analysis for changes in echogenicity, volume, and ∆KLD parameter after two, three and four
courses of NAC for responders (RMC ≤ 30%).

Measure of
Performance

2nd NAC Course 3rd NAC Course 4th NAC Course

∆Echo ∆V ∆KLD ∆Echo ∆V ∆KLD ∆Echo ∆V ∆KLD

AUC 0.55
0.69

0.66
0.8

0.84
0.93

0.68
0.8

0.68
0.82

0.84
0.94

0.73
0.85

0.62
0.78

0.88
0.96

0.4 0.5 0.71 0.53 0.51 0.71 0.57 0.44 0.75
Sensitivity 0.61 0.61 0.79 0.33 0.74 0.93 0.5 0.75 0.91
Specificity 0.45 0.68 0.86 0.95 0.6 0.7 0.76 0.48 0.75
Accuracy 0.54 0.64 0.82 0.6 0.68 0.83 0.62 0.62 0.84

PPV 0.59 0.71 0.88 0.9 0.71 0.81 0.71 0.62 0.81
NPV 0.48 0.58 0.75 0.51 0.63 0.88 0.57 0.63 0.88Cancers 2021, 13, x FOR PEER REVIEW 13 of 23 
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RMC ≤ 30% and RMC ≥ 70%.

Table 5. Combined model for changes in echogenicity and volume after individual NAC courses for
RMC ≥ 70%.

RMC ≥ 70% 1st NAC Course 2nd NAC
Course

3rd NAC
Course

4th NAC
Course

AUC 0.62 0.52 0.8 0.77
Sensitivity 0.69 0.62 0.64 0.83
Specificity 0.68 0.43 0.94 0.76
Accuracy 0.68 0.48 0.87 0.78

PPV 0.43 0.28 0.78 0.56
NPV 0.86 0.76 0.89 0.93

Of the B-mode parameters, assessed separately and in combination, the assessment of
changes in echogenicity (∆Echo) most accurately predicted the group of non-responding
tumors with RMC ≥ 70% (Table 3) after the third NAC course (AUC = 0.81), with a
sensitivity of 64% and specificity of 86%. To evaluate the volume change (∆V), lower AUC
values were obtained after both the third (AUC = 0.63) and fourth (AUC = 0.79) courses for
RMC ≥ 70%.
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We found that there was a slight improvement in accuracy, specificity, and PPV with
the combined model of both parameters (change in echogenicity and volume) (accuracy
87% vs. 80%, specificity 94% vs. 86%, 58% vs. 78%), with no improvement in sensitivity
(64%) (Table 5). The results for all of the RMC cutoff values are shown in Appendix A
(Tables A2 and A3).

Starting from the second course of chemotherapy, the quantitative parameter ∆KLD
made it possible to predict the response to treatment with AUC ≥ 0.85. The ROC curves
obtained after the second, third, and fourth courses of chemotherapy are presented in
Figure 9. As in the case of echogenicity, the ∆KLD brought the best results after the third
treatment course (AUC = 0.90; sensitivity of 82%; specificity of 94%). All of the classifiers
characteristics are listed in Table 3.
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Figure 9. ROC curves (with marked grayscale probability density values) determined for the ∆KLD parameter after the
second, third, and fourth courses of chemotherapy for RMC exceeding 70%.

The influence of the selection of the RMC threshold on the efficiency of the ∆KLD-
based classifier is shown in Figure 10. The AUC increases with the adopted RMC threshold,
which means that non-responding tumors can be indicated more efficiently. Detection
of the tumors with the worst response to NAC (RMC ≥ 90%) is characterized with AUC
significantly exceeding 0.90. While the classification of responders with use of the ∆KLD
parameter appears more difficult, it still allows to achieve AUC = 0.84 for RMC ≤ 30%
(Table 4).
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4. Discussion

In the current study, ultrasound images were analyzed to monitor the response to NAC
after the first four courses. Two types of images were included: traditional B-mode images
and amplitude images generated from reconstructed (post-beamformed) RF data. The
purpose of using the RF data was to avoid the unknown impact of image post-processing
algorithms implemented in commercial scanners.

In traditional B-mode images, changes in volume and echogenicity were analyzed
relative to the baseline study before treatment. Quantitative ultrasonic examination was
based on the KLD analysis. Three parameters, KLD0, KLD1, and ∆KLD, were used to assess
the discrepancy between the distributions of echogenicity of the images after particular
NAC courses compared to the distributions for amplitude images determined: (1) before
the start of treatment and (2) after the first treatment course.

In the B-mode assessment, we showed that the change in tumor volume following
subsequent courses of NAC is not an accurate parameter when analyzed independently;
however, in combination with the change in echogenicity, it improved the AUC (0.8 vs.
0.63) and specificity (up to 94%), although with no improvement in sensitivity (64%) after
the third NAC course for the non-responding tumors (for RMC ≥ 70%). However, the
necrotic areas within the tumor are likely to represent a limitation of this parameter. These
areas appear as hypoechoic and they do not affect the change in tumor volume assessed in
the B-mode study, which may falsely indicate a lack of response to treatment. However, in
studies using MRI in monitoring the response to NAC in BC, Minarikowa et al. showed
that, as in the ultrasound evaluation, the appearance of necrosis led to false results [28]. A
study showed that higher ADC values before treatment are associated with the presence of
necrosis and limited perfusion, and a limited response to treatment should be expected
in these tumors as a result. Chu et al. showed that the increase in the ADC parameter
value predicts the pCR with a sensitivity of 88% and a specificity of 79% [29]. ADC is a
quantitative parameter that measures diffusivity derived from diffusion-weighted imaging
(DWI), which is a non-contrast method that evaluates water mobility and tissue cellularity.
Increasing ADC values during NAC therapy reflect increased cell lysis and necrosis [30].

Marinovich et al. showed in a meta-analysis that the assessment of the changes in
tumors size after NAC assessed by ultrasound and MRI indicates an underestimation of
the size of tumors in the ultrasound examination; however, the MRI examination has a
tendency to overestimate the size of the residual tumor in relation to histopathological
verification [30]. The RECIST criteria used in MRI are not recommended for the assessment
of changes in tumor size in ultrasound examination [31,32]. In this study, authors showed
that US examination was operator-dependent and characterized by low repeatability. On
the other hand, for the next parameter in the B-mode assessment, echogenicity, we showed
statistically significant correlation with the RMC value after the third and fourth NAC
courses. For the classification of non-responders (RMC ≥ 70%), after the third NAC course,
AUC, specificity, and sensitivity were 0.81, 86%, and 64% respectively.

For comparison, in a study on 42 focal lesions, Dobruch-Sobczak et al. analyzed
changes in echogenicity after the third NAC course, assuming that tumors did not respond
if RMC values were ≥70% and showed sensitivity of 73%; specificity of 87%; PPV of 67%;
NPV of 90%; accuracy of 83%; and AUC = 0.69. In the same group, in two parameters
analysis using echogenicity and stiffness, an improvement in the statistical parameters was
obtained: sensitivity of 82%, specificity of 90%, PPV of 75%, NPV of 93%, accuracy of 88%,
and AUC of 0.88. It was noticed that both the stiffness and the hypoechoic nature of the
lesions remained unchanged [15].

Therefore, based on the results of statistical analysis, we can assume that changes only
in tumor echogenicity, for the group of tumors with RMC ≤ 30%, do not allow the correct
assessment of the effects of NAC. In this group, the distinction between residual tumor
and fibrosis in the tumor stroma is not possible by analyzing the variability of echogenicity
assessed in relation to adipose tissue in the classic B-mode examination. Changes in the
residual tumor cells, if present, are variable in pathology examination. More commonly, in
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microscopic analysis, carcinomas become less cellular and often present as small scattered
nests across the tumor bed. After a complete response, only the oedematous vascularized
fibroelastotic area of connective tissue with chronic inflammatory cells and macrophages
mark the tumor bed [33]. Before treatment, the tumors are rich in malignant cellularity
and transmit RF sound better than surrounding breast tissue, and are predominantly
hypoechogenic. In contrast, in tumors resistant to NAC, no morphological alteration could
be observed, and therefore, the echogenicity was unchanged.

In ultrasound diagnostics, the echogenicity of the B-mode image is a qualitative
parameter, even if it is assessed in comparison to the adipose tissue. Although this approach
significantly reduces the influence of the ultrasonic scanner settings on the assessment
of echogenicity, it remains a subjective assessment by the physician. Image echogenicity
is strictly related to the amplitude of the ultrasonic signal scattered in the tissue and the
distribution of this amplitude. In the selected area, the assessment of echogenicity is
largely dependent on the mean amplitude of the signal. Therefore, the same echogenicity
values can be assigned to different amplitude distributions. In our research, we used the
KDE (Kernel Density Estimation) method to describe the amplitude distribution of images
determined from RF signals, and the KLD (Kullback–Leibler Divergence) method to detect
differences between the amplitude distributions of tumor images in subsequent cycles of
NAC. The method proposed in this study makes it possible to differentiate the amplitude
distributions even when they have the same mean value, which, in relation to the average
echogenicity, also enables better tracking of changes taking place in the tissue. Additionally,
KLD assessment overcomes the limitations of the subjective assessment of echogenicity
based on B-mode images.

Changes in the amplitude distributions in the tumor after particular courses of treat-
ment and the distribution before treatment (KLD0) did not significantly correlate with the
RMC for the first and second cycles of NAC, and after the subsequent cycles, the correlation
was low (0.3–0.4), but statistically significant. This was reflected during the classification of
tumors, which translated into low values of the classification parameters (see Table A3 in
Appendix A). Compared to KLD0, the KLD1 parameter correlated better with the RMC.

Applying KLD1 to predict a poor tumor response (RMC ≥ 70%), the AUC values after
the second, third, and fourth NAC cycles were 0.72, 0.82, and 0.81, respectively. The best
results were achieved using ∆KLD. After the second course, NAC was able to indicate
the non-responding tumors with sensitivity of 84%, specificity of 83%, accuracy of 84%,
NPV of 94%, and AUC = 0.85. These values were even higher during the next stages of
treatment. The best values after the third treatment course were 82%, 94%, 91%, 94%,
and 0.90, respectively. For comparison, the assessment of the effectiveness of treatment
based on changes in echogenicity in the B-mode examination allowed us to obtain accuracy,
specificity, and NPV exceeding 80% after the third NAC course; however, these values
were lower than those obtained for the ∆KLD parameter. This trend was unchanged after
the fourth NAC treatment.

In the statistical analysis combining both parameters (∆KLD and ∆Echo) after the
second NAC course, all parameters describing the ability to classify remained at the same
level as those for classification, which was based only on the ∆KLD parameter. After the
third course of NAC, an increase in sensitivity was obtained from 82% to 91%, with a slight
decrease in specificity from 94% to 92%, and the values of accuracy and AUC remained at
the same high level of 0.91. It is worth noting that this parameter was also a predictor with
high potential for the RMC cut-off value of ≤30%. After the second and third courses of
NAC, the AUC values obtained were 0.83 and 0.84, respectively. These results suggest that
the use of ∆KLD has great potential as a tool for predicting treatment response to NAC.

Note that ∆KLD actually uses two parameters, KLD0(n) and KLD0(1). Such effective
operation of the classification with the use of ∆KLD results from the value of the KLD0(1)
parameter. The values of this parameter, as shown in the Figure 5, after the first NAC
cycle, are higher for tumors with RMC ≥ 70% than for tumors with RMC ≤ 30%. The
KLD0(1) parameter is in the denominator of the formula describing the ∆KLD parameter.
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As a result, dividing by KLD0(1) results in an additional elevation of the ∆KLD value for
non-responders compared to responders, which improves the classification.

We acknowledge that our study may have some weakness. In this research, post-
beamformed RF data were used to avoid the unknown impact of image post-processing
algorithms implemented in commercial scanners. RF data are not directly available in
common scanners. However, they are always present in the data processing pipeline, and
thus QUS methods can be potentially easily implemented on new US platforms.

We only used RMC as a reference standard, which is one of the six residual cancer
burdens (RCB) assessed by the pathologist, but in the publication the most common trait
referenced by many authors is tumor cellularity.

Another limitation of the study is that only one medical doctor assessed all ultrasound
images, however, she has worked for 21 years at the Institute of Oncology and has extensive
experience in breast imaging. In B-mode examination, we followed ACR BIRADS-lexicon.

5. Conclusions

In this study, evaluating the response of BC to NAC after the first four treatment
courses, the ∆KLD parameter, which provides quantitative information on changes in
image echogenicity, is an accurate predictor of poor response to treatment (RMC ≥ 70%)
after the second course of therapy. In the statistical analysis combining ∆KLD and ∆Echo,
an increase in sensitivity was obtained without significant deterioration of other statisti-
cal parameters.

Our research demonstrates that alterations in tumor echogenicity during NAC treat-
ment are important features in assessing the therapy outcome. The evaluation of changes
in echogenicity on the basis of statistical measures applied to the amplitude distributions of
the ultrasound image is a particularly promising method. This approach makes it possible
to predict the pathological response after NAC. The number of cases used in our research is
a limitation in making more general conclusions. Nevertheless, we believe that our results
show an important role of quantitative ultrasound in predicting the effects of chemotherapy
in breast cancer patients.
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Appendix A

Table A1. Spearman correlations and p-values for assessed parameters after first: second, third and
fourth courses of NAC.

Parameter 1st NAC Course 2nd NAC
Course

3rd NAC
Course

4th NAC
Course

∆Echo −0.29 (0.043) −0.28 (0.051) −0.40 (0.005) −0.38 (0.009)
∆V +0.11 (0.427) +0.24 (0.096) +0.28 (0.061) +0.25 (0.102)

KLD0 +0.24 (0.095) −0.23 (0.106) −0.41 (0.004) −0.36 (0.018)
KLD1 −0.36 (0.012) −0.58 (2 × 10−5) −0.51 (5 × 10−4)
∆KLD −0.56 (3 × 10−5) −0.62 (4 × 10−6) −0.65 (3 × 10−6)

Table A2. Statistical analysis for all measured US parameters (single ∆Echo, ∆V, KLD0, and KLD1, and their combinations
∆Echo with ∆V and ∆Echo with ∆KLD and in combination) assessed after first, second, third, fourth courses od NAC for
RMC ≤ 30%.

Stage of
Treatment Parameter AUC Sensitivity Specificity Accuracy PPV NPV

1st NAC course

∆Echo 0.62 0.73
0.5 0.36 0.91 0.6 0.83 0.53

∆V 0.65 0.79
0.49 0.64 0.73 0.68 0.75 0.62

∆V & ∆Echo 0.68 0.82
0.52 0.71 0.68 0.7 0.74 0.65

KLD0 0.69 0.82
0.53 0.54 0.86 0.68 0.83 0.59

KLD1 - -
- - - - - -

∆KLD - -
- - - - - -

∆KLD & ∆Echo - -
- - - - - -

2nd NAC course

∆Echo 0.55 0.69
0.4 0.61 0.45 0.54 0.59 0.48

∆V 0.66 0.8
0.5 0.61 0.68 0.64 0.71 0.58

∆V & ∆Echo 0.62 0.76
0.45 0.61 0.64 0.62 0.68 0.56

KLD0 0.57 0.73
0.4 0.57 0.62 0.59 0.67 0.52

KLD1 0.67 0.82
0.51 0.64 0.71 0.67 0.75 0.6

∆KLD 0.84 0.94
0.71 0.79 0.86 0.82 0.88 0.75

∆KLD & ∆Echo 0.81 0.92
0.66 0.79 0.81 0.8 0.85 0.74
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Table A2. Cont.

Stage of
Treatment Parameter AUC Sensitivity Specificity Accuracy PPV NPV

3rd NAC course

∆Echo 0.68 0.8
0.53 0.33 0.95 0.6 0.9 0.51

∆V 0.68 0.82
0.51 0.74 0.6 0.68 0.71 0.63

∆V & ∆Echo 0.72 0.85
0.55 0.74 0.65 0.7 0.74 0.65

KLD0 0.66 0.81
0.49 0.85 0.5 0.7 0.7 0.71

KLD1 0.79 0.9
0.63 0.74 0.75 0.74 0.8 0.68

∆KLD 0.84 0.94
0.7 0.93 0.7 0.83 0.81 0.88

∆KLD & ∆Echo 0.84 0.94
0.7 0.81 0.75 0.79 0.81 0.75

4th NAC course

∆Echo 0.73 0.85
0.58 0.5 0.76 0.62 0.71 0.57

∆V 0.62 0.78
0.44 0.75 0.48 0.62 0.62 0.63

∆V & ∆Echo 0.64 0.79
0.46 0.58 0.67 0.62 0.67 0.58

KLD0 0.68 0.83
0.5 0.83 0.55 0.7 0.68 0.73

KLD1 0.76 0.88
0.6 0.78 0.65 0.72 0.72 0.72

∆KLD 0.88 0.96
0.75 0.91 0.75 0.84 0.81 0.88

∆KLD & ∆Echo 0.87 0.95
0.74 0.83 0.8 0.81 0.83 0.8

Table A3. Statistical analysis for all measured US parameters (single ∆Echo, ∆V, KLD0, and KLD1, and their combinations
∆Echo with ∆V and ∆Echo with ∆KLD and in combination) assessed after first, second, third, fourth courses od NAC for
RMC ≥ 70%.

Stage of treatment Parameter AUC Sensitivity Specificity Accuracy PPV NPV

1st NAC course

∆Echo 0.6 0.7
0.48 0.92 0.3 0.46 0.32 0.92

∆V 0.6 0.77
0.43 0.69 0.62 0.64 0.39 0.85

∆V & ∆Echo 0.62 0.78
0.45 0.69 0.68 0.68 0.43 0.86

KLD0 0.67 0.8
0.5 0.92 0.51 0.62 0.4 0.95

KLD1 - -
- - - - - -

∆KLD - -
- - - - - -

∆KLD & ∆Echo - -
- - - - - -
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Table A3. Cont.

Stage of treatment Parameter AUC Sensitivity Specificity Accuracy PPV NPV

2nd NAC course

∆Echo 0.6 0.74
0.45 0.54 0.62 0.6 0.33 0.79

∆V 0.57 0.73
0.38 0.62 0.57 0.58 0.33 0.81

∆V & ∆Echo 0.52 0.69
0.35 0.62 0.43 0.48 0.28 0.76

KLD0 0.61 0.79
0.41 0.62 0.64 0.63 0.38 0.82

KLD1 0.72 0.87
0.54 0.69 0.81 0.78 0.56 0.88

∆KLD 0.85 0.96
0.68 0.85 0.83 0.84 0.65 0.94

∆KLD & ∆Echo 0.84 0.97
0.65 0.85 0.83 0.84 0.65 0.94

3rd NAC course

∆Echo 0.81 0.92
0.67 0.64 0.86 0.81 0.58 0.89

∆V 0.63 0.8
0.42 0.73 0.5 0.55 0.31 0.86

∆V & ∆Echo 0.8 0.94
0.62 0.64 0.94 0.87 0.78 0.89

KLD0 0.68 0.86
0.47 0.55 0.92 0.83 0.67 0.87

KLD1 0.82 0.95
0.64 0.82 0.86 0.85 0.64 0.94

∆KLD 0.9 0.99
0.75 0.82 0.94 0.91 0.82 0.94

∆KLD & ∆Echo 0.92 1
0.76 0.91 0.92 0.91 0.77 0.97

4th NAC course

∆Echo 0.79 0.92
0.61 0.58 0.94 0.84 0.78 0.86

∆V 0.7 0.88
0.48 0.67 0.73 0.71 0.47 0.86

∆V & ∆Echo 0.77 0.92
0.56 0.83 0.76 0.78 0.56 0.93

KLD0 0.66 0.84
0.43 0.55 0.88 0.79 0.6 0.85

KLD1 0.81 0.95
0.62 0.73 0.78 0.77 0.53 0.89

∆KLD 0.89 0.98
0.73 0.82 0.91 0.88 0.75 0.94

∆KLD & ∆Echo 0.86 0.98
0.66 0.82 0.94 0.91 0.82 0.94
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Figure A1. ROC curves for the examined classifiers and four RMC thresholds. 
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