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Partial gap in two-leg ladders with Rashba effect and its experimental signatures in Si(553)-Au
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We study the effects of Rashba splitting on two-leg ladders with weakly screened Coulomb interactions. Past
research has shown that in this class of systems the two backscattering channels with the largest amplitude
favor ordering of canonically conjugated collective fields which effectively renders the system gapless. Here
we show that the band-dependent Rashba spin-orbit interaction breaks this symmetry of scattering channels,
leading to a new fixed point with yet unexplored instabilities. Exotic properties can be found, for instance, the
mixing of the magnetism with the charge-density wave. We then investigate the physical consequences of this
partial spectral gap opening. We find a striking difference in signatures of order observed in single-particle
(spectral-function) and two-body (susceptibilities) experimental probes. We conclude this paper by comparing
theoretical and experimental results obtained on the Au-Si(553) platform. In STM measurements, we identify
the lowest-lying soliton excitation as a hallmark of the gapped sine-Gordon model in an apparently metallic
system. This implies the presence of partial spectral gaps opening. Furthermore, by ARPES measurements we
confirm the expected temperature dependence of the outer bands backfolding. These two findings constitute the
experimental evidence of the many-body physics proposed here.
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I. INTRODUCTION

This work is dedicated to the theoretical description of
artificial nanoscale-sized systems which can be generated
by the self-organization of atoms absorbed onto appropri-
ate substrate surfaces. The behavior of the electrons in such
low-dimensional systems can deviate significantly from the
single-particle picture [1]. Novel phases, with nontrivial (i.e.,
non-s-wave) local symmetry of the order parameter are avail-
able. They are sometimes called “exotic” phases due to the
quite complex structure of their gap in momentum space.
These exotic phases are then offering new functionalities, e.g.,
electric field controlled spin filters for spintronics devices [2]
or magnetic field control of an orbital index in the emer-
gent field of valleytronics [3,4]. The interest in such phases
has become even stronger since the discovery of topologi-
cal states, because of Majorana fermions (or parafermions)
state existing at the interface between topologically distinct
orders.

Theoretical considerations can give us an understanding
of how to obtain such exotic phases, using the following
procedure: For low-dimensional systems, we start from a
highly nontrivial strongly correlated state—the Tomonaga-
Luttinger liquid (TLL) of collective bosonic modes [5]. Then,
we add (possibly nonlinear) perturbations that lock optimal
(energy minimizing) onto the bosonic modes and, hence, open

spectral gaps. With a multitude of bosonic fields in a model,
we have many distinct locking combinations and so many
distinct order parameters can be defined. Hence, exotic phases
may appear. In this context, two-leg ladders are of special
interest because they are the first step from simplest one mode
one-dimensional systems (1D) to richer two-dimensional sys-
tems (2D) and with four modes (eight fields) can host a
multitude of exotic phases. These phases are usually driven by
two-particle electron-backscattering terms. Hence, Hubbard-
type models are used, occasionally with broken symmetries
or frustration. Unfortunately, such modeling is not applicable
in artificially created platforms on surfaces; the interactions
are (at least partially) unscreened and have a long-range
(Coulomb-type) character. We know that [6] for these sys-
tems, the compressibility of the charge (holon) mode is much
smaller than one,1 Kρ+ � 1. Therefore, a TLL description is
required. Furthermore, the amplitudes of the backscattering
terms are not only small but also perfectly compensated [6].
This causes that any many-body gap, if existent at all, appears
only at ultralow temperatures—in the range of 10−4 K. We
show an example of such compensation in Sec. II B which we
describe as a frustration of the scattering channels.

1See Eq. (1) for the definitions of symbols.

2469-9950/2021/104(20)/205407(15) 205407-1 ©2021 American Physical Society

https://orcid.org/0000-0003-2362-9963
https://orcid.org/0000-0003-3682-6325
https://orcid.org/0000-0002-4204-5405
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevB.104.205407&domain=pdf&date_stamp=2021-11-08
https://doi.org/10.1103/PhysRevB.104.205407


PIOTR CHUDZINSKI et al. PHYSICAL REVIEW B 104, 205407 (2021)

In contrast to these exotic phases driven by two-particle
backscattering terms, the standard Peierls scenario [7] re-
quires single-particle backscattering terms. These are highly
relevant in renormalization group (RG) theory and easily open
a spectral gap at, or very close to, commensurate fillings. The
gap is well described by a mean-field BCS-like theory. Small
compressibility and the lattice softness on the surface enhance
the propensity for a Peierls mechanism [1]. This is rather
unfortunate since these trivial single-particle phenomena are
masking potentially nontrivial many-body spectral gaps that
bring in the desired exotic phases. It is of particular interest
to find a theoretical scenario that allows overcoming this
paradigm.

Here, we draw attention to the artificial surface-system
Si(553)-Au. In this system, experiments showed several re-
markable observations [8–29]. On one hand, clear signatures
of density wave formations have been detected—these in-
clude bands’ backfolding and real space density patterns. On
the other hand, the system is known to be slightly incom-
mensurate and stays metallic down to the lowest measured
temperatures/energies. This suggests that, while the standard
single-particle physics is not able to develop a gap, there
is some other mechanism capable of ordering the system.
Curiously enough, the only symmetry-breaking component
detectable is the Rashba splitting. Explaining this situation is
a challenge for theory that we tackle in this paper.

In the past, a lot of attention was paid to the role of
Rashba splitting in 1D systems [30,31]. In particular, an in-
terest was on how various schemes of spin-orbit coupling
change the compressibilities and velocities of the gapless TLL
modes [32–34], aiming for spintronic applications such as
spin filters [35,36]. Interactions were either not present or
only included as small perturbation while the spin-orbit terms
were much larger [37,38]—up to the point that they were
imposing different bosonization schemes [39,40]. Not much
effort has been dedicated to the opposite limit, with large
relevant interactions and small Rashba-split states, probably
because it has been assumed that large interactions will any-
way dominate the physics. Hence, the mechanism proposed in
this paper has been overlooked. It should also be mentioned
that a vast majority of numerical studies, where any regime of
parameters can be in principle accessed, has been dedicated
to Hubbard-type models with short-range interactions [41].
Our mechanism prefers the situation of partially screened
long-range interactions, much harder to implement numeri-
cally. Overall, what has been omitted so far is the role of the
Rashba effect in setting the amplitudes of the nonlinear terms
in the Hamiltonian—those terms that are responsible for the
spectral gaps. Our investigation here shows that the presence
of Rashba split introduces an unconventional type of incom-
mensurability that breaks the symmetry. The compensation
mechanism between scattering channels leads to a relatively
large gap opening. This is a mechanism of a phase transition
that relies on the cooperation between one-body and two-body
terms.

A. Si(553)-Au: Basic information

An important aspect of the theoretical research has always
been the search for realistic systems. A remarkable part of our
study is that we have identified the Si(553)-Au as the platform

FIG. 1. (a),(b) Structural model of Si(553)-Au enhancing the Au-
two-leg ladder. (c) Quasi-1D Fermi surface with the 1 × 1 surface
Brillouin zone. (d) Energy vs momentum cut showing the dispersion
and the Rashba-splitted band S1/S2 and band S3, all of them orig-
inating from the two-leg ladder structure. kx is along the [1 = 10]
direction, along the blue line �0,0-K0,0 in (c).

where our theory can be immediately tested. Si(553)-Au is a
surface system where the vicinal Si(553) surface is evaporated
with gold [8,9]. It hosts two electronic quasi-one-dimensional
(1D) subsystems; one is situated near the double-stranded
conducting Au chain and the other the 1/3-hole-filled Si-step
edges. Both show distinct different periodicities at low T , ×2
for the Au-chain and ×3 for the Si-step-edge. The ×3 is only
visible at low temperatures, see, e.g., Ref. [42]. A structural
model for this surface system was subsequently refined by ex-
periment [10,11] and density functional theory [12,13] (DFT)
constraint by multiple experimental observations with efforts
still ongoing [27]. In Figs. 1(a) and 1(b), we highlight the Au
chain within the structural model of Ref. [12].

B. Si(553)-Au: Experimental indications of collective physics

Since its first creation, Si(533)-Au was discussed as a
quasi-1D system [14]. The band structure of Si(553)-Au is
dominated by two quasi-one-dimensional bands (S1/2 and
S3). A tight-binding fit to the corresponding wiggled 1D
Fermi surface confirmed the strong one-dimensional character
[14] and hopping ratios t‖/t⊥ from 10 to >40. Our ARPES
data (see the Appendix for experimental details) in Fig. 1
reconfirms this; here the hopping ratios are t1/t2 = t‖/t⊥ ≈ 10
for S3 and t1/t2 = t‖/t⊥ ≈ 46(39) for S1 (S2).

The Au-derived bands S1 and S2 have [14–16] a filling
of about 1/2; our measurements, see Fig. 1, show 0.56 for
S1 and 0.52 for S2. The occupation of band S3 is mostly
near 1/3 but varies much stronger due to its higher sensitivity,
e.g., to dopants or defects [17]. All metallic bands show zone
folding at the ×2 Brillouin zone (BZ) at low T [16,18]. It
is intriguing to trace this folding to a Peierls mechanism.
However, a simple Peierls mechanism cannot be the correct
explanation: The filling is not exactly commensurate [8] and
the Au chains are (at least down to 8 meV) metallic [19],
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despite older reports [16] from ARPES.2 Also the surface con-
ductivity indicates metallic behavior at low T ’s, where the ×2
zone folding is present [20]. One could think that ×2 folding
is due to distorted Au dimers as an inherent structural feature.
This might be the case for modified Si(553)-Au surfaces,
i.e., by hydrogenation [43] or surplus Au [17], where the
strong electron doping may render the dimerization gap more
important. However, for the pristine (undoped) Si(553)-Au
in the following, we show later on that the relative intensity
of the ×2 folding changes with temperature. Overall, there
is a Peierls-like ×2 backfolding and no clear sign of a gap
at low T .

A weak coupling scenario, where DFT bands are simply
perturbed by a small nesting term, cannot explain the ordering.
Also, substantial backfolding observed at high temperatures
cannot be explained within simple single-particle mean-field
theory. The surface conductivity shows power laws, typical
for quasi-1D metals [20]. Moreover, recent EELS data clearly
shows the presence of quasi-1D metal [21,22] in the spectrum
of charge excitations. The data has been fit well by a quasi-1D
underscreened Coulomb metal with a velocity distinct from
the single-particle Fermi velocity. The study shows intral-
adder velocity to be smaller than the Fermi velocity vρ+ <

VF , in agreement with numerical studies of systems close to
commensurability, and so one does not expect a typical spin-
charge separation but rather enveloping of spinon’s dispersion
(with velocity V̄F , where V̄F is an average of Fermi velocities
in both bands) by the nonlinear holon’s. Furthermore, the
holon gap opening by pinning, detected by a finite frequency
of the “anisotropic plasmon” peak, is expected in this frame-
work. However, this consistency comes at a price: It is well
established, since the seminal work of Haldane [5], that, for
interacting carriers confined in low-dimensional systems, the
single-particle description, the Fermi liquid, breaks down. The
low-energy states are not in a one-to-one correspondence with
the single-particle states and the single particle reference point
has to be substituted with a collective TLL reference point.

Although the physics of Si(553)-Au has been extensively
studied using DFT, it has never been investigated by the many-
body methods of bosonization and subsequent RG analysis;
we aim to fill this gap in the course of developing the the-
ory of our mechanism of partial gap opening. The relation
between the full many-body theory and a DFT mean-field
approach needs to be clarified here. While DFT is able to
provide us with a reasonable density distribution of carriers in
the ground state, especially when the problem is determined
by Coulomb interactions, distributing these among tentative
Kohn-Sham states is never simple. Crucially, the entire corre-
lations physics, missing in the single-particle description, will
be built on top of these Kohn-Sham states. That is: One needs
to distribute electrons among some single particle states, then
add electron-electron interactions between these and hope that
the resulting action is close to the previously diagonalized
form. When the TLL emerges, it requires summing up an
infinite series of terms. In this respect, we point out that

2In fact, gap determinations by ARPES measurements are hindered
very much by the strong photovoltage of the Au-Si interface which
make them very complicated—almost impossible.

DFT simulations [12,23] themselves suggest that magnetic
phenomena are necessary to explain the behavior of the sys-
tem. Hence, the two-body exchange processes are unavoidable
and relevant. However, these Fock terms are much smaller
than the Hartree two-body processes because Ve−e(q = 0) �
Ve−e(q = 2kF ). Therefore, if one wants to build the theory cor-
rectly, one should first include the Hartree-interaction’s terms,
and so move to the TLL picture with vρ+ �= VF , and only
after that add the Fock terms as perturbations. The Hartree
terms manifest as a change in the velocity of the charge holon
modes, precisely in the way recently witnessed by EELS ex-
periments [21,22]. Finally, let us point to a very recent study
[28] where the importance of correlations on the terrace has
been strongly underlined.

C. Outline of the paper

The paper is organized as follows. We begin (Sec. II A)
by introducing the appropriate TLL model that describes the
physics of carriers in the two-leg ladder. Then we analyze
(Sec. II B) the influence of the Rashba splitting on backscat-
tering processes which enables us to find an effective minimal
model that captures the lowest energy physics. We iden-
tify (Sec. III A) the modes in which the spectral gap opens
and estimate its value. Only half of the bosonic modes (the
transversal modes) are gapped, a combination that has not
been reported so far. The latter part of the paper is dedicated
to properties of such a system. In particular, in Sec. III B we
focus on the comparison between the single-particle Green’s
function and the charge susceptibility which enables one to
emphasize the dichotomy of these two probes: The spec-
tral gap opening is very weakly visible in the single-particle
Green’s function; it is fully visible in the susceptibility. Here
we extended the theory to capture the most likely interchain
processes (see Fig. 4) that could contribute to an in-gap sus-
ceptibility, yet the assertion of negligible two-body correlation
does hold. Furthermore, we are able to describe a Peierls-like
state with an incommensurable nesting. This state shows an
exotic mixing of the magnetism with the CDW amplitude.

Our theoretical predictions are then tested against exper-
iments in Si(553)-Au (Sec. IV) where we find signatures
that the sine-Gordon model is indeed realized in our sys-
tem. Particularly, we show a temperature dependence of the
backfolding in ARPES that supports our assumed Peierls-like
scenario. By utilizing scanning tunneling microscopy (STM),
we show that one important signature of the CDW, namely
a zigzag pattern of charge by the transversal mode, is in-
deed realized. The excitations of the sine-Gordon model are
solitons in these Au chains which we detect by our STM
measurements. We furthermore explore solitons on the Au
chain coupled to solitons on the Si chain. This finding is used
to probe the robustness and interactions of the quasi-1D Au-
two-leg ladder in relation to the quasi-2D electronic structure
of the surface.

II. MODEL

Our derivation is mostly general about the effect on Rashba
splitting on two-leg ladders and our derivation can be adapted
to other systems alike, nevertheless we use in the following a
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FIG. 2. Real images of the electronic structure under our consid-
eration. Panel (a) shows about the location of the bands S1/2 (purple)
and S3 (green) overlayed to the structural model of Ref. [12]. Panel
(b) shows the simplification of S1/2 and S3 by two one-dimensional
bands with some Coulomb interaction V⊥. The visualization in panel
(c) shows the result of the bozonization after which two charge
modes, longitudinal c+ and transversal c− are considered (the two
spin modes, longitudinal s+ and transversal s−, are not shown). In
the latter course of this paper, we are especially interested in the
transversal modes.

nomenclature adapted to the Si553-Au system. In regard to
Si553-Au, we focus here on the three metallic bands orig-
inating from the Au chain, usually labeled as S1-3. They
are well resolved by angular-resolved photoemission spec-
troscopy (ARPES) at low temperatures, see Figs. 1(c) and
1(d). S1 and S2 are experimentally shown to be a Rashba-split
doublet [18,24,25] where the spin-orbit coupling breaks the
spin-rotational symmetry on the Au-localized carriers. The
split is orders of magnitude smaller than the bandwidth (and
presumably also smaller than Coulomb interactions) and so
the two-leg ladder description applies. Band S3 belongs to
carriers that are more broadly distributed into silicon and its
smaller overlap with heavy gold atoms may be the reason
why the spin-orbit effects here are much weaker. The single-
particle description should provide a good starting point on
which the many-body instabilities are constructed provided
that the crystal structure is rigid, i.e., not modified substan-
tially by the many-body effects. ARPES confirms this picture.

A. Two-leg ladder Hamiltonian

When carriers are confined in their motion along one di-
mension and cannot avoid each other in their motion, the right
basis of Hilbert space to describe their physics becomes the
basis of collective modes. Re-deriving the theory in such a
basis is called bosonization and the anomalous metallic state
is called Tomonaga-Luttinger liquid (TLL). A visualization
of the modeling is displayed in Fig. 2. Here, Fig. 2(a) shows
the localization of the bands S1/2 and S3 on the terrace.
Panel (b) shows the simplification of S1/2 and S3 by two
one-dimensional bands with some Coulomb-interaction V⊥.
The Hamiltonian of the TLL state is written in terms of fluc-

tuations of these collective modes:

HTLL[ν] =
∑

ν

∫
dx

2π

[
(vνKν )(π�ν )2 +

(
vν

Kν

)
(∂xφν )2

]
(1)

where ∇φν (x) gives the local density of fluctuation vν, Kν are
velocity and TLL parameter (∼compressibility) of a given
bosonic mode ν. Here, ν can be c±, s±, i.e., we can have
collective excitations of each charge and spin type (total and
transverse in the two bands). Fermionic operators are writ-
ten as ψ j 
 η j exp(ı

∑
ν a j,ν (φν + θν )) where j = S1, S3 is a

band index (defined in the single-particle basis of fermions)
and ai,ν = ±1 transforms from band to mode basis. The sum
of the responses from S1/2 and S3 gives the total “+” mode,
while the difference the transverse “−” mode. Figure 2(c)
shows a visualization of the charge modes. The ην are the
Klein factors which satisfy the required anticommutation re-
lations for fermions. These ην do not contain any spatial
dependence and commute with the Hamiltonian. They only
influence the form of the order operator in bosonic language
(by ηνην ′) and the signs of the nonlinear couplings by the
� coefficient (the eigenvalue of the ηνην ′ην ′′ην ′′′ operator).
�2 = 1 and in this paper we choose the convention � = +1,
as in Ref. [44].

In simplest approximation Kc ≈ (1 − 2g), where g is the
strength of the Coulomb interaction VCoul(q → 0). If the
Galilean invariance is obeyed then Kνvν = VF , where VF is
a Fermi velocity ∼2tb (where we take a tight-binding model
with the 1D chains arranged along the b axis) which is ∼�

(which determines the UV cutoff of our theory). For the
spin sector, due to the spin-orbit coupling, the SU(2) spin-
rotational invariance is not preserved. This implies that Ks

is not necessarily equal to one. The effect manifests itself
as Rashba splitting (at large momentum) and if we assume
that it is purely local then its q = 0 component will be of
order R/tb ∼ O(−2) which can be neglected in the follow-
ing. Hence, the TLL theory incorporates all electron-electron
interactions of forward scattering type. The interactions are
certainly of the Coulomb type, decaying with exchanged mo-
mentum q. This suggest that the backscattering terms are
weak. Following past studies on this platform we assume that
S1,2 and S3 have a different orbital content. Their single-
particle hybridization is weak. However, Coulomb interaction
between them V⊥ may still be substantial. We then have an
interaction-coupled two-leg ladder. In this case the TLL pa-
rameters for the two charge modes are split by V⊥: Kc± =
Kc/

√
1 ± V⊥, hence both are much smaller than noninteract-

ing value K = 1.
On the top of Eq. (1), we add the backscattering terms that

take the form of cosines in the bosonization formalism. In the
two-leg ladder, even if we exclude the Umklapp terms that are
impossible away from commensurate filling, we can still have
seven backscattering channels of the two-body type:

HNL
int(1) = −g1c

∫
dr cos(2φs+) · cos(2φc−)

+ g1a

∫
dr cos(2φs+) · cos(2θs−)

− g2c

∫
dr cos(2φc−) · cos(2φs−)

205407-4



PARTIAL GAP IN TWO-LEG LADDERS WITH RASHBA … PHYSICAL REVIEW B 104, 205407 (2021)

+ g4a

∫
dr cos(2φs−) · cos(2θs−)

+ g1

∫
dr cos(2φs+) · cos(2φs−)

+ g2

∫
dr sin(2φs−) sin(2φs+)

+ g‖c

∫
dr cos(2φc−) · cos(2θs−). (2)

We use the following notation: Indexes 1 to 4 refer to
the standard g-ology processes for the left and right mov-
ing carriers; letters a to d correspond to analog processes,
when the band’s j = S1, S3 index is used instead of the left
or right labels. For example, let us take two distinguishable
fermions, e.g., with opposite spin, then they can either main-
tain or change their direction of motion. Then we either have
the forward-scattering process “2”: L → L & R → L, or the
backward-scattering process “1”: L → R & R → L. This is a
standard 1D g-ology notation. In the presence of a band degree
of freedom we can have analogous scattering processes that
keep or swap the band index, namely either process “b” S1 →
S1 & S3 → S3 or process “a” S1 → S3 & S3 → S1. In par-
ticular there is a possibility of parallel spin cosine process,
the band backscattering, as two carriers are distinguishable
before/after collision even if their spin is the same. We call
it g‖c process. The � coefficients determine the signs of the gi

couplings (this gives minus signs for g1c and g2c).

B. Effective Hamiltonian

The problem we aim to solve belongs to the two-leg-ladder
class. It has been a subject of numerous renormalization
group [44,45] and numerical studies [46,47]. In the case of
interaction-coupled ladders, most of the cosine terms con-
tain the field φc− (as noticed in Ref. [45] this is contrary to
the hybridization coupled ladder, see, e.g., Ref. [44]). Since
Kc+ ≈ Kc− � 1, all these are potentially strongly relevant.
Hence, the renormalization exponent criterion will not suf-
fice to select the dominant ones. The best way forward is to
identify backscattering terms which potentially possess the
largest amplitude. In the Hubbard-type models, with purely
local interactions, all cosine terms have the same amplitude.
Moreover, our problem is defined on the surface. Hence,
Coulomb interactions are only partially screened. This allows
us to profit from the (exchanged) momentum dependence of
the electron-electron interactions. In a recent study on two-leg
ladders [48], we have shown that, even in the case of partially
screened interactions, there still remains a large preference
for terms with a smaller momentum exchange. As we see in
Fig. 3(a), we can therefore neglect the g1a, g1c, g1,2 terms in
Eq. (2) because they involve the largest momentum transfer
from one side to the opposite side of the Fermi surface. The
cosine terms which involve smaller exchange of momentum
turns out to be those where, upon collision, the left/right
movers keep their chirality but change the band. They come
in two flavors, as the interacting carriers can have the same
(parallel ‖) or the opposite spins. The effective Hamiltonian is

FIG. 3. Visualization of the scattering channels for the linearized
bands near EF . Panel (a) shows the highest momentum exchange
processes g1a (red+blue arrows), or alternatively g1c (red + dashed
blue). Here red indicates L → R and blue R → L parts of two-
body scattering. These are the backscattering processes we neglect.
Panel (b) shows smaller momentum exchange processes, e.g., g2c

(red+blue arrows) or g4a (red + dashed blue). These we keep be-
cause they are an order of magnitude larger. Panel (c) is an inset
of (b) showing the effect of the Rashba split. Here bands S1 and
S2 are split according to their spin direction. We now see that if the
two scattering electrons have opposite spins, the g2c process (shown),
then their momenta, qa and qe, compensate each other precisely.
When they have the same spin, the g||c process (not shown), there is
a mismatch of momenta.

then:

Heff = g‖c

∫
dr cos(2φc−) · cos(2θs−)

− g2c

∫
dr cos(2φc−) · cos(2φs−)

+ g4a

∫
dr cos(2φs−) · cos(2θs−) (3)

so we reduced the number of possible backscattering pro-
cesses from seven in Eq. (2) (plus four possible Umklapp
terms introduced in Appendix B 1 and four possible Peierls
terms) down to three that are shown in Fig. 3(b). Please note
that graphically g‖c is identical to g2c with the only difference
being that in the first case the two scattering carriers have
identical spin.

We emphasize that in the above Hamiltonian the Rashba
split is not yet taken into account; we assume S1,S2 to
be degenerate at this level of the theory. This has the
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following consequences. Unfortunately, those two that are
possibly the largest among the cosines involve canonically
conjugated fields in the transverse spin sector cos2φs− and
cos2θs−. If we now perform the RG procedure, we integrate
out the highest energy shells to find how the low energy
effective theory is changing; since Ks− = 1 then both of these
cosines terms are equally relevant and both pull to order
the canonically conjugated fields which cannot order simul-
taneously. The next leading term with smaller momentum
exchange g4a by itself consists out of these two canonically
conjugated cosines. We call this behavior in the following a
“frustration” of the scattering channels. It is the reason why
neither of these is ultimately able to open a gap and in the
models with pure Coulomb interactions we need to resort to
refermionization and ultimately the many-body theory pre-
dicts extremely small spectral gaps of the collective modes.

III. RASHBA INDUCED EFFECTS

A. Gapped modes

We shall now show the way to break this “frustration” of
the scattering channels. To this end we introduce the Rashba
split of the outer band. Our case now becomes different than
the SU(2) invariant situation described above, because the
spin-orbit coupling breaks the symmetry between parallel and
opposite spin scattering, see Fig. 3(c). As the renormalization
group proceeds, we shall reach the scale where due to the S1/2
Rashba split the parallel spin case is much reduced because
of the momentum misfit: The right moving spin-up electron
transferred from band S3 goes to band S2, qa = kF3 − kF2,
while the left going spin-up electron has to go from S3 to S1,
qe = kF3 − kF1 (and analogously for spin down and Her-
mitian conjugate processes). In order to obey the momentum
conservation, we need to keep absorbed and emitted on-shell
momenta equal qa = qe which is clearly not preserved
any longer for the parallel spin process. So below the energy
≈ R, given by the Rashba split of bands S1/S2, only one
of the two selected interband terms survive and the spectral
gaps in the φc− and φs− fields immediately open. Crucially,
by introducing the Rashba split we do not add any extra
term in Eq. (3), but instead we simply change the relative
amplitudes of the two-body scattering terms. Ultimately, one
of the scattering channels is suppressed down to zero because
of the momentum misfit.

Please note that this mechanism is similar to the sup-
pression of Umklapp terms for the slightly incommensurate
situation [1] as described in the context of Eq. (B1) (which
also takes place in our problem and inhibits opening of large
Mott gaps of the φc+ mode). However, the novel aspect in here
is that the mechanism can select the preferred scattering chan-
nel. By employing this analogy, we see that in the RG equation
for g‖c, in ∂g‖c(l )/∂l , we need to multiply the Gell-Mann
beta function by J0(l−1

R ) and this term stops flowing when
l ≈ R while the flow of the competing term g2c continues
unchecked.

We can further inspect if our mechanism remains valid
if we include exchange interactions and higher order terms
(stronger interactions). This could possibly enhance the g4a

term and cause a substantial deviation from Ks− = 1. While

the term g4a by itself is never relevant, it has a nonzero con-
formal spin which implies that it shall generate two further
terms Gφ

∫
dr cos(4φs−) and Gθ

∫
dr cos(4θs−). Furthermore,

we observe that while for S1/2 the parallel spins gS12
1d|| are

prohibited by momentum conservation (and same for inter-
band S1/2 ↔ S3), for S3 these parallel spins are allowed. The
spin-flip processes are always allowed. Overall this leads to

Ks− = 1 − (−2
(
gi

1d|| − gi
1 f

) + (
gS12

1d|| − gS12
1 f

)
+ (

gS3
1d|| − gS3

1 f

))
< 1.

As a result, both of the higher order terms ∼Gφ and ∼(1 −
Ks−) support the ordering on the φs− side.

The sole term −g2c
∫

dr cos(2φc−) · cos(2φs−) with Kc− <

1 shall flow to strong coupling, open a gap, and lock the
two bosonic fields in the configuration φc− = 0, φs− = 0 (or
φc− = π/2, φs− = π/2). This narrows down the set of pos-
sible low-energy orders. Since Kc+ � 1 then, assuming that
we are on the density wave side (particle-hole channel), we
can look at Umklapp terms which, although with small initial
amplitudes, are very relevant and their incommensurability
is similar to c−. One then observes that φc+ = π/2 is fa-
vored for φc− = 0, φs− = 0. This reduces the set of preferred
orderings down to two. With our convention of Klein fac-
tors we find that this shall promote the OAF − SDW z with
out-of-plane spin-order plus a possible admixture of FCDW
supporting diagonal in-plane currents. This ordering will have
a periodicity 2(kFS1/2 − kFS3) which falls close to 1

6 BZ. We
expect that some parity-symmetry-breaking electronic-liquid
displacements may be present at this periodicity. To estimate
the value of the gap we note that at low energy BKT flow
the R fixes the distance from the separatrix of the flow Ā.
Then the BKT hyperbolic trajectories can be integrated ex-
actly g2c[l] = Ā/Sinh[Āl−1 + ArcTanh(Ā/y(0)

|| )] which by the
condition g2c[l∗] = 1 allows us to find the gap c− = s− =
R exp(−l∗). In the specific case of Si(553)-Au the symmetry
breaking R = 50 meV which leads to c− ≈ 7 meV.3

To conclude this section, we were able to show that as
along the RG we integrate out the system at longer and longer
length scales when we reach the characteristic Rashba-split
length it modifies the RG flow and lifts the “frustration” re-
lated to pinning of canonically conjugated fields of densities
and their momentum. As a result, one of the spin fields and
one of the charge fields (both transverse, i.e., density fluctu-
ations perpendicular to the step) open a spectral gap which,
for Au-Si(553), is 2c− = 14 meV. Having identified the two
bosonic modes with the spectral gaps in their spectrum, we
can now investigate physical consequences of this partial gap
opening.

B. Physical consequences of the partial gap

Two-leg ladders offer a much richer set of instabilities than
any simple 1D chain. For instance, when a CDW appears, it
can be symmetric or antisymmetric in the bands S1 and S3;
it can be also defined on the rungs or on the diagonal bonds.

3To obtain this numerical value we also took tb = 1.2 eV, Ks− =
1, Kc− = 1/3 and Ā = R/tb, y(0)

|| = 1 − (Ks− + Kc−)/2.
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Since the transverse mode opens the spectral gap and the key
emergent physics takes place there, we focus on transverse
susceptibility being the best hallmark for these modes. In
our case, we have an interaction coupled ladder but also the
two bands S1 and S3 (“chains”) which are separated in real
space. They occupy distinct areas of each step, therefore the
transverse phenomena may be observed as difference of re-
sponse in the direction perpendicular to the step. Hence, apart
from a standard, symmetric CDW where the entire density
oscillates in phase (coupled to the φc+ mode), we shall also
have a zigzag pattern of charge density. The latter one is

coupled to the φc− and we shall focus on its experimental
signatures in Sec. IV. Before, we shall compute the relevant
observables.

A natural quantity to investigate is the fluctuation of the
transverse density operator

ntr (x, t = 0) = ψ
†
S1/2(x)ψS1/2(x) − ψ

†
S3(x)ψS3(x). (4)

Neglecting hybridization, we find that the density has two
components, small and large momentum:

ntr (x, t = 0) = ∇φc−(x) + cos(2kFS1/2x) exp φc+(x) cos φc−(x) cos φs−(x) cos φs+(x)

+ cos(2kFS3x) exp φc+(x) cos φc−(x) cos φs−(x) cos φs+(x). (5)

As a result the transverse susceptibility χtr (x, t ) = 〈ntr (x, t )ntr (0, 0)〉 shall have small and large components as well:

χtr (x, t = 0) = 〈∇φc−(x)∇φc−(0)〉
π2

+ 1

(2π )2
(cos(2kFS1/2x) + cos(2kFS3x))�ν exp〈±φν (x)φν (0)〉2 (6)

where the first term is the q = 0 response and the second is
the q = 2kF response (q is the momentum along the chain).
The first term describes the charge response to a uniform field
(along the chain), the second one the response to a staggered
field. The signs in the exponent of the second term depends
whether we study the S1/2 or S3 response, but since they are
squared they do not contribute to the final answer. The two
correlations have strikingly different behavior:

q = 0: the expectation value of ∇φc−(x) correlator is zero
as the gapped field cannot fluctuate, or to be more precise
φc− is locked at values that minimize the cosine and jumps
between these are localized instantons that can be pinned on
the lattice. Finite value of this correlator is possible only at
finite frequencies.

q = 2kF : here we expect large susceptibility with a power
law decay in real space since all four bosonic modes con-
tribute with the gapped fields expectations 〈cos φc,s−(x)〉 = 1
and 1/rKν terms from gapless modes. Upon Fourier transfor-
mation we arrive at gapless susceptibility with a broad power
law peak ∼ω(Kc++Ks+ )/2−2 (and the same q dependence due to
Lorentz invariance in this sector).

This dichotomy shall manifest in physical properties of the
system. We consider three relevant examples below.

1. Peierls instability

The Peierls instability is an effect induced by a lattice
distortion which, usually at commensurate fillings, opens a
gap in the single-particle spectrum of electrons [7]. Since any
single-particle backscattering operator induces bands back-
folding into the reduced BZ. The problem is usually solved
through Bogoliubov transformation where the ratio between
backfolded- and normal-spectral weights is

vq/uq =
√

1 − VP(q)

1 + VP(q)
. (7)

Here VP is the Peierls potential that is driving the transition,
which is inversely proportional to the soft phonon frequency
VP ∼ 1/ωQi(q).

The transition can also be driven by the electronic part
whereby the susceptibility of the electronic liquid softens the
phonon dispersion at a given momentum. Let us consider
an ion-ion interaction with a contribution mediated by the
electronic liquid

VI−I (Ri − Rj ) = ρI (Ri )ρI (Rj ) + ρI (Ri )χ (Ri − Rj )ρI (Rj ).

The dynamics of a phonon mode at a given wave vector
q are determined by ωQi(q) ∼ ∂Q∂QVI−I (Qj )/∂2Q|q (where
Qj is the normal coordinate of the jth mode). If the lattice
distortions (a sum of which gives the coordinate Qi) are per-
pendicular to the silicon step then the χtr (q) shall renormalize
ωQi(q), namely:

ωQi(q) = ωQi(q)(0)/

√
ε

(Qi)
RPA (ωQi(q)(0), q) (8)

which can be simplified close to the pole where
ε

(Qi)
RPA (ωQi(q)(0), q) is dominated by the χtr (ωQi(q)(0), q).

For q ≈ 2kF we can now predict a substantial mode softening
that will lead to a Peierls transition based on the previous
relations VP ∼ √

χtr (ωQi(q)(0), q). For Au-Si(553), such a
softening of the phonon modes, in the vicinity of gold atoms,
and the appearance of symmetry prohibited modes, due to the
presence of a zigzag CDW, is in full agreement with a very
recent Raman study [29].

It is interesting to note that if all four bosonic modes
would be gapped, then the self-correlation of the backscat-
tering operator does not decay in real space. Hence, after
Fourier transforming VP(q) = V0δ(q)—a very strong soften-
ing but only at commensurate fillings (only a perfect nesting)
is permitted. In our case, where only half of bosonic modes is
gapped there is a decay in real space

χtr (r)|(q≈2kF ) ∼ r (Kc++Ks+ )/2−2 (9)

which, in turn, leads to a broadening of the peak—the pres-
ence of gapless modes implies that the transition may take
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place slightly away from the Fermi surface; an imperfect
nesting is permitted. The transition can take place either in
the vicinity of 2kFS1/2 or 2kFS3 but, since the former one is
quite close to half-filling, we predict the bands backfolding to
be present close to the kFS1/2 Fermi points.

In the case of imperfect nesting, the effective strength of
the Peierls potential VP is proportional to the bare periodic
potential caused by a tiny lattice distortion (e.g., dimerization)
times the Fourier transform of χtr (r). We now assume that
the bare strength of the Peierls potential V (0)

P does not depend
on temperature.4 In the standard perfectly nested Bogoliubov
scenario, we then expect no temperature dependence of vq/uq.
However in our problem of partial nesting, there is one more
source of the temperature dependence; it comes from the
correlation function χtr (ωQi(q)(0), q; T ). For the TLL, these
correlations are known exactly and can be expressed in terms
of the Beta([±Vνq + ω]/T ; Kν ) functions. To be precise, for
a given incommensurability q = 0.04, with the knowledge of
lowest temperature vq/uq we can estimate VP. Then, since the
temperature dependence of susceptibility χtr (ωQi(q)(0), q; T )
is known, we can test our CDW scenario. We shall compare
this idea with the ARPES experiments seeing a backfolding
there, see Sec. IV.

2. Transverse dielectric constant

To analyze the properties of the entire stepped silicon
surface, it is of interest to compute the interedge Coulomb
interaction with the metallic two-leg ladder (from Au sites
and their vicinity) in between. We need to find the dielectric
constant of the metallic system around the Au atoms. We
probe with the electric field in between two edges, hence
perpendicular to the direction of the two-leg ladder, and are
interested in the response to the transverse electric field. We
are interested in the local response and assume that the two
charges are localized and the field is strictly perpendicular.
Their relative position is �r = {x, y} = {0, dstep}. We then need
to sum both small and large momentum components

V⊥(x = 0) = VCoul(q = 0)

εtr (q = 0)
+ VCoul(q = 2kF )

εtr (q = 2kF )

with εtr (q) = 1/(1 + χtr (q)). The large momentum compo-
nent of VCoul(q) is usually small and here it is further
suppressed by large susceptibility from Eq. (6). On the other
hand the small momentum component can be large and has
two distinct regimes: It is basically unscreened in the low
frequency limit (ω < c−) but the screening suddenly kicks
in and suppresses the V⊥(q ≈ 0, ω > c−) at larger energies
where harmonic oscillations of the φc− field are allowed. In
the low energy regime, the expectation value of the correlation
χtr (q) is zero as the gapped field cannot fluctuate. To be more
precise, φc− is locked at values 0 ± nπ, n ∈ N that minimize
the cosine. The textbook formula 21.31 in Ref. [45] expresses
this physics and reveals that there is a gap 2c− in the sus-
ceptibility. This statement relies on the pure 1D character of
the system and one should inquire if it still holds upon when
including interstep Coulomb interactions shown in Fig. 4. For

4Publication in preparation.

FIG. 4. A schematic picture of an interstep dipole interaction
Vd that allows us to couple the φc− solitons with gapless holons
from neighboring 1D systems. We see two solitons on the step that
would usually not interact, but now each of them can induce charge
fluctuations in the neighboring steps. We then have an analog of
RKKY coupling mediated by gapless holon propagators. This is a
charge interaction and so it does not apply to φs− excitations for
which the respective solitons remain fully nondispersive.

Au-Si(553), these types of interactions were also postulated in
a recent experimental study [28]. An answer to this question
is given in Appendix C, where the procedure to compute the
first approximation to χtr (q) is given.

The result of this calculation is shown in Fig. 5. We show
that even in this relaxed 1D scenario, the amount of two-body
spectral weight at low frequencies is very small; it may raise
up to finite values already at temperatures T ≈ c−/2. Let us
remind that for Au-Si(553), c− = 7 meV.

3. Single-particle propagator: Spectral function

This behavior of the two-body susceptibility (at q ≈ 0)
should be contrasted with a single-particle propagator. The
expression for the Greens function in bosonization represen-
tation contains all fields φν and θν which is the reason why it
has much milder singularity; each power law there is weakly
divergent with an exponent ∼(Kν + 1/Kν )/2. Furthermore,
the gapped fields are convoluted with gapless ones and the
correlation function of the gapped ones is proportional to
K1/2N (x)|N=2 whose Fourier transform is less singular than
that of F [K0(x)] for the χc− susceptibility (here Kν is a
modified Bessel function of the second kind). To obtain a
quantitative prediction for the spectral function, we can use
the result of Ref. [49] by noticing that both, charge and spin
sector, have one mode gapped and the other gapless. The gaps
are identical and under the assumption that spin and charge
velocities are equal. Then the total spectral function will be an
autoconvolution Ãt[Anu](ω) = Ac+,c−(ω) � As+,s−(ω). Here
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FIG. 5. Top panel: transverse susceptibility χtr (q → 0, ω) show-
ing a large gap up to 2c− which inhibits the screening of Coulomb
type interactions, even when the in-gap “beyond-1D” processes
shown in Fig. 4 are included at T = c−/2. Bottom panel: single-
particle spectral functions A(ω, q = 0). Blue and green are spectral
functions at T = c−/6 and T = /2, respectively. Despite the gap
in the two bosonic modes, we expect finite spectral weight at the
Fermi energy. In both panels, the c− is chosen to be 7 meV. We ob-
serve that even upon moving from a pure 1D model to a 2D situation,
by the consideration of the Vd interaction, the two-body susceptibility
has a substantial gap, while in the single-particle spectral function
(even without the Vd ), the gap is not pronounced.

Ac(s)+,c(s)−(ω) contains one massive and massless mode, the
amplitude of the massive sector is known and can be expressed
as a sum of terms (where each term corresponds to single,
double... soliton excitation of the gapped part):

Ac(s)+,c(s)−(q, ω; i ) = (Z2
√

πi )

(2π )3

∫ ∞

−∞
dz exp

( z

2

)
× [�(i cosh(z)−ω,i sinh(z) − q)

+ exp(i cosh(z)/T )�(i cosh(z)

+ ω,i sinh(z) + q)

+ {ω → −ω, q → −q}] (10)

where the gapless single-particle “polarizability” reads:

�(ω, q; Ti ) =
(

1

2π3

)1/2(2π

i

)γ

T γ−3/2
i

× �
[

B

(
γ + 1

2
+ i(q + ω)

2πTi
, 1 − γ + 1

2

)]

× �
[

B

(
γ

2
+ i(ω − q)

2πTi
, 1 − γ

2

)]
(11)

where the gapless TLL Green’s function exponent for a single
chain is known, for instance for the charge part γc = (Kc+ +
1/Kc+)/2 − 1. To obtain Ac(s)+,c(s)−(ω) we need to integrate
the above formula over momenta. Here we assume that the 1D
result holds because deviations from pure unidimensionality
are primarily through interactions and not by single-particle
hybridization. The main conclusion from this section is that
the partial gap, namely the gapping of two out of four TLL
modes, itself will not be visible in single-particle probes
but can nevertheless substantially affect selected two-body
susceptibilities.

IV. EXPERIMENTAL REALIZATION OF THE NEW
THEORY IN Si(553)-Au

In the preceding theoretical part, we found that the Rashba-
split + interactions causes a gap in the susceptibility of the
two-leg ladder while the single-spectral function keeps a finite
weight near EF . The experimental part of our work, performed
on the specific Si(553)-Au system, will be built around a
critical analysis of the Peierls-physics indicators. Since it is
experimentally hard to detect changes in the spectral function
A(q, ω), one needs to search for other means of detection.
An indirect method is by quantifying the temperature depen-
dence of backfolding in ARPES. Furthermore, we postulate
that antisymmetric pinning, either by changing the position
of the Au-add-atoms or by incorporating periodic defects, can
massively increase the CDW instability of the system related
to coupled edge-step solitons. The theory expects at low T the
charge on the Au chain to be distributed in a zigzag pattern and
the existence of solitons on the Au chain which react with the
charge on the Si-step edge. We will here discuss here results
of our STM measurements [26,50]. Details of the experiment
are described in the Appendix.

A. Change of the back folding with T

To confirm the electronic driven CDW-like instability it is
important that the backfolding intensity in ARPES changes
with T . Figure 6 shows the backfolding in the 3rd. ×2
Brillouin-zone5 as measured by ARPES. Shown are measure-
ments at low-T (T = 50 K) and high-T (T = 260 K). Besides
broadening by temperature, a change of the backfolding inten-
sity is clearly visible. The momentum distribution curve at the
chemical potential (red curves) allow us to quantify a reduc-
tion of about 50% of the backfolding when going from low-T
to high-T . This, together with known results from low-energy
diffraction (see, e.g., Refs. [16,20,42]) shows therefore signa-
tures of a Peierls-like CDW instability. We compare this with
the theory of Sec. III B 1: Using the experimental result of the
backfolded intensity, see Fig. 6(a), the low energy value of
the ratio v0.04/u0.04|T =50 K = 0.38 allows us to fix VP = 0.077.
With Kν = 0.5 (a value appropriate for weak long-range inter-
actions), we obtain v0.04/u0.04|T =260 K = 0.165 a value close
to the experimental result.

5As already visible in Fig. 1, this 3rd. ×2 Brillouin-zone has a
better visibility of the ×2 folding. This is most likely a BZ-selection
effect (cf. Ref. [55]) caused by the fact that the true surface unit cell
is the ×6 BZ.
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FIG. 6. ARPES measurements for (a) low (T = 50 K) and
(b) high temperatures (T = 260 K) showing the change of the ×2
backfolding with temperatures. The lower panels shows the photo-
electron intensity maps along the same direction as indicated in Fig. 1
(c) near the 3rd. ×2 BZ. The backfolding bands can be well seen at
T = 50 K in the region encircle by the light green lines. Compare
also with the schematic band situation drawn the inset between the
lower panels where the original bands are blue and the replica bands
are green (see also Ref. [18] for details like the hybridization between
original and replica bands not addressed in this schematic). The
top panel shows the momentum distribution curves at the chemical
potential together with a line fit to quantify the change in backfolding
replica intensities (in green). Clearly, the replica intensity reduces
with temperature.

B. Zigzag pattern on the Au chain

As described in the beginning of Sec. III B, an immediate
implication is that charges on the ladder should have a high
propensity to form a zigzag pattern. This additional many-
body part of susceptibility should be incorporated in DFT
computations of this compound and should then manifest in
STM measurement. Figure 7(a) displays a high-resolution
STM constant current image at 77K with bias of U = +0.2 V.
It is part of a bias-dependent series already published in
Ref. [50]. It shows two Si edges and two Au chains in be-
tween. The steps lead upwards to the top of the page. The
structural model of Ref. [12] is overlayed and helps us to iden-
tify two contributions, one bright horizontal feature stemming
from the Si edge and a series of characteristic circular charge
clouds from the Au chains. At this bias, the bright Si-step-
edge shows ×6 periodicity as discussed in Ref. [50] and in
line with the correct surface Brillouin zone. At higher bias,
the Si-step-edge displays the well-known ×3 superstructure
[50]. The circular charge clouds of the Au chains show a ×2
spacing on each bar of the ladder. The two bars are ordered in
a zigzag fashion, i.e., the pattern on each of the two bars of
the ladder is shifted by one lattice constant to the right. The
charge-cloud on the upper bar (lying below the next step) is
always more defined whereas the charge clouds of the lower
bar have a more asymmetric shape; they connect to the Si
edges and are weaker.

C. Solitons in the Au chain

Now that we have shown the presence of the zigzag pattern,
we can search for its characteristic excitations. Remarkably,
the theory given by Eq. (3), the sine-Gordon theory, has
characteristic soliton-type excitations that can be unambigu-
ously observable in real space, in the temperature range of
around T = 77 K where the experiments were done. Hence, a

FIG. 7. (a) Measurements to show that the Au ladder follows a zigzag pattern [26,50]. STM images of the unoccupied states of the
Si(553)-Au surface at tunneling biases of U = +0.2 V (T = 77 K). The structural model of Ref. [12] is overlayed. The charge clouds on each
bar shows a ×2 periodicity. The order between the two bars of the ladder follows a zigzag pattern. The measurements in (b) and (c) show
that solitons are visible as change of register in the otherwise periodic charge pattern of the Au sites [26]. STM constant current images
(U = +0.3 V) of a single spin chain and two surrounding Au chains, comparing two subsequent images with opposite line-feed direction. In
particular, the fast scan direction is vertical, i.e., the slow scan movement is horizontal as indicated by the black arrows. The Au chain exhibits
several phase shifts as marked with the cyan arrows. Most Au chain phase shifts come hand in hand with a phase shift in the Si-step-edge chain
as indicated by the red symbols. Red stars represent one configuration and red dots the other configuration.
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FIG. 8. Top panel shows the different configurations possible for
the Si-step-edge (C1,C2,C3) and Au-chain (A,B). (a),(b) Coupled
Au-chain and Si-step-edge soliton passing. Slow scan direction is
from right to left as marked by the black arrow. In (a), at phase
shift #3 the Au-chain’s phase changes from B to A and the Si-step-
edge configuration from C1 to C3. At phase shift #4 in (b), the Au
chain’s phase changes from A to B and the Si-step-edge configu-
ration from C3 to C1. The Si-step-edge soliton observed in (b) is
the antisoliton of the spin chain soliton observed in (a). (c) Single
Au-chain soliton passing. No phase shift in the Si-step-edge chain is
observed. (d) Multiple passings of coupled soliton pairs. A passing
of coupled soliton pairs does not change the Si-step-edge phase at
larger distances as marked by the red dots.

strong signature of the many-body character of the electronic
liquid under our investigation may then come from the fact
that the lowest-lying excitation of the system (of the φc−
mode) is a soliton (the low energy, in-gap threshold shown in
Fig. 5). This peculiar nonlinear particle reveals an underlying
sine-Gordon Hamiltonian. We then embark on its search. Fig-
ures 7(b) and 7(c) display two STM constant current images at
77 K. The bias of U = +0.3 V has been chosen to be sensitive
to the unoccupied DOS of the Au chains as well as to the
Si-step-edge atom. In the images of Figs. 7(b) and 7(c), the
step edge is surrounded by two Au chains, see labels in Fig. 7.
One Au chain resides on the same terrace as the step edge,
the other chain on the terrace below. Both chains exhibit the
characteristic circular charge clouds discussed above with ×2
spacing. To distinguish the different configuration of the Au
chain, see also Fig. 8, the Au-charge clouds are marked by
orange dots for configuration A and stars for configuration B.

Both images in Figs. 7(b) and 7(c) display the same surface
area (see, e.g., the defect present for both at the left end
of the chains). The images were taken in quick succession,
one after the other. They differ by the choice of slow scan
direction of the tunneling tip: (b) was scanned from left to

right (forward scan) and (c) from right to left (backward scan).
Focussing on (b), the cyan arrows mark positions at which
the phase of the lower Au chain suddenly shifts. Some parts
of the STM image display domain A (orange dots) while
others display domain B (orange stars) of the Au chain. While
the orange dots of domain A coincide with the Au-charge
clouds on the left of the phase shift, they are in between the
Au-charge clouds on the right of this phase shift, domain B
(orange stars). This observation indicates the presence of a
single soliton, which has propagated through the Au chain
during the STM measurement, and, thereby, shifted its phase
by a0. It is noteworthy, in order to diminish the effect being
an experimental artifact, that only the lower Au chain shows
signatures of passing solitons and not the upper one.

D. Coupled solitons

So far, we have shown that Coulomb interaction between
the edges should be unscreened, because the φc− mode is
locked prohibiting any variations of the transverse electric
field. By the same argument applied at finite temperature, one
can say that the presence of the soliton modifies locally the
electrostatic potential landscape, see Fig. 4. So far we have
not considered the carriers on the edge of the silicon step,
being beyond our current theory. However, we know that they
exist, we can observe them in STM, so we can use them as
a probe of the local potential. One can then directly inspect
if the scenario proposed in Fig. 4 is correct by checking if
Au solitons are accompanied by any charge variations on the
Si-step edge.

Indeed, our STM provide direct evidence for a coupling
of the solitons [26]. As visible in Figs. 7(b) and 7(c), many
Au-chain phase shifts come hand in hand with a phase shift
in the Si-step-edge chain. The configuration of the Si-step-
edge chain is encoded in the red symbols where the red dots
represent the configuration C1 and stars configuration C3, see
left top of Fig. 8. Remarkably the solitons are mobile as we see
a change of the pattern between the two STM scans along the
chain (slow scanning direction). In comparison to the confined
solitons in Si(111)-In 4 × 1 (see, e.g., Refs. [51,52]), it is
noteworthy to mention that the solitons in Si(553)-Au are
deconfined [26]. Only this allows the observation of a single,
mobile soliton.

Figure 8 shows in detail some characteristic soliton pass-
ings. Figures 8(a) and 8(b) show Au-chain solitons coupled
to solitons on the Si-step-edge. Looking onto (a) at phase
shift #3, the Si-step-edge shifts from configuration C1 to
configuration C3 (the scan direction was right to left). The
difference in pattern of the Si-step-edge is 4a0 at the phase
shift, i.e., a shift of −a0. At the same time on the lower Au
chain, the configuration changed from B to A accompanied
by a phase shift of +a0 for the Au chain. Looking onto (b) at
phase shift #4, the Si-step-edge shifts from configuration C3
to configuration C1 with a shift of +a0. The Au chain changed
from A to B with a phase shift of −a0. The soliton in (b) may
be considered the antisoliton of (a).

Also other solitons events are visible. Figure 8(c) displays
an Au-chain soliton which is not accompanied by a Si-edge
soliton. Finally, Fig. 8(d) indicates several soliton pairs prop-
agating through the Au chain. At the locations indicated by
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the cyan arrows, the phase of the Au chains appears to change
for a short time (approximately one second) before flipping
back to its initial configuration; The same seems to happen
for the Si edge, as the the Au-chain phase shifts seem to be
accompanied by short, spikelike intensity changes at the Si
edge. As expected for soliton pairs, their numerous passing
does not alter the Si-edge configuration at larger distances—
resulting in regular 3a0 patterns.

V. DISCUSSION

A. The mechanism

In the course of this study, we investigated the effect of
Rashba splitting on the electronic structure of the two-leg
ladder by bosonization within a TTL model and subsequent
renormalization group analysis. We were able to show that,
when we reach the characteristic Rashba-split length, it mod-
ifies the RG flow and lifts the “frustration” related to the
pinning of canonically conjugated fields of densities and their
momentum. As a result, two out of four TLL modes (namely
the both transverse charge and modes, c− and s−) open a
spectral gap (c− and s−) which is determined by the en-
ergetic size of the Rashba splitting.

Interestingly, there is a dichotomy. We found that the gap-
ping of two out of four TLL modes itself will be hardly
visible in the single-particle probes, i.e., not in the spectral
function as probed by ARPES. Nevertheless, we have shown
substantial influence on the electronic two-particle properties
of the electronic liquid, i.e., in its susceptibilities. These shall
reveal themselves through direct and indirect effects. The di-
rect effect is a two-body phenomenon, deducible from Eq. (3),
resulting in a rather exotic spin order. The indirect effect,
caused by the modified dielectric function, is a backfolding
of the S1/2 bands; it is a Peierls-type phenomenon but for
an incommensurable nesting. These two effects support each
other: Once the imperfect nesting triggered the backfolding,
there is a small spectral weight that enjoys interaction through
the large, unscreened (note the behavior of dielectric function)
q = 0 component of Coulomb interactions.

Any charge modulation may produce a staggered compo-
nent of the relevant two body interaction g2c. Through an
operator product expansion it can be shown [53] that this leads
to an emergent single-particle “Peierls” backscattering term
of the form proposed in Sec. III B 1. This self-consistency
implies that, even if the initial lattice does not support the
Peierls term, it will appear through spontaneous symmetry
breaking. It should be noted that the instability promoted
by g2c can break spin-rotational invariance and so the ad-
ditional Peierls backscattering may involve an in-plane spin
precession. So, while nominally Peierls backscattering with a
spin flip may appear like an unusual concept, such a process
can be dynamically generated in higher orders. As a result a
substantial enhancement of backfolded spectral weight should
be visible even if the momentum conservation demands a
spin-nonconserving S1 → S2 process.

B. Experimental platform

Our theoretical reasoning is tested on the Au-Si(553)
system. Our experiments show that (i) indeed there is a tem-

perature dependence of the backfolding visible in ARPES and
(ii) apart from a symmetric CDW, there is a zigzag pattern
of charge density visible in the STM showing the importance
of a staggered component of susceptibility. Furthermore, at
finite temperature T ≈ c−/2, the regular zigzag pattern is
disrupted by local steplike excitations. Using STM, we found
clear experimental signatures of solitons. Although our exper-
imental signatures are only indirect it should be noted that
they are hard to reconcile with any other theoretical scenario.
The solitons, the abrupt changes of the order’s register, are an
excited eigenstate for the 1D theory of a collective nonlinear
liquid, while single-particle theories would support only plane
waves type excitations. We do expect that this 1D theory can
be corrupted by the interstep long-range interactions. Thus we
computed the influence of such quasi-2D interactions, proving
that, at this level of treating the dimensional crossover, the
solitons remain as proper eigenstates and should be indeed
observable. However, one now has to account for interactions
between them. These interactions reduce the dichotomy be-
tween single-particle Green’s function and the susceptibilities
but are not capable to erase it. Consequently, our experiments
have shown the Au-chain solitons interacting with the Si-edge
solitons but without destroying the overall zigzag ordered
state of the Au chain.

A direct experimental proof of the existence of a par-
tial, only transverse spectral gap may be more difficult to
obtain. To this end one can try to employ the partial but
mutual locking of spin and charge fluctuations. We can focus
here on the nuclear quadrupole resonance since Au nucleus
has spin greater than 1; the off-centered Au sites6 should
show a NQR resonance of the transverse quasiantiferroelectric
configuration coupled with in-plane magnetism. The antifer-
roelectric zigzag pattern induce local electric field gradient
and quadrupolar states split is further enhanced by magnetic
environment. Interchanging some of the Si atoms with Ge is
even a more sensitive probe as Ge has quite a high nuclear
moment. Another (experimentally quite demanding) option to
probe the slowly oscillating anisotropic magnetic order is to
use positron spin-polarized muon spectroscopy. Finally, one
can try to couple the spin currents flowing in the system with
an external fluctuating magnetic field in a lock-in manner with
an STM experiment measuring the amplitude of the compet-
ing CDW order. This last option is particularly exciting as it
would be the first detection of such a magneto-CDW coupling.

We emphasize an important limitation of our model.
Our reasoning is based on the assumption that the effec-
tive single-particle hybridization between the carriers of the
Au chains on the neighboring steps cannot destroy the 1D
fermionic Tomonaga-Luttinger liquid. Such process would
drive a dimensional crossover, at energy scales larger than
c−. However, in this paper, we show that two bosonic modes
develop a 7 meV gap each which leads to an upper bound of
the bare (DFT) interchain-hopping hybridization of 80 meV

6These should have the largest field gradient. However, unfortu-
nately there is also a constant surface electric field gradient, possibly
with a transverse component. This gradient causes Rashba splitting
and needs to be separated out.
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for which our 1D model remains valid.7 If we assume that
the coupling is indirect and goes through carriers on the Si
edge, then any disorder on the edge will raise this upper bound
to even higher values. Since our findings are corroborated by
experiments, it suggests that the edge carriers have some very
unusual character that indeed keeps them away from delocal-
ization. This assumption will be confirmed by a subsequent
experimental paper dedicated to these states [54].

We can also build links with other studies of the system.
Our theory allows us to predict the strength of the Coulomb
interaction between the carriers on the Si-step-edges. This
also implies a curious interconnection: doping of the Si edge
(these extra local charges manifest as solitons) changes the
screening on the terrace; therefore the Au-atoms’ dimerization
will change. This is an alternative many-body interpretation
of the experimentally observed effects where a single-particle
phenomenology was proposed in Ref. [43]. Recently we be-
came aware of ab initio work of Braun et al. [27]; based on
our results we see that the tentative relation between modified
dimerization of Au atoms and a modified energy landscape
of dangling bond, that have been indeed numerically detected
therein, is not a trivial effect of charge transfer but, instead, is
a phenomenon deeply rooted in a many-body susceptibility of
the electronic liquid on the Si-step-edge.

VI. CONCLUSION

The theory of two-leg ladders is a well-developed field,
but a phase where precisely half of the modes (the transverse
modes) are gapped has not been ever predicted before. Our
mechanism, which can be called Rashba incommensurability,
exists in a so-far-unexplored regime where the strength of the
Rashba split is comparable to the weak backscattering inter-
actions while the forward-scattering interactions are strong.

Our highly nonobvious result of many-body theory causes
exotic properties, for instance, intermixing of spin density
wave magnetism and the zigzag Peierls CDW; an increase in
the amplitude of one transverse mode will inevitably increase
the other. Specifically, instead of a fully developed magnetic
order, we have an incipient magnetism; because already half
of the magnetic fluctuations are frozen, further perturbations,
such as impurities, could stabilize the magnetism.

Also, we demonstrate a curious dichotomy: While the
spectral gap opening is only very weakly pronounced in the
single-particle spectral weight, it is fully visible in selected
two-particle properties, e.g., the transverse susceptibility.
Due to this peculiar combination of correlation functions, a
Peierls-type backfolding can occur despite the slightly incom-
mensurable nesting conditions.

On the experimental side, we were able to substantiate our
findings in the Au-Si(553) surface system. We showed that the
temperature dependence of the backfolding is in agreement

7This bound is in the initial high-energy (so called UV) limit of the
renormalization group (RG): If we start a many-body RG procedure
from the result of a DFT calculation as an input, then, provided
the initial input is tperp < 80 meV, the tperp will be renormalized by
interaction down to tperp < 14 meV and the gaps of two bosonic
modes will prohibit such single particle hopping.

with our imperfect nesting scenario. The direct observation of
soliton excitations is a hallmark of the 1D sine-Gordon model.

It should be emphasized that our findings are not restricted
to the specific experimental realization discussed here but can
be seen as a more general blueprint; the Rashba effect is just
one manifestation of a symmetry breaking at the surface. Any
symmetry-breaking term can be sufficient to induce a slight
incommensurability between Fermi points. This, in turn, is
sufficient to break the degeneracy of scattering channels and
to induce partial gaps. We thus expect that the mechanism
proposed here will occur commonly in artificially created
low-dimensional systems at surfaces.
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APPENDIX A: EXPERIMENTAL

1. Sample preparation

The preparation was similar to that in Ref. [50]. We used
n-doped (phosphorus) Si(553) substrates. The samples were
cleaned in an ultrasonic bath with acetone, isopropanol, and
methanol of highest purity for 2 min in each solvent, after
the protective photoresist was removed with standard grade
acetone. To avoid residual solvents the samples were blown
off with dry nitrogen. The base pressure of the UHV chamber
used for the in situ preparation was below 5 × 10−10 mbar.
After degassing the samples, we heated up to 1250 ◦C via
direct current heating to remove the protective oxide layer. Au
evaporation of 0.48 ML was performed while the substrate
was held at a temperature of 650 ◦C, followed by a short
post annealing at 850 ◦C. The quality of the preparation was
controlled by LEED.

2. ARPES

Photoemission measurements were performed with a
SPECS Phoibos-100 electron analyzer and a 6-axis SPECS
Carving goniometer. We used a nonmonochromatized He-
discharge lamp optimized for the He-I line (hν = 21.22 eV).
The energy resolution was set to 25 meV. To guarantee defect
free samples, we performed a thermal refresh procedure sim-
ilar to the post annealing step prior to ARPES measurements.

3. STM

STM measurements have been performed with a low-
temperature STM instrument from Omicron at a sample
temperature of 77 K. All STM images presented have been
recorded in constant current mode using a PtIr tunneling tip.
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APPENDIX B: UMKLAPP

If the two-leg ladder is commensurate, additional Umklapp
terms appear in the Hamiltonian:

Humk = g3‖
∫

dr cos(2φs+) cos(2φc+ + δx)

+ g3a

∫
dr cos(2θs−) cos(2φc+ + δx)

+ g3b

∫
dr cos(2φs−) cos(2φc+ + δx)

+ g3c

∫
dr cos(2φc−) cos(2φc+ + δx). (B1)

Since these terms oscillate with δ, their influence becomes
important only when the doping δ is smaller than the on-shell
distance from EF . Mathematically, in the RG flow of these
Umklapp terms each of ∂g3i(l )/∂l is multiplied by a doping
dependent coefficient J0(lδ) where the Bessel functions J0(lδ)
for small lδ may be approximated by one and for large lδ by
zero. One deduces that when lδ ≈ 1 then the RG flow should
stop. In our problem, although these terms are highly relevant
(especially the last one) because Kc+ < Kc− � 1, their initial
amplitudes are extremely small as they are processes with
by far the largest momentum exchange. Hence they are not
the dominant perturbations. Furthermore their RG flow will
be terminated at some point by finite incommensurabilities
present in the system with g3b flowing the longest as S1/2 are
relatively close to half filling. We then expect that the main
influence of the terms in Eq. (B1) will be to reduce values of
Kc−, Ks−.

APPENDIX C: CALCULATION OF INTER-1D
CORRECTION TO TRANSVERSE SUSCEPTIBILITY

To validate this last assertion in the realistic system, we
shall now compute the χtr (ω, q → 0), in the presence of

interstep Coulomb interaction terms that can take us away
from the pure 1D picture and potentially destroy the simple
picture given above. For low frequencies there are in-gap
excitations of the gapped c− mode: solitons, and potentially
also their bound states—breathers. These can be imagined as
localized jumps (instantons) between the minima of cosine,
heavy particles that can be pinned on the lattice. The en-
ergy of these in-gap soliton-type excitations is known msol =
sin(π/4)c−. However, due to strict energy-momentum con-
servation, they are not allowed to interact. In the TLL
theory, they will not couple with the other, gapless bosonic
modes.

Nevertheless, the φc−(x) solitons can entertain long-range
dipole-dipole interaction Vd (�r) and then share energy mo-
mentum with (and through) gapless excitations on the other
steps. This is illustrated in Fig. 4. In this way, the strict
integrals of motion for a purely 1D system can be violated.
We assume the following mechanism: Through the interaction
Vd (�r), the solitons interact with charged holons c+ from the
other terrace and then these are able to excite fluctuations
of the gapped φc− field. The susceptibility of the gap-
less field is known χc+(ω) = Re[Beta(ω, Kc+)Beta(ω, Kc+)]
as well as the gapped mode temporal fluctuations giv-
ing Ãc−(ω) = F [K2

1 (tc−/kT )]. The overall interaction is a
convolution of the two and shall allow for soliton dispersion—
a variation of its energy around the central peak The
above effect of weak soliton dispersion cannot occur for a
lone excitation but instead requires a finite density, hence
the temperature dependence from nB(msol/kT ) enters in
front the amplitude. By computing this additional contribu-
tion to χtr (ω < 2c−, q → 0), the χ inter

tr (ω > ms, q → 0) =
Vd (�r)Ãc−(ω)χc+(ω), we can asses if these interstep inter-
action can significantly contribute to the screening at finite
temperatures.
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