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Abstract: This paper describes the calibration method for calculating parameters (position and
orientation) of planar reflectors reshaping LiDAR’s (light detection and ranging) field of view. The
calibration method is based on the reflection equation used in the ICP (Iterative Closest Point)
optimization. A novel calibration process as the multi-view data registration scheme is proposed;
therefore, the poses of the measurement instrument and parameters of planar reflectors are calculated
simultaneously. The final metric measurement is more accurate compared with parameters retrieved
from the mechanical design. Therefore, it is evident that the calibration process is required for
affordable solutions where the mechanical design can differ from the inaccurate assembly. It is shown
that the accuracy is less than 20 cm for almost all measurements preserving long-range capabilities.
The experiment is performed based on Livox Mid-40 LiDAR augmented with six planar reflectors.
The ground-truth data were collected using Z + F IMAGER 5010 3D Terrestrial Laser Scanner. The
calibration method is independent of mechanical design and does not require any fiducial markers
on the mirrors. This work fulfils the gap between rotating and Solid-State LiDARs since the field of
view can be reshaped by planar reflectors, and the proposed method can preserve the metric accuracy.
Thus, such discussion concludes the findings. We prepared an open-source project and provided all
the necessary data for reproducing the experiments. That includes: Complete open-source code, the
mechanical design of reflector assembly and the dataset which was used in this paper.

Keywords: LiDAR; ICP; mapping; calibration; reshape field of view; solid state LiDAR

1. Introduction and Related Work

LiDAR (light detection and ranging) in general is the method for determining ranges
(variable distance) between an object and a laser by measuring the time it takes for reflected
light to return to the receiver. This measurement instrument is mainly used for the 3D
digitization of the urban environment, cultural heritage and archaeology, underground
environment, environmental monitoring, forestry and agriculture [1]. The purpose of
the study was to verify an experimentally proposed novel calibration process capable of
preserving LiDAR’s accuracy and range after reshaping the FOV (Field Of View) with
planar reflectors. Base on our best knowledge such work has not yet been elaborated
in the literature. We use Livox Mid-40 (manufacturer Livox, Hong Kong, China, https:
//www.livoxtech.com/): The robotic LiDAR sensor based on incommensurable scanning
that allows straightforward mass production and adoption in autonomous robots [2]. There
are many types of LiDAR applications such as Terrestrial Laser Scanning, which uses a
highly accurate measurement instrument that works in the so-called stop-scan fashion
looking from a mobile robotics point of view [3]. This means that the robot stops at certain
goals to acquire highly accurate 3D measurements. Another family of applications is
mobile mapping systems composed of highly accurate planar LiDARs, or 3D multi-beam
lasers such as Velodyne. An overview of scanning and reconstruction methods is discussed
in Lehtola et al. [4]. Recently, the development of Solid-State LiDARs shows the potential
reduction of such devices. Typical data produced by LiDAR are measurements of distance
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and reflectance; thus white reflective objects such as lines or signs can be identified easily.
An important aspect of the multi beam LiDAR is the intrinsic calibration [5–7]. Such
calibration is crucial in mobile mapping applications where the measurement instrument is
heavily occupied and works assuming diverse environmental conditions. The gap between
rotating and Solid-State LiDARs is evident since the field of view of Solid-State LiDARs is
still limited. Review [8] shows an extensive overview of MEMS (Micro Electro Mechanical
Systems) scanning mirrors specifically for applications in LiDAR systems. Such technology
will improve Solid-State LiDARs but it requires a sophisticated laboratory and the time
from the design to the delivery is rather a barrier in fast prototyping. For this reason, the
investigation of reshaping the field of view of the LiDAR with planar reflectors is the main
topic of the paper. Many other researchers proposed different methods incorporating the
rotation of the LiDAR [9,10]. In such cases, the rotation of the LiDAR requires additional
mechanics and electronics. For such approaches the synchronization of the LiDAR data
with GPS (Global Positioning System) and odometry is crucial. This leads our research to
reduce the number of additional mechanical and electronic parts for reshaping LiDAR’s
field of view. Therefore, the overall design is simplified and the final prototype is more
affordable compared with competitive solutions.

Reshaping the field of view of the sensors is an interesting research topic since it allows
to customize a specific application for certain needs. For example, authors Endres et al. [11]
introduced the combination of an RGB-D camera with two planar mirrors to split the field
of view. It covers both the front and rear views of a mobile robot. They describe how
to estimate the extrinsic calibration parameters of the modified sensor using a standard
parametrization. For solving the graph SLAM (simultaneous localization and mapping) op-
timization problem the g2o framework [12] is used. More information concerning the graph
SLAM can be found in [13–16]. An alternative approach is discussed in Akay et al. [17]
where a proposed solution employs mirrors to introduce virtual RGB-D cameras into the
system. The proposed system does not have any space limitations, data bandwidth con-
straints or synchronization problems and it is more affordable since it does not require extra
cameras. The authors developed formulations for the simultaneous calibration of real and
virtual RGB and RGB-D cameras and provided methods for 3D reconstruction from these
cameras. It is worth mentioning that RGB-D mapping and 3D reconstruction have been in-
tensively researched topics in recent years. An interesting comparative study of registration
methods for RGB-D video of static scenes is discussed in Morell-Gimenez et al. [18].

The authors Aalerud et al. [19] proposed a method for the simulation and design of a
radially reshaped field of view. This work shows great potential for an increased number of
usable measurements. Unfortunately, the authors did not address the problem of decreased
accuracy related to the not ideal geometrical placement of the reflectors. Moreover, it is
difficult to find relevant discussion in the literature [20]; therefore, we address this problem
by providing an end-to-end framework for the calibration of the geometric placement of the
reflectors. Adding reflectors can improve the mobile robotic perception [21] by augmenting
planar 2D measurements; thus, Unmanned Aerial Vehicles can easily navigate in indoor
environments. Mirrors can be used for extending the LiDAR field of view in self-driving
vehicles [22]. Generally, it is easy to imagine plenty of applications requiring changing the
LiDAR field of view, e.g., security applications, autonomous driving, etc. For this reason,
we propose a general framework that can be used for other researchers in developing a
specific LiDAR field of view configuration.

This topic is relevant looking at recent developments in mobile robotics such as SLAM
and search and rescue applications where reconstructing 3D scenes is one of the goals
of the autonomous machine and autonomous cars that will use a predefined map for
localization purposes [23,24]. Obviously, it is evident that autonomous cars can collect data
and contribute to global map updates; thus, we cope with a large-scale problem that has
recently been addressed by many researchers. The term SLAM [25,26] corresponds to the
so-called “chicken and egg dilemma”—what was first: The chicken or the egg? Therefore
we should have a proper map representation that is compatible with observations derived
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from sensors to localize within this map, and we need accurate localization to build the
map. In the literature [12], the SLAM problem is divided into so-called front-end and back-
end. The front-end is typically responsible for initial trajectory generation and the back-end
is responsible for so-called loop closing. Loop is the situation when the measurement
instrument visits the same location as visited some time ago, assuming a continuous
trajectory between these two time intervals. The back-end is typically solved using a so-
called graph-based technique that minimizes the error between the observed and desired
relative pose between trajectory/trajectory nodes. Due to the large scale aspect of SLAM,
it can be mentioned that recent research shows an interest in cloud-based calculations of
back-end [25,27,28].

The objective and at the same time the rationale addressing the research problem is
lowering the cost of LiDAR sensors. This is related to reshaping the field of view, which
can be done with planar reflectors. Such an approach requires additional calibration due to
the fact of assembly and manufacturing imperfections. Moreover, some applications such
as autonomous mobile robots equipped with such sensors will deal with the problem of
self-calibration during daily operations. For this reason, we propose a novel calibration
process and an open-source approach. It fulfils the gap in affordable LiDAR sensors with
a reshaped field of view. Based on our best knowledge such an approach has not yet
been elaborated in the literature; many studies even used additional planar reflectors for
LiDARs. Our future work will be investigating the usage of presented LiDAR sensors for
mobile robot localization; therefore, this research contributes to affordable mobile robotics.

2. Materials and Methods
2.1. Mechanical Design

The Livox Mid-40 LiDAR has an originally conical field of view with the apex in
the optical centre and an apex angle equal to 38.4 degrees. Relevant parameters of this
LiDAR [29] are shown in Table 1. This table shows also Z + F IMAGER 5010 [30] parameters
as a reference ground-truth source. Figure 1 shows a prototype used in experiments and
simulations of the reshaped field of view. The field of view after modification consists of
six segments that have properties:

• The field of view (vertical) spreads from −12◦ to 9.4◦ (Figure 2).
• The field of view (horizontal) has six segments orientated radially with an angle up to

18.7◦ (Figure 3).

(a) Livox Mid-40 LiDAR with six
planar reflectors. (b) Reshaped LiDAR’s field of view.
Figure 1. Prototype of LiDAR with planar reflectors.
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Figure 2. Reshaped field of view; plot of vertical situation.

Figure 3. Reshaped field of view; plot of horizontal situation.

Table 1. Livox Mid-40 [29] and Z + F IMAGER 5010 [30] parameters. (*) Measured in an environment of 25 ◦C with a target
(80% reflectivity) 20 m away. The result may vary under different test conditions.

Parameter Livox Mid-40 Z + F IMAGER 5010

Laser Wavelength 905 nm 1500 nm
Laser Safety Class 1 (IEC60825-1) Class 1

Detection Range (@ 100 klx) 90 m @ 10% reflectivity 187.3 m
130 m @ 20% reflectivity
260 m @ 80% reflectivity

FOV 38.4◦ Circular 320◦ Vertical, 360◦ Horizontal
Range Precision (1σ @ 20 m) 2 cm (*) 1 mm

Due to the limited precision of the mirror assembly (the main contributor is the
thickness of the top PMMA (PolyMethyl MethAcrylate) surface of the mirror, the usable
angular range is limited. Therefore, measurement outliers are evident when a given ray is
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assigned to the wrong mirror. The reflector assembly was designed using the Autodesk
Fusion 360 software [31]. It is CAD (Computer Aided Design) software that helps in the
mechanical design process. It allows producing 3D models for 3D printing and necessary
documentation for further manufacturing. The designed structure consists of the main
chassis (which resembles a hexagonal pyramid) with a set of mirrors screwed into the
pyramid’s faces. The screws’ holes are placed outside the useful surface of the mirror
(marked as 1 in Figure 4). The main chassis was 3D printed using a consumer-grade FDM
(Fused Deposition Modeling) printer with PLA (PolyLactic Acid) filament. The mirrors’
shape is obtained with a CNC plotter from the PMMA sheet with the reflective bottom
surface (marked as 4 in Figure 4). The original laser scanner has a front plate attached. The
front plate (marked as 3 in Figure 4) has a rectangular hole for lasers’ scanner optics and
multiple holes for assembly—φ 3 mm for mounting laser scanner and φ 6 mm for three
pillars. The hexagonal pyramid is attached to pillars.

Figure 4. Three-dimensional CAD model of assembly. 1—hexagonal pyramid; 2—Livox LiDAR;
3—face plate; 4—one of six mirrors.

2.2. Calibration Method

Due to the imperfect assembly of the planar reflectors, the metric measurement is poor.
To solve this issue the calibration method is designed and implemented as an open-source
project [32]. It is composed of observation equations implemented with Ceres solver [33].
It is based on the commonly used Iterative Closest Point procedure [34–36]. The calibration
method is independent of mechanical design and does not require any fiducial markers on
the mirrors like in Chen et al. [22].

2.2.1. Data Acquisition

Due to six planar reflectors, it is advised to use stop-scan fashion in different locations
assuming additional rotation of the measurement instrument around its axis (Figure 5). For
this purpose we used a precise rotating table; therefore, we collected 36 static measurements
for each measurement station by rotating the table by 10 degrees. Each static measurement
consists of three seconds of the recorded Livox Mid-40 data. In such a scheme of data acqui-
sition, there is a sufficient number of overlapping data of different mirrors. Additionally,
the entire scene was scanned using Terrestrial Laser Scanning measurement instrument Z +
F IMAGER 5010 (manufacturer: Z + F, 88239 Wangen, Germany, https://www.zofre.de/)
(range uncertainty of 1 mm [30]). This ground-truth data is an order of magnitude more
accurate than the experimental prototype.

https://www.zofre.de/
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Figure 5. Experimental prototype mounted onto precise rotating table during data acquisition
procedure. A—axis for changing rotation angle.

2.2.2. Iterative Closest Point

Local point Pl(xl ,yl ,zl , 1) is represented in Euclidean space as the point in local refer-
ence frame. The matrix [R,T] is the transformation of local point Pl into point Pg(xg,yg,zg)
in global reference frame; thus

Pg = [R, T]Pl (1)

Ψ[Rj ,T j](R
j, T j, xl,j

i , yl,j
i , zl,j

i ) = (xg,j
i , yg,j

i , zg,j
i ) =

rj
11 rj

12 rj
13 tj

1
rj

21 rj
22 rj

23 tj
2

rj
31 rj

32 rj
33 tj

3




xl,j
i

yl,j
i

zl,j
i
1

 (2)

xδ

yδ

zδ


︸ ︷︷ ︸

residuals

=

0
0
0


︸︷︷︸

target values

−

Ψ[
Rj, T j

]
︸ ︷︷ ︸

βj

(Rj, T j, xl,j, yl,j, zl,j)−Ψ[
Rk, Tk

]
︸ ︷︷ ︸

βk

(Rk, Tk, xl,k, yl,k, zl,k)


︸ ︷︷ ︸
model f unction

(3)

Equation (2) transforms the ith local point (xl,j
i , yl,j

i , zl,j
i , 1) in jth [R,T] into global ref-

erence system (xg,j
i , yg,j

i , zg,j
i ); therefore, it can be used for building point to point observation

Equation (3), incorporating two poses [R1, T1] and [R2, T2], where
[
xδ yδ zδ

]ᵀ are residuals,[
0 0 0

]ᵀ are target values and Ψ[Rj ,T j](R
j, T j, xl,j, yl,j, zl,j)− Ψ[Rk ,Tk](R

k, Tk, xl,k, yl,k, zl,k)

is the model function. The Iterative Closest Point optimization problem for point to point
observations is defined as Equation (4), where there are C pairs of points contributing to
the optimization process.

min
Rj ,T j ,Rk ,Tk

C

∑
i=1

0
0
0

− (Ψ[Rj ,T j](R
j, T j, xl,j

i , yl,j
i , zl,j

i )−Ψ[Rk ,Tk](R
k, Tk, xl,k

i , yl,k
i , zl,k

i )
)2

(4)
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The Iterative Closest Point approach converges to the optimal solution in an
iterative fashion.

2.2.3. Line with Plane Intersection

Each LiDAR beam intersects with the reflective plane. The following plane equation
is considered:

ax + by + cz + d = 0 (5)

where ∥∥[a b c
]∥∥ = 1 (6)

Vpl = (a, b, c) is the unit vector orthogonal to the plane and d is the distance from
the origin to the plane. It satisfies the following condition with the intersection point in
3D space:

[
a b c d

]
x
y
z
1

 = 0 (7)

The main assumption is that all LiDAR beams starts at origin (0, 0, 0). Assuming the
LiDAR beam has unique representation as beam origin bo = (0, 0, 0) and beam direction
bd = (bd

x, bd
y , bd

z ),
∥∥∥bd
∥∥∥ = 1 the beam with reflective plane intersection equation is given (8).

Pint = −

bd
x

bd
y

bd
z

 d
Vpl · bd (8)

where (·) is the dot product.

2.2.4. Reflection Observation Equation

The direction rd of the LiDAR beam bd after reflecting with the plane with the normal
vector Vpl is given by Equation (9) and the supportive plot is given in Figure 6.

rd = 2(bd ·Vpl)Vpl − bd (9)

Figure 6. The direction rd of the LiDAR beam bd after reflecting with the plane with normal
vector Vpl .
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With the measurement point Pl(xl ,yl ,zl) expressed in the local coordinate system of the
measurement instrument, lp =

∥∥∥Pl
∥∥∥ and distance from origin to intersection lint =

∥∥Pint
∥∥,

the final reflected measurement point Pr is given in Equation (10).

Pr = −(Pint + rd(lp − lint)) (10)

Finally, the measurement point expressed in the global coordinate system is given as (11).

Pg = [R, T]Pr = Ψr(R, T, a, b, c, d, Pl) (11)

2.2.5. Ground-Truth Data Observation Equation

For ground-truth data as a point cloud composed of points Pgt(xgt,ygt,zgt) expressed in
global reference systems, the ground-truth data observation equation is given by Equation (12).

xδ

yδ

zδ


︸ ︷︷ ︸

residuals

=

0
0
0


︸︷︷︸

target values

−

Ψr[
Rj, T j, am, bm, cm, dm

]
︸ ︷︷ ︸

βj,m

(Rj, T j, am, bm, cm, dm, Pl,j)−

xgt,k

ygt,k

zgt,k




︸ ︷︷ ︸
model f unction

(12)

The optimization process will not modify Pgt,k. The expected result will converge to
obtain minimal distances (target values) between measurement points Pl transformed into
a global reference system via Ψr and the corresponding ground-truth Pgt.

2.2.6. Calibration Algorithm

The angle information from a precise rotating table is used as the additional constraints.
The rotation axis of the rotating table and the main optical axis of the calibrated system
need to be as close together as possible. Ideally, it should be identical; however, a small
discrepancy is acceptable. This geometrical discrepancy is represented by a homogenous
transformation [Rt

l , Tt
l ] ∈ SE(3). That homogenous transformation transforms the Livox

LiDAR’s local coordinate system to the local coordinate system of the rotating table’s plate.
Ideally, it should be the identity, but due to a lack of coaxiality of rotation and optical axis,
it represents some unknown, small displacement. Homogenous transformation [Rt

l , Tt
l ] is

treated as an unknown and stationary parameter during calibration. In other words, it is
the same for all measurements—Livox LiDAR is rigidly assembled to the rotating table’s
plate during calibration. The second homogenous transformation is [Rp

t , Tp
t ] ∈ SE(3),

which represents a rotation angle of the rotating table. It is a rotation around the ’X’
axis with a given, known angle. This homogenous transformation [Rp

t , Tp
t ] is treated as

a known parameter during the calibration process. In our experiment, it is an angle that
was set on the rotating table. The third transformation is [Rg

p, Tg
p ] ∈ SE(3). It transforms a

stationary measurement station’s local coordinate system to the global coordinate system.
It is treated as an unknown parameter during the calibration process. The reflected point
(Pr) in Equation (11) is transformed into the global coordinate system (Pg) with a chain of
transformations:

Pg = [Rg
p, Tg

p ][R
p
t , Tp

t ][R
t
l , Tt

l ]P
r (13)

Finally, Equation (11), taking into account the chain of SE(3) transforms, has the form:

Pg = [Rg
p, Tg

p ][R
p
t , Tp

t ][R
t
l , Tt

l ]P
r = Ψg(Rg

p, Tg
p , Rp

t , Tp
t , Rt

l , Tt
l , a, b, c, d, Pl) (14)

Each of those homogenous transformations belongs to a special Euclidean group
SE(3). SE(3) is a Lie group. That means it is possible to represent the given transformation
in SE(3) as se(3) algebra. That is a common technique used in the optimization of non-
linear problems that contains parameters that belong to SO(3) or SE(3) groups. Further,
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necessary information can be found in Sola et al. [37]. Properties of Lie algebra se(3) and
Lie group SE(3) that are utilized are listed below:

• the point in tangent space to the manifold is a minimal representation (six degrees
of freedom).

• the point in tangent space does not have any constraints and can be always exponen-
tially mapped to a valid SE(3).

• every valid SE(3) member can be mapped back to an exact point in tangent
space (logarithmic mapping). It is computed using a closed-form solution (Euler–
Rodrigues formula).

• every optimized SE(3) transformation contributes six parameters to the optimiza-
tion problem.

Optimization of all SE(3) parameters is done in the tangent domain. To manipulate an
SE(3) and se(3) Sophus C++ library was used [38]. For modelling and optimization of the
calibration problem, Ceres solver was used [33]. A mirror is represented in the optimization
problem as a plane given with Equation (5). In the calibration process, multiple nearest
neighbourhood searches are performed. For this problem the well-known [39] Kd-tree
algorithm was utilized. It allows effectively to decompose a point cloud and find the
nearest point to a query point.

The calibration algorithm for single measurement station without ground-truth data
(the simplest scenario):

• with current calibration point clouds and Kd-trees are built in the global
coordinate system.

• using Kd-tree, it searches for pairs of the nearest neighbourhood points that were
reflected by a different mirror.

• every found nearest neighborhood point pair (Pg
k , Pg

j ) creates an observation equa-

tion rjk ∈ R3. The point Pg
k was observed with the measurement Pl

k (taken in the
instrument’s local coordinate system), reflected by the mirror ϕ and the laser scanner
was at rotation φ. Mirror ϕ is represented by its plane parameters via: aϕ, bϕ, cϕ, dϕ.
Current rotation of the rotating table is represented with homogenous transforma-
tion [Rt

lφ, Tt
lφ] ∈ SE(3). Finally, the residual for the point pair (Pg

k , Pg
j ) is given by

Equation (15).
rjk = Pg

j −Ψg(Rt
lφ, Tt

lφ, Rt
l , Tt

l , aϕ, bϕ, cϕ, dϕ, Pl
k) (15)

• Every found pair contributes a new residual. The number of those equations creates
an optimization problem. The equation is (15) and is differentiated automatically
against all optimized parameters, which are: Rt

l , Tt
l , aϕ, bϕ, cϕ, dϕ

• The optimization problem is solved using the Levenberg–Marquardt algorithm until
convergence using the Ceres solver.

• New, the found parameters are applied correctly according to its parametrization and
the whole cycle is repeated.

The calibration algorithm for multiple measurement stations uses the stations’ poses
[Rg

p, Tg
p ]. In this scenario, if the nearest neighbourhood consists of points from the same

measurement station, it will contribute an observation where parameters corresponding to
its pose are treated as constant ([Rg

p, Tg
p ]). Otherwise, if the nearest neighbourhood exists

between points that were captured from different measurement stations, it will contribute
also to these poses an optimization. Finally, if there is ground-truth data the observation
Equation (12) can be added. This calibration scenario results in calibration parameters and
poses updates; thus, it can be used for 3D map reconstruction.

2.2.7. Calibration Accuracy Evaluation

The main assumption of the calibration process is the fact that ground-truth data are
used only for validation purposes. The evaluation is based on quantitative and qualitative
measures of the discrepancy between ground-truth and LiDAR data (Livox Mid-40 with
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calibrated planar reflectors). The qualitative result is shown in Figure 7 as multiple views
of the same features in the scene. The expected outcome of the validation of the calibrated
sensor is the consistent view of the cross-section. Moreover, Figure 8 shows the degradation
of the identification of the corner shapes. Thus, the negative impact of planar reflectors on
LiDAR’s performance is evaluated as the discrepancy between measurements obtained
with Livox Mid-40 and the same LiDAR with planar reflectors. Quantitative evaluation
is based on measuring error distribution. The error is expressed as the distance of the
measured point to its projection onto approximated planar features in ground-truth data.
Error distribution is shown in the form of histograms (Figures 9 and 10). Moreover, the
quantitative evaluations were performed for planar target detection (Figure 11, Table 2).
The goal was to verify the accuracy (measured as mean distance to the target plane) and
precision (measured as the standard deviation of distance to the target plane).

(a) Cross-section before calibration.

(b) Cross-section after calibration.

Figure 7. Qualitative result of the calibration impact on improved 3D data accuracy.

Figure 8. Degradation of LiDAR’s perception with planar reflector. Black—Ground-truth; Green—
Livox Mid-40 LiDAR data; Red—Livox Mid-40 LiDAR data with planar reflector. The degradation of
sharp corners is evident. The planar target is detected with precision (1σ) 1.8 cm (without reflector)
and 2.2 cm (with reflector).
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(a) Calibrated point cloud and ground-truth.

(b) Histogram of errors for a region
marked as ROI1 (Region of interest).

(c) Histogram of errors for a region
marked as ROI2. (d) Histogram of error for all points.

Figure 9. Result of calibration algorithm for single measurement station without ground-truth data (simplest scenario).

(a) Comparison between investigated LiDAR and ground-truth. (b) Histogram of errors for all points.

Figure 10. Result of the calibration algorithm for multiple measurement stations with histogram of errors.
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Figure 11. Location of planar targets that are evaluated in Table 2.

Table 2. The evaluation of accuracy and precision of planar targets detection using Livox Mid-40 with planar reflector.
Locations of planar targets are shown in Figure 11.

Plane Number Accuracy [cm] Precision [cm] Distance to Sensor [m]
(Mean Distance to the Plane) (Standard Deviation of Distance)

1 2.95 1.16 18.3

2 0.32 2.01 20.2

3 0.22 1.26 15.5

4 2.07 2.73 35.7

5 3.26 3.05 60.3

6 2.01 1.20 24.5

3. Results

To validate the proposed calibration method the system was tested in a known indoor
environment. The environment was mapped with the geodetic measurement instrument
Z + F Imager 5010 with accuracy much better than Livox Mid-40. These data are considered
as ground truth. Two calibration scenarios were investigated: (1) Single measurement
station without ground-truth data; (2) multiple measurement stations. We decided to
not add ground-truth data to the optimization process to simulate operational conditions.
Ground-truth data are used for qualitative and quantitative evaluation. The qualitative
result of the calibration impact on improved 3D data accuracy is shown in Figure 7.

Figure 9 shows the results of the calibration algorithm for a single measurement
station without ground-truth data (simplest scenario). Figure 10 shows the results for
multiple measurement stations. We observed that calibration of planar reflectors can be
done based on a single measurement station. Better calibration results can be reached
for multiple measurement stations, but it is a more complicated procedure requiring
more time for data acquisition. The better calibration outcome can be seen comparing
histograms Figures 9a and 10b. Calibration found with multiple measurement stations has
unimodal distribution of error and the most common error value is smaller. Calibration
with multiple measurement stations is more robust and performs significantly better.
Calibration with single measurement stations is much easier to perform, although it is
susceptible to convergence to a sub-optimal solution. Both distributions of the errors
(Figures 9a and 10b) are Gaussian with large positive skewness. Long-tail is present in
distributions. Both are caused by outliers. Deviation of the optimized parameters before
and after calibration is shown in Table 3. For example, the angular update of the first planar
reflector is 0.65◦. This is an important insight into the calibration impact. Unfortunately,
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planar reflectors generate outlier points and some artifacts affecting point cloud quality.
This is shown in Figure 8. The accuracy and the precision were evaluated based on six
planar ground-truth targets shown in Figure 11. The results confirm minor degradation of
the accuracy and the precision compared with reported parameters by the Livox vendor
(Table 1 [29]).

For this reason, in future work, we will focus on filtering algorithms.

Table 3. The optimized parameters (planar reflectors’ coefficients); u: Unitless quantity; m: Meter; [a, b, c]: Unit vector of
planar reflector; d: Distance of planar reflector to the origin.

Parameter Initial Calibrated

[a1, b1, c1, d1] [0.793 u, −0.304 u, −0.527 u, −0.075 m] [0.799 u, −0.311 u, −0.519 u, −0.044 m]

[a2, b2, c2, d2] [−0.793 u, 0.609 u, −0.000 u, 0.075 m] [−0.787u,0.614u, −0.012u,0.049m]

[a3, b3, c3, d3] [0.793 u, −0.304 u, 0.527 u, −0.075 m] [0.791 u, −0.301 u, 0.531 u, −0.049 m]

[a4, b4, c4, d4] [0.793 u, 0.304 u, 0.527 u, −0.075 m] [0.789 u, 0.311 u, 0.528 u, −0.049 m]

[a5, b5, c5, d5] [−0.793 u, −0.609 u, −0.000 u, 0.075 m] [−0.798 u, −0.605 u, 0.008 u, 0.045 m]

[a6, b6, c6, d6] [0.793 u, 0.304 u, −0.527u, −0.075 m] [0.793 u, 0.291 u, −0.534 u, −0.047 m]

4. Discussion

The calibration process of planar reflectors reshaping LiDAR’s field of view enables
preserving accuracy and precision of the LiDAR to some extend. Based on our best knowl-
edge such an investigation has not yet been discussed in the literature. We demonstrated
by the experiment that the calibration process is required for affordable solutions where the
mechanical design can differ from the inaccurate assembly. We use a state-of-the-art LiDAR
Livox Mid-40 sensor as an object of investigation of the reshaping field of view with planar
reflectors. Ground-truth data were collected with a precise Z + F IMAGER 5010 terrestrial
laser scanning system. The calibration process incorporates the state-of-the-art reflection
observation equation integrated with Iterative Closest Point optimization. We observed
that adding planar reflectors slightly degrades the precision of the measurements; in par-
ticular, detected corners are slightly curved. This observation yields the conclusion that
such a sensor will be rather useful for localization purposes than environmental mapping.
Moreover, future autonomous mobile robots will require such calibration if their LiDAR
FOV will be reshaped by planar reflectors.

The impact of planar reflectors on another popular LIDAR (Velodyne VLP-16) was
investigated in detail in the paper [19]. In their work, the authors investigated power
loss and LiDAR’s scanning pattern after FOV reshaping. They attempted to reshape the
original omnidirectional FOV to a narrow FOV maximizing the angular resolution of the
system. They performed simulations and examined the built prototype. They concluded
that FOV reshaping using a planar reflector is feasible and yields a reduction in the range
of 3.9% (when the incident angle to the target is preserved). In our work, we built a similar
setup using alike technology of prototyping, but we investigated the unaddressed issue of
planar reflector calibration. We also introduced a slightly different LiDAR to that used in
the discussed paper. The difference between Velodyne and Livox Mid-40 LiDARs can be
found in the paper [2].

Our work contributes to omnidirectional perception based on 3D LiDAR sensor
similarly to [40]. The authors developed a 3D laser scanner based on a SICK LMS 200
LiDAR, which consists of the LMS 200 facing upwards into a rotating mirror driven by a
stepper motor. It is worth mentioning the work [41] ona 3D imaging LiDAR based on the
high-speed 2D laser scanner and the work [42] on the automatic calibration of spinning
actuated LiDAR internal parameters. These approaches relate also to omnidirectional
perception derived from spinning LiDARs. Such an approach is not affordable; moreover,
introducing other moving parts into the design decreases the robustness of the entire
system. A recent survey [43] of low-cost 3D laser scanning technology discusses other
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approaches; unfortunately, the calibration of the planar reflectors reshaping LiDAR’s field
of view is not elaborated. For this reason, we are focused on this aspect in this paper.

5. Conclusions

This paper describes the calibration process of planar reflectors reshaping LiDAR’s
field of view. The calibration method is based on the reflection equation used in the Itera-
tive Closest Point optimization. The final metric measurement is more accurate compared
with parameters retrieved from the mechanical design. The experiment is performed
based on Livox Mid-40 LiDAR augmented with six planar reflectors. The ground-truth
data were collected using Z + F IMAGER 5010 3D Terrestrial Laser Scanner. We show
two scenarios: (1) Single measurement station without ground-truth data, (2) multiple
measurement stations. It is documented by an experiment that the scenario of multiple
measurement stations gives better qualitative and quantitative results compared with a
single measurement station. However, the procedure requires greater effort in data acqui-
sition. Moreover, this multi-view data registration scheme enables optimizing poses and
parameters of planar reflectors simultaneously. It can be used for 3D map reconstruction.
The calibration method is independent of mechanical design and does not require any
fiducial markers on the mirrors. This work fulfills the gap between rotating and Solid-State
LiDARs since the field of view can be reshaped by planar reflectors, and the proposed
method can preserve the metric accuracy. There are many disadvantages of additional
planar reflectors such as reducing the number of useful data and the negative impact on
the sensor’s range. We observed a decreased range of the Livox Mid-40 LiDAR, even down
to 80 per cent. The important finding is the degradation of LiDAR’s perception with a
planar reflector. The degradation of sharp corners is evident. In contrast, an interesting
fact is that the precision of the detection of the planar shape is rather similar; thus, an
example planar target was detected with precision (1σ) 1.8 cm (without reflector) and
2.2 cm (with reflector). These quantitative measures confirm the nominal range precision
reported by the Livox manufacturer. This work can be applied for multi LiDAR sensor
calibration and other practical scenarios, e.g., 3D digitization of the urban environment,
cultural heritage and archaeology, underground environment, environmental monitoring,
forestry and agriculture assuming the usage of an affordable LiDAR with the reshaped
field of view with planar reflectors. In future work, we will focus on localization aspects
using the proposed 3D LiDAR prototype since it is an affordable, wide field of view and a
long-range solution does not exist in the market and is not discussed in the literature. We
prepared an open-source project and provided all the necessary data, including software,
CAD design and sample captures for reproducing the experiments.
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Abbreviations
The following abbreviations are used in this manuscript:

CAD Computer Aided Design
FDM Fused Deposition Modeling
GPS Global Positioning System
FOV Global Positioning System
ICP Iterative Closest Point
LiDAR Light Detection and Ranging
MEMS Micro Electro Mechanical Systems
PLA PolyLactic Acid
PMMA PolyMethyl MethAcrylate
SLAM Simultaneous Localization and Mapping
ROI Region of iterest
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