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Abstract

The paper is devoted to a stochastic process introduced in the recent paper by Lipniacki et al. [T. Lip-
niacki, P. Paszek, A. Marciniak-Czochra, A.R. Brasier, M. Kimmel, Transcriptional stochasticity in gene
expression, J. Theor. Biol. 238 (2006) 348–367] in modelling gene expression in eukaryotes. Starting from
the full generator of the process we show that its distributions satisfy a (Fokker–Planck-type) system of
partial differential equations. Then, we construct a c0 Markov semigroup in L1 space corresponding to this
system. The main result of the paper is asymptotic stability of the involved semigroup in the set of densities.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Our article is devoted to mathematical aspects of the generalized stochastic process introduced
in the recent model of gene expression by Lipniacki et al. [18]. First of all, we fill out some
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details needed for the construction of the process and show that it is an example of piece-wise
deterministic processes of M.H.A. Davis [3,4]. Next, we construct a c0 semigroup of Markov
operators in the involved space L1(K × {0,1}) of absolutely integrable functions, related to the
Fokker–Planck system of equations for the densities of the process; the system has the form:

∂f0

∂t
+ ∂

∂x1
(−x1f0) + r

∂

∂x2

(
(x1 − x2)f0

) = q1f1 − q0f0,

∂f1

∂t
+ ∂

∂x1

(
(1 − x1)f1

) + r
∂

∂x2

(
(x1 − x2)f1

) = q0f0 − q1f1, (1)

where q0 = q0(x1, x2) and q1 = q1(x1, x2) are given non-negative continuous functions defined
on [0,1]2, (x1, x2) ∈ [0,1]2 and f0, f1 are real functions defined on [0,∞) × [0,1]2.

The most difficult part of the paper is to show asymptotic stability of the involved semigroup.
The strategy of the proof is as follows. First we show that the transition function of the related
stochastic process has a kernel (integral) part. Then we find a set E on which the density of the
kernel part of the transition function is positive. Next we show that the set E is an “attractor.”
Then we apply results concerning asymptotic behavior of partially integral Markov semigroups
discussed in [21,24]. We show that the semigroup satisfies the “Foguel alternative,” i.e. it is either
asymptotically stable or “sweeping.” Since the attractor E is a compact set, we obtain that the
semigroup is asymptotically stable.

A similar technique was applied to study asymptotic behavior of a large class of transport
equations. The paper [25] can be consulted for a survey of many results on this subject. A newer
application of this method to a stochastic version of the Lotka–Volterra prey–predator model can
be found in [26].

Other mathematical results concerning the involved model are presented in the companion
paper [2].

2. The model of eukaryotic gene expression

2.1. The model

As reviewed recently in [13], stochasticity in gene expression arises from fluctuation in gene
activity, mRNA transcription, or protein translation. Figure 1 illustrates the main steps in gene
expression. Control of gene’s activity is mediated by proteins, called transcription factors, which
may bind to the specific promoter regions and switch the gene on or off. When the gene is active
mRNA transcription takes place. Next, mRNA is exported to the cytoplasm, where serves as a
template for the protein translation.

Let us consider regulation of a single gene, having N homologous copies (alleles). The model
introduced in [18] involves three classes of processes: allele activation/inactivation, mRNA tran-
scription/decay, and protein translation/decay process (Fig. 1). It is assumed that, due to binding
or dissociation of protein molecules, each of gene’s alleles may be transformed, independently
of the remaining ones, into an active state (denoted by A) or into an inactive state (denoted
by I ), with intensities q0(x2) and q1(x2), respectively, where x2 is the number of protein mole-
cules. In the case of self repressing gene (switched off by its own product) it is natural to
assume q0(x2) = b1x2 + b2x

2
2 and q1(x2) = c0, where b1, b2 and c0 are constants. The linear

and quadratic terms in this relation represent gene activation due to binding of protein monomers
and protein dimers, respectively, while the constant c0 corresponds to dissociation of regulatory
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Fig. 1. Simplified diagram of auto-regulated gene expression.

proteins resulting in switching the gene on. In the case of self activating gene the activation in-
tensity q1(x2) should depend on the amount of the protein monomers or protein dimers, while
the inactivation intensity may be assumed constant, since now inactivation is due to dissociation
of regulatory protein. Furthermore, we assume that mRNA transcript molecules are synthesized
at the rate Hγ (t), where H is a constant, γ (t) = ∑

i gi(t) ∈ {0,1, . . . ,N} and each gi is a binary
variable describing the state of the ith allele: gi(A) = 1 and gi(I ) = 0. The protein translation
proceeds with the rate Kx1(t), where K is a constant and x1(t) is the number of mRNA mole-
cules. In addition, mRNA and protein molecules undergo the process of degradation. We chose
the time scale so that the mRNA degradation rate is 1. Then, the reactions described above may
be summarized as follows:

I
q0(x2)−−−−→ A, I

q1(x2)−−−−→ A, (2)

A
Hγ (t)−−−−→ mRNA 1−→ φ, (3)

and

mRNA
Kx1(t)−−−−→ protein r−→ φ, (4)

where r is the protein degradation rate and φ stands for degradation of gene products; it is de-
scribed by the triple (x1(t), x2(t), γ (t)) of random variables with natural values.

Processes similar to (2)–(4) have been intensively studied and simulated with help of Gille-
spie [9] algorithm. This is an exact numerical algorithm. However, it becomes very inefficient
when number of molecules is large. In such a case, when the mRNA and protein synthesis rates
(H and K) are large, the system (3)–(4) may be approximated by deterministic reaction-rate
equations. To be more specific, we obtain:

I
q0(x2)−−−−→ A, I

q1(x2)←−−−− A, (5)
dx1

dt
= γ (t) − x1, (6)

dx2

dt
= r(x1 − x2). (7)

It should be noted here that in the above system non-dimensional units are used and that x1
and x2 are not integers anymore; rather x1, x2 ∈ R

+. This approximation is much more com-
putationally efficient than the Gillespie algorithm. We discuss accuracy of the algorithm in [17]
and implement it to the analysis of regulatory network governing early immune response. Since
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γ (t) ∈ {0,1, . . . ,N} is a discrete random variable, Eqs. (6)–(7) generate stochastic trajectories,
which can be described as piece-wise deterministic, time-continuous Markov process

p(t) = (
x1(t), x2(t), γ (t)

) = (
x(t), γ (t)

)
, t � 0. (8)

Introducing “partial” density functions of this process, fi(x1, x2, t),

Pr
[
x(t) ∈ Υ,γ (t) = i

] =
∫ ∫
Υ

fi(x1, x2, t)dx1 dx2, i = 0,1, . . . ,N,

where Υ is a Borel subset of R
+ × R

+, we are led (see [18]) to the following Fokker–Planck
system of PDEs:

∂fi

∂t
+ ∂

∂x1

[
(i − x1)fi

] + r
∂

∂x2

[
(x1 − x2)fi

] = Ti−1,i + Ti+1,i − Ti,i−1 − Ti,i+1,

i = 0, . . . ,N , where

Ti,i+1 = (N − i)q0fi, Ti+1,i = (i + 1)q1fi+1, i = −1,0, . . . ,N,

with f−1 = fN+1 = 0. For N = 1, this system reduces to (1), except that in (1) we allow jump
intensities q0 and q1 to depend on x1 as well.

In [18], in the case of self repressing gene, i.e. a gene switched off by its own product (pro-
tein), we find the steady state solution of the system (1) numerically. Moreover, we observe
that, numerically, solutions of (1) converge to this steady state solution. In the present paper we
prove correctness of heuristic considerations and numerical results contained in [18] by show-
ing asymptotic stability of the semigroup induced by (1) in the space L1([0,1]2 × {0,1})—see
Section 2.5 for more information.

2.2. Two systems of ODEs

For fixed i ∈ {0,1} let us consider the following system of ODEs:

dx1

dt
= i − x1,

dx2

dt
= r(x1 − x2), (9)

with initial condition x̄ = (x̄1, x̄2) ∈ R
2, where, as before, r > 0 is a given constant. Its solution

πi
t (x̄) = (x0

1(t), x0
2(t)) is given by

πi
t (x̄) = iv + eMt(x̄ − iv), (10)

where πi
t and v = (1,1) are treated as column-vectors,

M =
[−1 0

r −r

]

and so

eMt =
[

e−t 0

r e−t−e−rt

e−rt

]
, r �= 1,
r−1
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and

eMt =
[

e−t 0

e−t t e−t

]
for r = 1.

We note that this formula is valid not only for t � 0 but for all t ∈ R. In other words, πi
t s are

flows (as opposed to semi-flows) inasmuch as {eMt }t∈R is a group of matrices. We note that

π0
t (v − x̄) = v − π1

t (x̄). (11)

2.3. Path-wise definition of process (8)

In this section, we give a path-wise definition of the process (8). Let q0 = q0(x1, x2) and
q1 = q1(x1, x2) be two non-negative, continuous functions on R

2; we assume throughout the
paper that

qi(i, i) �= 0, i = 0,1. (12)

Let x = (x1, x2) ∈ R
2 be given. We define Fx,i (t) = 1 − e− ∫ t

0 qi (π
i
s )ds , t � 0. Since

lim
t→∞πi

t (x) = (i, i) (13)

regardless of the choice of x, all F s are cumulative distribution functions. In our construction,
Fx,i is the cumulative distribution function of the first jump T1 of the process that at t = 0 starts
at the point (x, i) ∈ R

2 × {0,1}. In other words, Prob{T1 � t} = Fx,i (t) and we define

p(t) =
{

(πi
t (x), i), t < T1,

(πi
T1

(x),1 − i), t = T1.
(14)

After time T1, we restart the whole procedure with (x, i) replaced by the new initial condi-
tion p(T1), so that the process moves along the integral curves of one of systems (9) until the
time T2 of the second jump, and so on.

Since the semi-flows πi
t are continuous and (13) holds, Fx,1(t) < 1 for all t � 0. Hence,

T1 > 0 and, more generally, �k = Tk − Tk−1 > 0, k � 1, where T0 = 0 (a.s.). Similarly, �k < ∞
a.s. Moreover, we show that

lim
k→∞Tk = ∞ (a.s.), (15)

so that our process is well-defined for all t � 0. To this end, we note first that there are infinitely
many jumps. Indeed, supposing contrary we would have a time Tk0 of the last jump. Regardless,
however, of the state of the process at Tk0 , by construction, the time �k0+1 to the next jump
would be, conditional on the state, independent of Tk0 and distributed according to one of the
Fx,i functions. In any case the time to the next jump would be finite: a contradiction. Next, we
note that, in view of (13), the part x(t) of the process (8) starting at x ∈ R

2, stays in a compact set
(depending on x). Let μx = maxqi(y) over y in this set and i = 0,1. Then, Fy,i (t) � 1−e−μxt for
all y in this set. Hence, Prob(�k � t) � 1 − e−μxt regardless of the values of �i , 1 � i � k − 1.
Therefore, by induction Prob(Tn � t) � (1 − e−μxt )n, proving our claim.

Finally, we note that

ENt < ∞, t > 0, (16)

where Nt = max{k � 0 | Tk < t} is the number of jumps of the process up to the time t . Indeed,
Prob(Nt � n) = Prob(Tn < t) � (1 − e−μxt )n and so ENt = ∑∞

n=0 Prob(Nt � n) < ∞.
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2.4. Bibliographical remarks

The procedure presented above is a particular case of construction of the so-called piece-wise
deterministic process of M.H.A. Davis [3,4], compare [1] and [18]; in particular, p(t), t � 0, is
a Markov process in R

2 × {0,1}. To be more specific, p(t), t � 0, is a piece-wise deterministic
process with

• the countable set K equal to {0,1},
• sets Mi , i ∈ K , both equal to R

2,
• the state space E = R

2 × K ,
• the vector fields Xi in Mi , i ∈ K , given by X0 = (−x1, r(x1 −x2)), X1 = (1−x1, r(x1 −x2)),
• the ‘rate’ function λ : E → R

+ given by λ(x1, x2, i) = qi(x1, x2),
• the transition measure Q(x1, x2, i) = δ(x1,x2,1−i) (the Dirac measure).

We note that in order to claim this, we needed to show (15).
Similar processes have been studied extensively in various contexts. Probably the oldest class

of great proximity to p(t), t � 0, would be that of random evolutions of Griego and Hersh [7,10,
11,22]. In that terminology it would be desirable to call x(t) = (x1(t), x2(t)) and γ (t), the driven
process and the driving process, respectively—we note that, separately, neither x(t) nor γ (t) are
Markov. In fact, p(t), t � 0, would have been a typical example of a random evolution, were
the intensities of jumps of γ (t) independent of the state of x(t). Other, often intersecting, classes
of processes similar to this process include randomly flashing diffusions, randomly controlled
dynamical systems [19,21] and diffusion processes with state-dependent switching [1,20].

2.5. A related Feller semigroup

Let BM(E) be the space of bounded measurable functions on E = R
2 ×{0,1} with supremum

norm. By Theorem 2.1 of [4], the extended generator A of the process p(t), t � 0, as restricted
to BM(E) is given by

Af (x, i) = Xif (x, i) + λ(x, i)
[
f (x,1 − i) − f (x, i)

]
, (17)

and is well-defined for f ∈ BM(E) such that t �→ f (πi
t , i) is absolutely continuous for t � 0, for

all i = 0,1 and initial conditions x for the flow πi
t (note that condition (ii) in the above mentioned

theorem is trivially satisfied since the sets Mi have no boundary, and that, by (16), condition (iii)
of that theorem holds for all f ∈ BM(E)).

Clearly, BM(E) is isometrically isomorphic to the Cartesian product BM(R2) × BM(R2) of
two copies of the space BM(R2) of bounded measurable functions on R

2. In other words, an
element f of BM(E) may be conveniently represented as a pair, say (f0, f1) of elements of
BM(R2), where fi(x) = f (x, i). In this setting (17) becomes

A(f0, f1) = (X0f0 + q0f1 − q0f0,X1f1 + q1f0 − q1f1), (18)

for all pairs (f0, f1) such that t �→ fi(π
i
t ), i = 0,1, is absolutely continuous for t � 0, for all

initial conditions x ∈ R
2. Here,

Xifi(x1, x2) = (i − x1)
∂fi(x1, x2) + r(x1 − x2)

∂fi(x1, x2)
, i = 0,1. (19)
∂x1 ∂x1
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The state-space of the process (8) is E = R
2 × {0,1}. However, we loose no information by

considering the smaller state-space

S = K× {0,1}, (20)

where K = I × I and I = [0,1] is the unit interval. To see that note that this set is an attractor
for the process in the sense that all sample paths of the process tend to this set and once they get
there, they remain there forever (use (10) or see [2] for more details).

Let C(S) be the space of continuous functions on S . This space is isometrically isomorphic
to the product C(K) × C(K) of two copies of the space C(K) of continuous functions on K.
Hence, by a slight abuse of language, we will say that a family {T (t), t � 0} of linear operators
C(K) × C(K) is a Feller semigroup of operators in this space iff its isometrically isomorphic
copy in C(S) is a Feller semigroup. In other words, {T (t), t � 0} is a Feller semigroup in
C(K) × C(K) iff

(a) T (0) = Id,
(b) T (t + s) = T (t)T (s), s, t � 0,
(c) for each f ∈ C(K) × C(K), the map t �→ T (t)f is strongly continuous,
(d) all T (t) map the set of pairs of non-negative functions into itself, and
(e) T (t)(1,1) = (1,1), where 1 ∈ C(K) is a function equal 1 for all x ∈K.

Let C1 be the space of f ∈ C(K) that admit a continuously differentiable extension to the
whole of R

2. The operator A in C(K) × C(K) given formally by the same formula as (18), i.e.

A(f0, f1) = (X0f − q0f0 + q0f1,X1f + q1f0 − q1f1), (21)

but defined merely for fi ∈ C1, i = 0,1, is closable and its closure generates a Feller semigroup
{T (t)}t�0 in C(K) × C(K)—see [2] (q0 and q1 are now two continuous non-negative functions
on K). From now on, we will focus on this semigroup, or, more precisely on the properties of
its dual. Before we do that, however, we need to introduce some auxiliary results concerning
Markov semigroups.

3. Markov semigroups

3.1. Basic definitions

Let (S,Σ,m) be a σ -finite measure space and let D ⊂ L1 = L1(S,Σ,m) be the set densities,
i.e.

D = {
f ∈ L1: f � 0, ‖f ‖ = 1

}
.

A linear mapping P :L1 → L1 is called a Markov operator if P(D) ⊂ D.
A family {P(t)}t�0 of Markov operators which satisfies conditions:

(a) P(0) = Id,
(b) P(t + s) = P(t)P (s) for s, t � 0,
(c) for each f ∈ L1 the function t �→ P(t)f is continuous with respect to the L1 norm,

is called a Markov semigroup.
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A Markov semigroup {P(t)}t�0 is called partially integral or partially kernel if there exist
t0 > 0 and a measurable function k :S × S → [0,∞), called a kernel, such that∫

S

∫
S

k(p, q)m(dp)m(dq) > 0 (22)

and

P(t0)f (p) �
∫
S

k(p, q)f (q)m(dq) (23)

for every density f .
A density f∗ is called invariant if P(t)f∗ = f∗ for each t > 0. The Markov semigroup

{P(t)}t�0 is called asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

∥∥P(t)f − f∗
∥∥ = 0 for f ∈ D.

A Markov semigroup {P(t)}t�0 is called sweeping with respect to a set A ∈ Σ if for every
f ∈ D,

lim
t→∞

∫
A

P (t)f (p)m(dp) = 0. (24)

Remark 1. The property of sweeping is also known as zero type. Some sufficient conditions for
sweeping are given in [15,24]. It is clear that if a Markov semigroup is sweeping from any set
of finite measure then it has no invariant density. But even an integral Markov semigroup with a
strictly positive kernel and having no invariant density can be non-sweeping from compact sets
(see [24, Remark 7]). Sweeping from compact sets is also not equivalent to sweeping from sets
of finite measure (see [24, Remark 3]). A semigroup can be both recurrent and sweeping, i.e.
the heat equation ∂u

∂t
= �u generates a Markov semigroup on L1(Rn) which is sweeping for

all n � 1 but recurrent for n = 1,2 and transient for n � 3. Also dissipativity does not imply
sweeping (see [15, Example 1]).

3.2. Some results based on the theory of Harris operators

We need some results concerning asymptotic stability and sweeping which are based on the
theory of Harris operators [8].

Theorem 1. [21] Let {P(t)}t�0 be an partially integral Markov semigroup. Assume that the semi-
group {P(t)}t�0 has only one invariant density f∗. If f∗ > 0 a.e. then the semigroup {P(t)}t�0
is asymptotically stable.

Theorem 2. [24] Let S be a metric space and Σ be the σ -algebra of Borel sets. We assume that
a Markov semigroup {P(t)}t�0 has the following properties:

(a) for every f ∈ D we have
∫ ∞

0 P(t)f dt > 0 a.e.,
(b) for every q0 ∈ S there exist κ > 0, t > 0, and a measurable function η � 0 such that∫

η dm > 0 and
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P(t)f (p) � η(p)

∫
B(q0,κ)

f (q)m(dq) (25)

for p ∈ S , where B(q0, κ) is the open ball with center q0 and radius κ ,
(c) the semigroup {P(t)}t�0 has no invariant density.

Then the semigroup {P(t)}t�0 is sweeping with respect to compact sets.

From Theorems 1 and 2 it follows immediately

Corollary 1. Let S be a compact metric space and Σ be the σ -algebra of Borel sets. Let
{P(t)}t�0 be a Markov semigroup which satisfies conditions (a) and (b) of Theorem 2. Then
the semigroup {P(t)}t�0 is asymptotically stable.

Proof. From condition (b) it follows that {P(t)}t�0 is a partially integral Markov semigroup.
The semigroup {P(t)}t�0 has an invariant density f∗. Otherwise it fulfills all assumptions of
Theorem 2 and is sweeping from all compact sets. But it is impossible because S is compact.
From condition (a) it follows that any invariant density is positive a.e. But this implies that f∗
is a unique invariant density. Hence, by Theorem 1, the semigroup {P(t)}t�0 is asymptotically
stable. �

The property that a Markov semigroup {P(t)}t�0 is asymptotically stable or sweeping from a
sufficiently large family of sets (e.g. from all compact sets) is called the Foguel alternative [16].

4. A Markov semigroup corresponding to process (8)

Let B(S) be the σ -algebra of Borel subsets of the space S defined by (20) and let m be the
product measure on B(S) given by m(B×{i}) = ν(B) for each B ∈ B(K) and i = 0,1, where ν is
the Lebesgue measure on K. The dual semigroup (see e.g. [14]) of the Feller semigroup in C(S)

acts in the space of finite Borel measures in S . As we shall see, in the case of the semigroup
{T (t)}t�0 related to the operator (21), the dual semigroup leaves the space of measures that are
absolutely continuous with respect to m, invariant. This space is isometrically isomorphic to
L1(S) := L1(S,B(S),m). On the other hand, L1(S) is isometrically isomorphic to the product
L1(K) × L1(K). In what follows it will be convenient to not distinguish between these two
spaces, and between isometrically isomorphic copies of operators in these spaces. In particular,
by a usual abuse of language, we say that an operator in L1(K) × L1(K) is a Markov operator
while in fact it is its isometrically isomorphic copy in L1(S) that is Markov.

We start by rewriting (21) as follows: A(f0, f1) = (X0f,X1f ) − μ(f0, f1) + μB(f0, f1),
where μ = max{qi(x): x ∈K, i = 0,1} and

B(f0, f1) = μ−1((μ − q0)f0 + q0f1, q1f0 + (μ − q1)f1
)
. (26)

Since B is bounded, by the Phillips perturbation theorem [5,6,12],

T (t) = e−μt
∞∑

Tn(t), (27)

n=0
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where T0(t)(f0, f1) = (U0(t)f0,U1(t)f1), t � 0, Ui(t)fi(x) = fi(π
i
t (x)), fi ∈ C(K), i = 0,1,

and

Tn+1(t) = μ

t∫
0

T0(t − s)BTn(s)ds, n � 0.

We note that {T0(t)}t�0 is a Feller semigroup, its dual leaves L1(K) × L1(K) invariant, and
the restriction of the dual to this space is a Markov semigroup given by S0(t)(h0, h1) =
(V0(t)h0,V1(t)h1) where

Vi(t)hi(x) =
{

hi(π
i−tx)det[ d

dxπi−tx], if πi−tx ∈K,

0, if πi−tx /∈K.
(28)

As in [2] we check that the set C1 ×C1 is a core for the generator of {S0(t)}t�0 and for (h0, h1) ∈
C1 × C1 the generator is given by G0(h0, h1) = (G0h0,G1h1) where

Gihi(x) = − ∂

∂x1

(
(i − x1)hi(x)

) + r
∂

∂x2

(
(x1 − x2)hi(x)

)
. (29)

Next, we note that B leaves L1(K) × L1(K) invariant, and the restriction of its dual to this
space is a Markov operator Q given by

Q(h0, h1) = μ−1((μ − q0)h0 + q1h1, q0h0 + (μ − q1)q1
)
. (30)

Hence, by the Phillips perturbation theorem, the operator G − μ Id + μQ is the generator of a
Markov (see [16]) semigroup {P(t)}t�0 in L1(K) × L1(K) given by

P(t) = e−μt
∞∑

n=0

Sn(t), (31)

where

Sn+1(t) =
t∫

0

Sn(t − s)QS0(s)ds, n � 0. (32)

(We note that the way the series is built here differs from the way it was built in (27)—both ways
are allowed in the Phillips perturbation theorem, see e.g. [6, p. 161].) Comparing this with (27)
we conclude that this semigroup is the restriction of the dual of the semigroup {T (t)}t�0 to the
space L1(K) × L1(K). In view of (29) and in terms of the process (8), our result states that
if the distribution of p(0) is absolutely continuous with respect to m, then so are the distribu-
tions of p(t), t � 0. Moreover, if (f0, f1) ∈ D(G) is a density of p(0) then the densities fi(t, ·)
of p(t) satisfy the system (1). On the other hand, the solutions to (1) are trajectories of the
semigroup {P(t)}t�0.

Finally, we note that {P(t)}t�0 satisfies the integral equation

P(t)f = e−μtS(t)f + μ

t∫
0

e−μsS(s)QP(t − s)f ds. (33)

Here, and in what follows we write S(t) instead of S0(t).
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5. Asymptotic behavior of the semigroup related to process (8)

In this section we formulate and prove the main result of the paper.

Theorem 3. Let

E = {
(x1, x2): 0 � x1 � 1, χ1(x1) � x2 � ϕ1(x1)

}
,

where

ϕC(x1) =
{

C
1−r

xr
1 + rx1

r−1 , for r �= 1,

−x1 logx1 + Cx1, for r = 1,

and χC is the image of ϕC via the map (x1, x2) �→ (1 − x1,1 − x2). Suppose that the functions q0
and q1 are strictly positive in E, except perhaps at (i, i) where we may have q1−i (i, i) = 0,
i = 0,1. Then, the semigroup {P(t)}t�0 given by (31) is asymptotically stable. Moreover, the
invariant density f∗ is supported by E = E × {0,1}.

The proof of Theorem 3 is quite long, and so we divide it into lemmas. Before continuing we
note that, as may be checked directly, the functions ϕC and χC are the phase curves of Eqs. (9)
on the phase plane (x1, x2); in particular, ϕ1 and χ1 join points (0,0) and (1,1). Figures 2 and 3
show the phase portrait of Eq. (9) for i = 0 and i = 1, respectively.

Moreover, the set E is invariant with respect to the semi-flows πi , i.e. if x ∈ E then πi
t (x) ∈ E,

for t � 0, i = 0,1. This statement is a direct consequence of geometric properties of the semi-
flows (10); a rigorous proof may be based on simple application of the Darboux property or on
the well-known theorem of M. Müller [27,28].

Lemma 1. For every density f ∈ L1(S),

lim
t→∞

∫
E

P(t)f (p)m(dp) = 1. (34)

Fig. 2. Phase portrait of Eq. (9) for i = 0.
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Fig. 3. Phase portrait of Eq. (9) for i = 1.

Fig. 4. Action of semi-flows πi , i = 0,1.

Proof. Let

E+ = {
(x1, x2): 0 � x1 � 1, ϕ1(x1) < x2 � 1

}
,

E− = {
(x1, x2): 0 � x1 � 1, 0 � x2 < χ1(x1)

}
. (35)

(Clearly, K = E ∪ E+ ∪ E−.) Then, there exists T > 0 such that for every x ∈ E− and
y ∈ E+ we have π0

t (x) ∈ E and π1
t (y) ∈ E for t � T . Indeed, all points x from under di-

agonal D = {(x1, x2); x1 = x2} reach D (under the action of the semi-flow π0) at time

T0(x1, x2) = ln[(1−r)
x2
x1

+r]
r−1 � ln r

r−1 = T0 for r �= 1 and T0(x1, x2) = 1 − x2
x1

� 1 = T0, and we have
T < T0. By (11), the same is true with points from above the diagonal under the action of the
semi-flow π1. Figure 4 shows the action of both semi-flows.

Consider the stochastic process (8). We check that for almost every ω there exists t0 =
t0(ω) > 0 such that x(t,ω) ∈ E for t � t0. Indeed, in Section 2.3 we showed that the driving
process γ (t) changes its values infinitely many times. As in that section, let T0 < T1 < T2 < · · ·
be the moments of jumps of the process and let �n = Tn − Tn−1, n � 1. Let T be as above.
Since qi(x) � μ we have Prob(�n > T ) � e−μT . Moreover, p(t), t � 0, being a Feller càdlàg
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process, is strong Markov and Tn, n � 0, are stopping times (see e.g. [23]). Conditioning on Tn−1,
by induction we obtain Prob(�i � T , i = 1, . . . , n) � (1 − e−μT )n, n � 1. This shows that
at least two �ns—one with odd and one with even index n—are greater than T . It means
that for each i = 0,1, in between of some jumps the semi-flow πi

t acts for a time longer
than T . Hence, x(t) ∈ E for some and, hence, E being invariant, for all sufficiently large t

and so limt→∞ Prob(x(t) ∈ E) = 1. Now if p(0) has a density f then
∫
E P(t)f (p)m(dp) =

Prob(x(t) ∈ E) and condition (34) holds. �
As a preparation for the crucial Lemma 3 we need the following technical result.

Lemma 2. Let, for x ∈ K, i ∈ {0,1} and t > 0, the set Λt and the function ψx,t,i :Λt → R
2 be

defined by

Λt = {
τ = (τ1, τ2): τ1 > 0, τ2 > 0, τ1 + τ2 � t

}
and

ψx,t,i (τ1, τ2) = πi
t−τ1−τ2

◦ π1−i
τ2

◦ πi
τ1

(x). (36)

Then,

det

[
dψx,t,i (τ )

dτ

]
�= 0. (37)

Proof. By (10),

ψx,t,i (τ1, τ2) = iv + eMt(x − iv) + (1 − 2i)
[
eM(t−τ1−τ2) − eM(t−τ1)

]
v.

Hence,

∂

∂τ1
ψx,t (τ1, τ2) = (1 − 2i)MeM(t−τ1−τ2)

(
eMτ2 − I

)
v,

∂

∂τ2
ψx,t,i (τ1, τ2) = (2i − 1)MeM(t−τ1−τ2)v.

Since eMτ2v equals
[ e−τ2

r
r−1 e−τ2− 1

r−1 e−rτ2

]
for r �= 1 and e−τ2

[ 1
1+τ2

]
for r = 1, the vectors eMτ2v and

v are independent, and so are eMτ2v − v and v. Since the matrix MeM(t−τ1−τ2) is invertible, the
vectors ∂

∂τ1
ψx,t,i (τ1, τ2) and ∂

∂τ2
ψx,t,i (τ1, τ2) are also independent. �

Our next lemma is the core of the argument leading to Theorem 3. Roughly speaking the
lemma stems from the fact that, if at t = 0 the process starts at a point (x, i) ∈ S and we know
that up to time t > 0 there were exactly two jumps (in particular, p(t) is back at K × {i}), then
the distribution of the position of x(t) in K has a non-trivial absolutely continuous part. Such
behavior of the process is intimately related to the fact that the semi-flows πi

t , i = 0,1, are in a
sense “orthogonal”—see (37) and discussion in [21]. We note, however, that the results obtained
in [21] cannot be applied directly to our case as they treat the situation where the intensities of
jumps of the driving process do not depend on the state of the driven process: this dependence is
the most interesting phenomenon of the model we are dealing with here.

Lemma 3. Suppose that points x0 and y0 of K, number i ∈ {0,1} and times τ 0
1 , τ 0

2 , t > τ 0
1 + τ 0

2
are chosen so that x0 = ψy0,t,i (τ1, τ2) and

qi

(
πi

τ 0(y0)
)
> 0, q1−i

(
π1−i

0 ◦ πi

τ 0(y0)
)
> 0. (38)
1 τ2 1
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Then, there exist neighborhoods U ⊂ K and V ⊂ K of y0 and x0, respectively, and κ > 0 such
that

P(t)f (x, i) � κ

∫
K

1V (x)1U(y)f (y, i)dy, (39)

for non-negative f ∈ L1(S) and ν for almost all x ∈ K.

Proof. (i) Let Q(t, τ ), τ ∈ Λt , be the operator given by Q(t, τ ) = S(t − τ1 − τ2)QS(τ2)QS(τ1)

and Q∗(t, τ ) be the adjoint of Q(t, τ ) in L∞(S). Then, Q∗(t, τ ) = S∗(τ1)Q
∗S∗(τ2)Q

∗S∗(t −
τ1 − τ2), where S∗(τ ) and Q∗ are the adjoint operators of S(τ) and Q, respectively. Also,
S∗(τ )h(y, i) = h(πi

τ (y), i) and Q∗h(y, i) � μ−1qi(y)h(y,1 − i) for y ∈ K and non-negative
h ∈ L∞(S)—see (30). As a short calculation proves, this implies

Q∗(t, τ )h(y, i) � μ−2qi

(
πi

τ1
(y)

)
q1−i

(
π1−i

τ2
◦ πi

τ1
(y)

)
h
(
ψy,t,i (τ1, τ2), i

)
. (40)

(ii) Let S2(t) be given by (32)—recall that we have dropped the “�” sign. Then, by (31),
P(t)f � e−μtμ2S2(t)f for f � 0. Moreover, S2(t) = ∫

Λt
Q(t, τ )dτ . Hence, for every Borel set

B ⊂ S ,∫
B

P (t)f (p)m(dp) � e−μtμ2
∫
Λt

∫
B

Q(t, τ )f (q)m(dq)dτ

= e−μtμ2
∫
Λt

∫
S

f (q)Q∗(t, τ )1B(q)m(dq)dτ. (41)

(iii) By (38) and continuity, there exist δ > 0, γ > 0 and a neighborhood U0 ⊂ K of y0 such
that

qi

(
πi

τ1
(y)

)
> γ and q1−i

(
π1−i

τ2
◦ πi

τ1
(y)

)
> γ (42)

for y ∈ U0 and (τ1, τ2) ∈ Λ0
t , where Λ0

t = {τ ∈ Λt : |τ1 − τ 0
1 | < δ, |τ2 − τ 0

2 | < δ}. From (40)
and (42) it follows that

Q∗(t, τ )h(y, i) � μ−2γ 2h
(
ψy,t,i (τ1, τ2), i

)
(43)

for y ∈ U0 and τ ∈ Λ0
t .

(iv) Let B be of the form B = Γ × {i} where Γ is a Borel subset of K. Then, by (43),
Q∗(t, τ )1B(y, i) � μ−2γ 21Γ (ψy,t,i (τ1, τ2)) for y ∈ U0 and τ ∈ Λ0

t . Combining this with (41),∫
Γ

P (t)f (x, i)dx � e−μtγ 2
∫
U0

f (y, i)

∫
Λ0

t

1Γ

(
ψy,t,i (τ )

)
dτ dy. (44)

Substituting x = ψy,t,i (τ ) to (44) and using (37),∫
Γ

P (t)f (x, i)dx � κ

∫
U0

f (y, i)

∫
ψy,t,i

(
Λ0

t

)
1Γ (z)dz dy, (45)

where κ is a positive constant.
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Finally, we note that x0 ∈ ψy0,t,i (Λ
0
t ), and, by (37), without loss of generality we may assume

that ψy0,t,i (Λ
0
t ) is open. (In other words, we may always take a neighborhood smaller than Λ0

t

such that its image via ψy0,t,i is open.) Hence, we may find neighborhoods U ⊂ U0 and V ⊂ K
of y0 and x0, respectively, such that V ⊂ ψy,t,i (Λ

0
t ) for y ∈ U . Replacing in (45) ψy,t,i (Λ

0
t ) by V

and U by U0, we obtain∫
Γ

P (t)f (x, i)dx � κ

∫
Γ

∫
U

f (y, i)1V (x)dy dx. (46)

This implies (39), Γ being arbitrary. �
Proposition 1. For every y0 ∈ K, i ∈ {0,1} and t > 0 there exist x0 ∈ K and neighborhoods
U ⊂ K and V ⊂ K of y0 and x0, respectively, such that (39) holds. In particular, operator P(t)

is partially integral with the kernel k(p, q) � κ1V ×{i}(p)1U×{i}(q).

Proof. For any y0 ∈ K, i ∈ {0,1} and s > 0 we have qi(π
i
s (y0)) > 0 and q1−i (π

1−i
s ◦

πi
s (y0)) > 0. Hence, for any t > 0 we see that y0, τ 0

1 = τ 2
0 = t

3 and x0 = ψy0,t,i (
t
3 , t

3 ) sat-
isfy the assumptions of Lemma 3. Now, inequality (39) may be rewritten as P(t)f (p) �
κ

∫
S 1V ×{i}(p)1U×{i}(q)f (q)m(dq). �
Before we present Proposition 2 which constitutes the second major element of the structure

of the proof of our main theorem, we present the following “communication lemma.” We omit
its elementary proof—see Fig. 5.

Lemma 4. Fix y0 ∈ E, x0 ∈ IntE and i = 0,1. Then, τ1, τ2 and t > τ1 + τ2 may be chosen so
that x0 = ψy0,t,i (τ1, τ2) = πi

t−τ1−τ2
◦π1−i

τ2
◦πi

τ1
(y0); we note that then (38) holds by assumption.

Proposition 2. For every q0 ∈ IntE and for every p0 ∈ IntE there exist t > 0, κ > 0 and neigh-
borhoods U ⊂ S and V ⊂ S of q0 and p0, respectively, such that

P(t)f (p) � κ

∫
S

1V (p)1U(q)f (q)m(dq), (47)

for m almost all p ∈ S and non-negative f ∈ L(S).

Fig. 5. Communication of states.
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Proof. For p0 and q0 lying in the same square (i.e. for p0 and q0 having the same third coordi-
nate) the claim follows directly by Lemmas 3 and 4.

To deal with the case where we have, say p0 = (x, i) and q0 = (y,1 − i) we note that by (30)
we have Qf (x, i) � μ−1q1−i (x)f (x,1 − i). Hence, by (31) and (33),

P(s)f (x, i) �
s∫

0

e−μτS(τ)
(
q1−i (x)P (s − τ)f (x,1 − i)

)
dτ

� e−μs

s∫
0

Vi(τ )
(
q1−i (x)V1−i (s − τ)f (x,1 − i)

)
dτ (48)

for s � 0. Since q1−i (x) > 0 and Vi(τ )(x) = h(πi−τ x)e(r+1)τ , taking s sufficiently small and
combining (39) with (48) we obtain

P(t + s)f (x, i) � ε′
∫

I×I

1V ′(x)1U ′(y)f (y,1 − i)dy, (49)

where U ′, V ′ are neighborhoods of y0, x0 and ε′ > 0, which completes the proof. �
Proof of Theorem 3. By Lemma 1, it suffices to investigate the restriction of the semigroup
{P(t)}t�0 to the space L1(E). From Propositions 1 and 2 we obtain conditions (b) and (a) of
Theorem 2, respectively. Finally, from Corollary 1 it follows immediately that the semigroup
{P(t)}t�0 is asymptotically stable. �
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