Hydrolysis, Plasma and Aminolysis: how a surface activation method affects gelatin attachment to PLCL nanofibres

J. Dulnik, O. Jeznach, P. Sajkiewicz

Institute of Fundamental Technological Research, Polish Academy of Sciences, Laboratory of Polymers and Biomaterials, Warsaw, Poland

INTRODUCTION

control

PLCL

Although aliphatic polyesters have many characteristics that make them widely used in tissue engineering they still are hydrophobic and lack bioactivity. Surface modification promises a solution to these problems.

Gelatin presence on a material's surface has been shown to have a beneficial effect on mammalian cells' proliferation and spreading [1]. Immobilization of gelatin

SURFACE ACTIVATION & GELATIN ATTACHMENT

through crosslinking to the surface of electrospun nanofibres made of aliphatic polyesters has been studied in our laboratory in the past years with the use of aminolysis as a surface activation technique [2]. In this work a series of experiments were performed on poly(L-lactide-co-ε-caprolactone) 70:30 (PLCL) nanofibres in order to compare three surface activation methods - hydrolysis, cold oxygen plasma treatment and aminolysis, which were used as a first step in a process of gelatin immobilization.

RESULTS **SCANNING ELECTRON MICROSCOPE (SEM)** - morphology

1 M NaOH, 6 h

BICINCHONINIC ACID ASSAY (BCA) – protein attachment

The comparison of BCA results shows protein content of PLCL nonwoven samples after different routes of gelatin immobilisation (0 days) and after attachment verification experiment consisting of immersion in PBS in 37°C for 1 and 7 days.

Control samples: Untreated PLCL, PLCL and PLCL+EDC/NHS with only gelatin physical adsorption.

P

RV

6%, 5 min

Plasma

— P 40 s

10%, 30 min

Hydrolysis

150 200 250

M.W. [kDa]

3

M.W. [kDa]

100

— H 1 M

— H 0.5 M

----- H 0.25 M

— H 0.1 M

---- PLCL

300

—— 0.5 M

— 0.25 M

- 1730 Da

- 2591 Da

WATER CONTACT ANGLE - hydrophilicity

CONCLUSIONS

Further Down: decrease observed for all types of the samples due to immobilized gelatin present on the fibres' surface after attachment verifaction experiment. Plasma treated materials achieved 0° result for each measurement.

Up: Graphs showing a decrease in water contact angle due to surface activation with NaOH and plasma in function of a drop contact time with the material (0.2 - 30 s). No change was observed for samples after aminolysis (PLCL≈131,43°).

P

Aminolysis

- All of the tested methods were successful in gelatin immobilization as well maintaining its attachment after PBS immersion test compared to the control.
- Apart from the samples treated with diamine the rest gained hydrophilicity after surface activation. After immersion in PBS all samples achieved 0°, what means that gelatin immobilisation successfully makes PLCL nonwoven hydrophilic.
- GPC showed that each activation method affected the molecular weight of the

GEL PERMEATION CHROMATOGRAPHY – molecular weight

M. W. [kDa] Molecular weight distribution graphs. On the left: Data in the table shows mass average molar mass (M_w) values samples after surface the of activation and their comparison to the control PLCL sample. On the right: A new peak for a very low molecular weight has appeared for the samples hydrolized with 1 -0.25 M NaOH.

TOLUIDINE BLUE-O TEST – COOH group detection

Graphs presenting TBO test results obtained via UV-VIS spectrophotometry showing an increase in the COOH group amount on the surface of materials treated with cold oxygen plasma (left) and different concentrations of NaOH solutions (right) in a function of reaction time.

0 on the X axis represents PLCL control sample.

ACKNOWLEDGEMENTS

This research was funded by the Polish National Science Center (NCN), grant number 2016/23/B/ST8/03409

REFERENCES

polymer differently with substential mass decrease of the samples treated with plasma and diamine. The smallest change was observed for the hydrolyzed samples. The observed here low molecular fraction peak, together with SEM imaging showing frayed fibres, indicate degradation taking place mostly on the fibre surface.

- The samples after both hydrolysis and plasma treatment showed elevated levels of COOH- groups, but between the two methods hydrolysis resulted in up to 3 more times higher values.
- The decision of which method is the most suitable should be based on a specific function that the final scaffold material is expected to fulfill and the properties it should have.

[1] Dulnik, J, Kołbuk, D, Denis, P, Sajkiewicz, P 2018, 'The effect of a solvent on cellular response to PCL/gelatin and PCL/collagen electrospun nanofibres', European Polymer Journal, 104, 147-156 [2] Jeznach, O, Kołbuk, D, Sajkiewicz, P 2019, 'Aminolysis of various aliphatic polyesters in a form of nanofibers and films', Polymers, 11 (10), 1669

31st CONFERENCE OF THE EUROPEAN SOCIETY FOR BIOMATERIALS ESB/2021 TOGETHER WITH THE 43rd ANNUAL CONGRESS OF THE IBERIAN SOCIETY OF BIOMECHANICS AND BIOMATERIALS (SIBB)