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Abstract: The study considers the bearing capacity of 
eccentrically loaded strip footing on spatially variable, 
purely cohesive soil. The problem is solved using the 
random finite element method. The anisotropic random 
field of cohesion is generated using the Fourier series 
method, and individual problems within performed 
Monte Carlo simulations (MCSs) are solved using the 
Abaqus finite element code. The analysis includes eight 
different variants of the fluctuation scales and six values 
of load eccentricity. For each of these 48 cases, 1000 
MCSs are performed and the probabilistic characteristics 
of the obtained values are calculated. The results of the 
analysis indicate that the mean value of the bearing 
capacity decreases linearly with eccentricity, which is 
consistent with Meyerhof’s theory. However, the decrease 
in standard deviation and increase in the coefficient of 
variation of the bearing capacity observed are non-linear, 
which is particularly evident for small eccentricities. For 
one chosen variant of fluctuation scales, a reliability 
analysis investigating the influence of eccentricity on 
reliability index is performed. The results of the analysis 
conducted show that the value of the reliability index can 
be significantly influenced even by small eccentricities. 
This indicates the need to consider at least random 
eccentricities in future studies regarding probabilistic 
modelling of foundation bearing capacity.

Keywords: random field; scale of fluctuation; eccentric 
load; cohesive soil; probabilistic analysis.

1  Introduction
In recent decades, following the widespread growth 
of interest in risk assessment and management, the 
concept of reliability-based design has developed in civil 
engineering. The idea of designing a structure in such 
a way that the calculated probability of failure does not 
exceed certain specified values (depending on the function 
of the object, the type of failure or its consequences) has 
spread and, although rarely used in engineering practice, 
is nowadays part of European and International standards 
for construction design (EN 1990, 2002, ISO 2394, 2015). 
The approach associated with this trend has been 
developing for several decades also in geotechnics, where 
spatial variability of soil parameters is considered the most 
important source of uncertainty (e.g., Cami et al., 2020; 
Pieczyńska-Kozłowska et al., 2021). It is worth mentioning 
that variability of soil parameters has often a much greater 
effect on the structure reliability than variability of other 
structure or material parameters which are usually (with 
some exceptions, e.g., Wyjadłowski et al., 2018) easier to 
control. Furthermore, the problem of spatial variability 
applies to all structures founded on the soil (i.e., the vast 
majority of the total number of structures).

Several works in the last two decades have considered 
modelling the spatial variability of soil parameters 
using so-called random fields (Vanmarcke, 2010). The 
application of random fields in geotechnical design is 
an approach explicitly recommended by Annex D of the 
latest edition of ISO 2394 (2015). In such an approach, the 
analysis is performed within the Monte Carlo framework 
by solving the given problem an appropriate number of 
times, each time with different ‘realisation’ of random 
fields (modelling the properties considered) and then 
analysing the probabilistic characteristics of the results 
obtained. The numerical variant consists of generating 
realisations of random fields discretised over a finite 
element (FE) or a finite difference (FD) mesh, so that in each 
mesh element, the parameters are constant and usually 
represent an average of the field values over the area of 
the element. Despite the facts that the concept of this 
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random finite element method (RFEM) in application to 
foundation bearing capacity was formulated two decades 
ago (Griffiths and Fenton, 2001; Fenton and Griffiths, 
2003) and that the random fields can also be used in some 
other semi-analytical approaches (cf. Chwała, 2020a, 
2020b), the mentioned numerical method remains very 
popular (probably due to its universality). So far (together 
with the analogous random finite difference method), 
it has been used to analyse a number of geotechnical 
problems, in particular the random bearing capacity of 
strip footings (e.g., Fenton and Griffiths, 2003; Vessia et 
al., 2009; Pieczyńska-Kozłowska et al., 2015), rectangular 
footings (e.g., Kawa and Puła, 2020; Li et al., 2021), slopes 
(e.g., Griffiths and Fenton, 2004; Jha and Ching, 2013a; 
Huang et al., 2019) and different types of retaining walls 
(e.g., Fenton and Griffiths, 2005; Sert et al., 2018; Kawa et 
al., 2019; Kawa et al., 2021).

As indicated in the work by Kawa and Puła (2020), 
little attention has been paid so far to probabilistic 
modelling of eccentrically loaded strip or rectangular 
footings. This problem was considered, for example, in 
the work by Soubra (2009). However, the influence of soil 
spatial variability was neglected (in the cited work, soil 
parameters were assumed as random variables, which 
means that they are constant over the considered space). 
To the best of authors’ knowledge, the only work that 
considers the spatial variability of the medium parameters 
in the analysis of the bearing capacity of an eccentrically 
loaded strip footing is the conference paper by Ali et al. 
(2016). In the cited study, the boundary problem is solved 
using the random finite element limit analysis (RFELA) 
technique. The effect of the length of the fluctuation scale 
(correlation radius) on the failure surface is analysed. This 
surface is presented in the vertical force–bending moment 
space (the two quantities were assumed as loads for the 
strip footing). An important simplification adopted in 
the paper is that the random cohesion field considered 
is assumed to be isotropic (the fluctuation scales in the 
horizontal and vertical directions are identical), which is 
not consistent with the results of other studies (e.g., Lloret-
Cabot et al., 2014) and may lead to neoconservative results 
(cf. Vessia et al., 2009; Pieczyńska-Kozłowska et al., 2015).

The present paper complements and expands the 
study mentioned above. Similar to the work of Ali (2016), 
it was assumed that the soil medium is purely cohesive 
and that cohesion is the only parameter modelled by a 
random field. However, in the present work, the field 
of cohesion was assumed to be an anisotropic random 
field with the horizontal fluctuation scale larger than the 
vertical one. For easier scaling of the problem solution, it 
was assumed that the soil is weightless. The analysis was 

carried out using a typical RFEM; the individual random 
field realisations were generated using the Fourier series 
method (FSM; Jha and Ching, 2013b) and the considered 
boundary value problems were solved in ABAQUS 
software. For eight combinations of typical values of the 
fluctuation scale (representing both weak and strong 
anisotropy), the effect of the eccentricity of the vertical 
foundation load on the mean, standard deviation (SD) and 
coefficient of variation (CoV) of the bearing capacity of 
the soil was investigated. In the final part of the paper, an 
example reliability analysis was also performed showing 
the influence of eccentricity on the reliability index.

This paper is organised as follows. The next section 
briefly describes the basic assumptions for the study. 
In the following section, the numerical model, the 
preliminary deterministic tests and the probabilistic 
analysis performed are described. The results of the 
analysis are then presented. A brief section of conclusions 
closes the article.

2  Basic Assumptions
As mentioned in the ‘Introduction’ section, the RFEM 
in geotechnical applications involves modelling soil 
parameters using a random field discretised over a FE mesh. 
The phrase ‘random field’ refers to a spatial generalisation 
of a stochastic process (see, e.g., Vanmarcke, 2010) and is 
associated with a whole group of different field classes. 
The class considered in this paper is restricted to ergodic 
and weakly stationary random fields, which is a typical 
assumption in RFEM applications. For this class of fields 
(Doob, 1953), the probability distribution does not depend 
on the position of a point, where it is tested, and similarly, 
the autocorrelation function defining the correlation 
between values of field in two different points does not 
depend on the position of these points, but only on their 
relative positions, that is, the direction and length of 
the vector between them (e.g., Kawa et al., 2021). Thus, 
the point probability distribution and the stationary 
(relative position dependent) autocorrelation function 
with specified parameters, that is, the so-called scales of 
fluctuations (SOFs), form a complete set of information 
needed to define such a field. A satisfactory description 
of probability distribution can usually be obtained by 
choosing the distribution type (the normal or log-normal 
distributions are most commonly accepted) and assuming 
or determining its first two moments, that is, mean and 
SD. It is much more difficult to credibly estimate the 
values of SOF. Identification of these parameters, which 
can be understood as the average dimensions of a cluster 
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within which the field values are strongly correlated, 
is a problem widely described in the literature (Lloret-
Cabot et al., 2006; Cami et al., 2020; Bagińska et al., 
2018; Ching et al., 2018). It is generally known that the 
value of SOF in the horizontal direction is larger than the 
value of SOF in the vertical direction. Due to the way in 
which soil investigations are carried out, horizontal SOF 
is considered more difficult to identify and is often the 
subject of parametric studies.

If bearing capacity of footings is considered, only 
the strength parameters of the soil medium are usually 
modelled by random fields (cf. Puła and Zaskórski, 
2015). In the present paper, it is assumed that the soil 
under consideration is a purely cohesive medium, and 
thus, the only parameter modelled by the random field 
is its cohesion c. Furthermore, it is assumed that the soil 
considered is weightless. Although such a model (due to 
the lack of both internal friction and unit weight of the soil) 
may seem simplistic, it should well describe the bearing 
capacity of the strip foundation in undrained conditions. 
Furthermore, both of these assumptions enable the use of 
a well-known limit state solution for the validation of the 
problem and allow easy scaling of the obtained numerical 
solution for other values of the width of foundation B (or 
rather B* as will be explained in a further section) than 
assumed in the calculations: for such a model, the bearing 
capacity (in terms of stress) does not depend on the width 
of the footing and SOFs, but only on the width/SOFs ratio.

It was assumed that the random field of cohesion 
considered is described by a normal probability 
distribution with mean μc = 20 kPa and SD σc = 2 kPa. For 
positive mechanical parameters (such as cohesion), the 
normal distribution, due to its ability to take negative 
values, can only be assumed for relatively small values of 
the CoV of the modelled quantity δc = σc/μc (cf. Kawa et al., 
2019), say not greater than 10%–20%. The value of 10% 
was assumed here for this reason. This value, although 
mentioned in the literature, is associated with relatively 
low variability of cohesion in the soil (according to the 
work by Phoon and Kulhawy, 1999, the typical values of 
CoV for cohesion are in the range of 10%–50%). However, 
the assumed normal distribution for cohesion and the 
linear dependence of the bearing capacity on the cohesion 
value in the considered case (for random field, this linear 
dependence applies to the field-constant multiplier of 
the cohesion value in each element) should allow the 
problem to be scaled in terms of SD and CoV (within the δc 
range allowed for the normal distribution). Therefore, the 
results obtained in this study for δc = 10% can be scaled 
to the other values of δc  (e.g., δc = 20%); to do this, the 
values of the bearing capacity CoV obtained here should 

be multiplied by the ratio between new chosen value of δc  

and 10% (in the case of δc = 20% by two).
The autocorrelation function describing the internal 

correlation structure of the field was assumed to be a two-
dimensional Markov function, that is,

 

𝜌𝜌𝜌𝜌(𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣 , 𝜏𝜏𝜏𝜏ℎ) = exp �−2|𝜏𝜏𝜏𝜏𝑣𝑣𝑣𝑣|
𝜃𝜃𝜃𝜃𝑣𝑣𝑣𝑣

+ −2|𝜏𝜏𝜏𝜏ℎ|
𝜃𝜃𝜃𝜃ℎ

�                            (1) 

 

(1)

where τv and τh are distance lags and θv and θh are 
SOF values in the vertical and horizontal directions, 
respectively. In each series of calculations, the values of 
θv and θh were assumed differently (the horizontal SOF 
always being larger), which corresponds to the anisotropic 
random field structure. The description of the numerical 
model and the SOF values considered will be presented in 
the following section.

3  Numerical model
The boundary value problem of the bearing capacity of 
the strip foundation was defined and solved using the 
Abaqus FE code under the assumption of a plane strain. 
The FE model used is presented in Fig. 1. The model 
consists of two parts: a 10.8 m × 3.6 m soil domain and a 
2 m × 0.5 m concrete strip footing. These dimensions were 
verified in multivariate numerical simulations (including 
numerous realisations of the cohesion random field) 
as sufficient to determine the bearing capacity for the 
considered case (plastic zones for none of the simulations 
performed were near the edge of the domain). The contact 
between the footing and the soil has been assumed to be 
perfectly smooth. To discretise the continuum model, the 
soil domain has been divided into 54 ×18 squared FEs and 
the footing into 10 × 3  FEs, resulting in an element of size 
h = 0.2 m. The second-order (eight nodes) elements were 
used. This relatively coarse mesh was adopted (based on 
several tested meshes) as a compromise between accuracy 
and numerical efficiency. The boundary conditions 
are as follows: the bottom of the soil domain is fixed in 
both directions, while on the sides of the domain, only 
horizontal displacements are fixed, allowing the nodes 
for a vertical displacement. It has been assumed that 
the footing is elastic with Young’s modulus E = 32 GPa 
and Poisson’s ratio ν = 0. The soil model was assumed 
to be elastic–perfectly plastic, with the Mohr–Coulomb 
plasticity function. Both internal friction φ and dilation 
angle ψ were assumed to be 0º (Tresca). Young’s modulus 
and Poisson’s ratio values for the soil were assumed to be E 



428    Jędrzej Dobrzański, Marek Kawa

= 200 MPa and ν = 0.33, respectively. Please note that these 
values should not affect the obtained bearing capacity (cf. 
Puła and Zaskórski, 2015). As mentioned above, the mean 
cohesion value was assumed to be 20 kPa and its SD was 2 
kPa. All these values are summarised in Table 1.

During the computations, six positions of the vertical 
force P acting on the foundation were considered, one at the 
central point of the foundation and the other five eccentric 
to the foundation with eccentricity values from 0.1 to 0.5 
m with an interval 0.1 m (see Fig. 1). Bearing capacity 
calculations were performed as displacement controlled; 
the boundary condition for vertical displacement was 
applied to the bottom node of the foundation in the 
position that corresponded to the location of the load, and 
the displacement of the node (towards the soil) increased 
from 0 to 5 cm. During the displacement of the foundation, 
the reaction in the displaced node increased until a critical 
value was reached, which was considered the bearing 
capacity of the foundation. Due to some differences 

in results between models using small- or large-strain 
frameworks, and since the assumed displacement was 
relatively large and the computational time for both cases 
was similar, a large-strain framework was utilised in 
calculations. For the same reason, the possibility of large 
sliding was assumed for the foundation–soil contact.

Before running the Monte Carlo simulations (MCSs), 
some preliminary deterministic computations were 
performed for all the values of eccentricity considered. In 
these calculations, a constant cohesion value equal to the 
mean value μc = 20 kPa was assumed for all soil modelling 
elements. The obtained results in the form of function of 
reaction value in the displaced node with respect to the 
displacement value are shown in Fig. 2. The obtained 
bearing capacities Q (maximum values of P) are also 
shown in the figure.

As seen, the reaction after reaching the maximum 
value exhibits some small decreases, which can be an 
effect of a large sliding assumption. The peak decreases 

Figure 1: FE model scheme.

Table 1: Assumed model parameters.

Elasticity Mohr–Coulomb plasticity 

Young’s modulus, 
E

Poisson’s ratio, 𝜈 Cohesion mean 
value, μc

Cohesion standard 
deviation, σc

Internal friction 
angle, φ

Dilation, angle, ψ

Soil 200 MPa 0.33 20 kPa 2 kPa 0° 0°

Footing 32 GPa 0.00 —
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obtained for larger eccentricities (which also appear after 
reaching the maximum value) are related to the passing 
of the foundation and the soil nodes (during larger 
foundation slides). 

To verify the correctness of the numerical 
computations performed, the model was validated based 
on Prandtl’s solution of the strip-bearing capacity problem 
(for cohesive and weightless soil), that is,

Q = (2+π) c B’ (2)

and Meyerhof theory (1953) assuming a linear decrease of 
the effective foundation width B’ with eccentricity e, that 
is,

B’ = B – 2e (3)

The bearing capacities calculated from the above 
equations analytically Qan for B = 2 m and c = 20 kPa were 
compared with the values determined numerically QFEM 
(presented in Fig. 2) in Table 2. The table also shows the 
relative differences between the numerical method and 
the analytical solution. As seen, the respective values 
are close to each other, although for larger eccentricity 
values, the differences between the values obtained are 
significant.

It is worth mentioning that the bearing capacity 
obtained numerically may correspond to a footing width 

B* larger than the modelled width B. This is because the 
displacement distribution under the foundation does not 
end with the footing boundary, but extends to the first 
elements beyond the compressed zone on each side. This 
effect, shown in Fig. 3, although rarely taken into account, 
can (especially when using larger elements) lead to 
relative errors of several percentages. For the case without 
eccentricity and linear distributions of displacement in 
FEs (or FD zones), the equivalent strip footing width B* 
corresponding to the results obtained can be estimated 
as larger than the modelled one by half of the width of 
element adjusted to the last displaced node on both sides 
(Itasca, 2011). For second-order elements, the increase 
in equivalent width B* should be smaller, about one-
fourth of the element width h on both sides (since the 
middle node is not displaced). However, due to the non-
linear interpolation function, the exact value is more 
difficult to estimate. One way of its estimation would be to 
compare Eq. 2 to the value obtained numerically for zero 
eccentricity (assuming that the width of the strip footing 
is unknown). The width B*, obtained in this way, that 
is, 2.113 m, is quite close to B + 2×1/4h = 2.10 m, and thus 
seems probable. However, it is possible that some of the 
differences between the numerical and theoretical models 
are not due to the B* value, and the real B* value should be 
different. The results and relative differences obtained for 
the mentioned value of B* are also summarised in Table 2. 
The small values of the differences between the analytical 

Figure 2: Reaction in displaced nodes (as a function of displacement) obtained in deterministic calculations. Maximum values (bearing 
capacities) are marked on the vertical axis.
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and numerical models seem to confirm the correctness of 
the assumptions made.

After the validation of the model, the actual MCSs 
were carried out. The bearing capacity for each of the 
six-load eccentricity values considered was analysed for 
eight pairs of SOF values assumed to generate a cohesion 
random field. These pairs were combinations of the two 
considered vertical SOF values θv, that is, 0.5 and 1.0 m, 
and the four considered horizontal SOF values θh, that 
is, 2, 5, 10 and 30 m. For both SOFs, these are typical 
values from the literature covering both weak and strong 
anisotropy of the subsoil (cf. Lloret-Cabot et al., 2014; 
Bagińska et al., 2018; Kawa et al., 2019; Kawa et al., 2020). 
The random field was generated using the FSM algorithm 
(Jha and Ching, 2013b), which (in the case of rectangular 
element meshes) enables generation of local averages of 
the field values over the area of the elements. The ratio 

between the element dimension h, that is, 0.2 m, and 
the smallest modelled SOF, that is, 0.5 m, corresponds to 
the values adopted in the literature (cf. Set et al., 2018; 
Kawa et al., 2021), and thus should enable a reliable 
reconstruction of the random field. For each pair of SOF 
and eccentricity value, N = 1000 MCSs were performed. 
The cohesion values obtained in the exemplary realisation 
of the random field for θv = 1 m and θh = 10 m are presented 
in grey scale in Fig. 4 (the white colour represents the high 
values of cohesion). The cumulative equivalent plastic 
strain values obtained for the same realisation for two 
different eccentricity values (0.0 and 0.5 m) are shown in 
Fig. 5. The probabilistic analysis of the obtained results 
will be presented in the next section.

Table 2: Comparison of semi-analytical and numerical values of bearing capacity.

Eccentricity e (m) 0 0.1 m 0.2 m 0.3 m 0.4 m 0.5 m

                                         QFEM (kN/m) 217.28 197.43 176.81 156.12 135.44 114.68

B* = 2.000 m Qan (kN/m) 205.66 185.10 164.53 143.96 123.40 102.83

Relative difference (%) 5.65 6.66 7.46 8.45 9.76 11.52

B* = 2.113 m Qan (kN/m) 217.28 196.72 176.15 155.58 135.02 114.45

Relative difference (%) 0.00 0.36 0.38 0.34 0.31 0.20

Figure 3: Distribution of vertical displacement in elements adjacent to the strip foundation.
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Figure 4: Exemplary realisation of random field modelling cohesion for θv = 1 m and θh = 10 m 

a)  

b)  

Figure 5: Cumulated equivalent plastic strain obtained for realisation of cohesion random field presented in Fig. 4 for a) e = 0.0 m, b) e = 0.5 m
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4  Results of Probabilistic Analysis
As mentioned in the previous section, the analysis 
included eight pairs of SOF values and six eccentricity 
values, that is, 48 problems in total. For each of these 
problems, 1000 MCSs with different realisations of 
random field modelling cohesion were carried out. The 
time needed to solve a single series of 1000 MCSs on a 
modern PC is about 24 hours.

The bearing capacity values obtained for each problem 
were collected and analysed probabilistically. First, the 
assumed normal distribution of the results was estimated 
and tested with the Kolmogorov–Smirnov goodness-of-fit 
test. The test results obtained were in the range of 30%–
70%. Exemplary probability density functions (PDF) for 
the estimated normal distribution for θv = 1 m and θh = 10 
m and six eccentricity values are shown in Fig. 6.

The mean values μQ, SDs σQ and CoVs δQ of the 
bearing capacity for all considered cases are shown in 
Figs 7–9, respectively. The mean and CoV values are 
also summarised in Table 3. As can be observed, the 
mean values μQ for a given value of the eccentricity of 
the load and different values of the horizontal SOF are 
almost identical and similar to those obtained in the 
deterministic calculations. On the contrary, SD σQ and CoV 
δQ significantly increase with increasing horizontal (and 
comparing the values for θv = 0.5 m and θv = 1 m also with 
vertical) value of SOF. However, both of these quantities 
stabilise for higher values of horizontal SOF, say θh greater 
than 10 m. This type of behaviour is often reported in the 
literature for probabilistic analysis of bearing capacity 
problems involving the use of random fields (e.g., 
Pieczyńska-Kozłowska et al., 2015; Kawa and Puła, 2020). 

Figure 6: Estimated normal distributions of the bearing capacity obtained for θv = 1 m and θh = 10 m for different values of eccentricity e.

a)       b)

Figure 7: Influence of horizontal SOF θh on the mean value μQ for a) θv = 0.5 m and b) θv = 1.0 m.
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As seen in the figures, for small eccentricity values, the 
stabilisation of the SD of the bearing capacity is slower than 
in the case of larger eccentricity values. The graphs also 
show that as the eccentricity increases, not only the mean 
value but also the SD of the bearing capacity decreases. 
However, the resulting CoV increases with eccentricity. All 
these effects are due to a reduction in the effective width of 
the foundation. This reduction is associated with the smaller 
size of the failure mechanism, and thus a smaller averaging 
area of the cohesion values (cf. Chwała and Kawa, 2021), 
which, according to local averaging theory (Vanmarcke, 
2010), means a smaller reduction in variance. For larger 
eccentricities, this results in both faster stabilisation of SD 
(when the mechanism size is smaller than SOF, the variance 
reaches its maximum value) and relatively larger variation 
in bearing capacity (smaller reduction of variance). 
Although easy to explain, the increase in CoV of the bearing 
capacity δQ is important, as it can mean lower reliability for 
eccentrically loaded foundations.

An interesting behaviour regarding small eccentricity 
values can be observed in Fig. 8. For both the considered 

vertical SOF values (Fig. 8a, b), the graph for e = 0.0 m 
intersects the graph for e = 0.1 m. However, this behaviour 
is not reflected in the CoV graph. The specific behaviour 
of these characteristics for small eccentricities can be 
observed in more detail in Figs 10 and 11, where the 
effect of eccentricity on the values of SD σQ and CoV δQ, 
respectively, is shown. As seen in the figures, for small 
values of eccentricity, both graphs behave non-linearly, 
which is more visible in the SD graph. This effect is 
interesting, but needs further investigation.

In the last step of the analysis, the effect of eccentricity 
on the value of reliability index β and the probability 
of failure pf was investigated. These calculations were 
performed for only one pair of SOFs, that is, θv = 1 m and 
θh = 10 m, assuming that the estimated distributions 
presented in Fig. 6 are exact (since only 1000 realisations 
were performed, this cannot be the case; cf. Kawa and 
Puła, 2020; Kawa et al., 2021). The load P value for the 
reliability analysis was assumed to be such that according 
to EN 1990 (2002), it exactly meets the ultimate limit state 
reliability condition for a typical structure (β = 3.8) in the 

a)         b) 

Figure 8: Influence of horizontal SOF θh on SD σQ for a) θv = 0.5 m and b) θv = 1.0 m.

a)       b)

Figure 9: Influence of horizontal SOF θh on CoV δQ for a) θv = 0.5 m and b) θv = 1.0 m.
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case without eccentricity. For the SOFs considered, this 
value was calculated based on data presented in Table 
3 as 159.95 kN/m. In addition to the eccentricity values 
considered earlier, the reliability analysis also included 
smaller eccentricities, that is, e = 0.01 m and e = 0.02 m. 
Since the numerical analysis for these eccentricities, due 
to the location of the displaced node, would have to be 
performed for a finer mesh, which is associated with a 
significant increase in the computation time, the mean 
μQ and CoV δQ for these eccentricities were interpolated 
(linearly) based on the μQ and δQ obtained for e = 0.0 m 
and e = 0.1 m. This interpolation may raise some doubts 
because, as mentioned above, for small eccentricities, the 
graphs for SD and CoV of bearing capacity are non-linear. 
However, for CoV, the impact of this non-linearity is small, 
especially for some pairs of fluctuation scales, including 
the one adopted for the analysis, namely θv = 1 m and θh = 
10 m. The interpolated values for this pair of SOFs are also 
shown in Table 3. The values of the reliability index β and 
the probability of failure pf determined for the assumed load 
for all eccentricities considered are summarised in Table 4.

As seen in the table, an increase in eccentricity 
causes a significant decrease in the reliability index β. 
The small values of this index or even its negative values 
(pf greater than 50%) obtained for larger eccentricities 
are not surprising; this is the effect of the mentioned 
strong linear decrease of μQ. However, it is worth noting 
that an increase in eccentricity of even 0.01 m results in a 
significant decrease in the index value. For an eccentricity 
of 0.02 m, the probability of failure pf is already three times 
greater than the allowable value. Eccentricities with such 
values are typical in all types of constructions and are 
often assumed even for the model without the bending 
moments. The analysis shows that even small eccentricity 
is an important factor significantly affecting structural 
reliability, and at least small random eccentricities should 
be taken into account when performing probabilistic 
analysis of foundation bearing capacity. This is easy to 
apply using the RFEM approach, but has not been practiced 
so far. Adding this and perhaps some other elements can 
be necessary to enable the use of probabilistic analysis in 
engineering practice.

a)           b) 

Figure 10: Influence of eccentricity e on SD σQ for a) θv = 0.5 m and b) θv = 1.0 m.

a)          b) 

Figure 11: Influence of eccentricity e on CoV δQ for a) θv = 0.5 m and b) θv = 1.0 m.
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5  Conclusions
In this paper, a probabilistic analysis of the bearing 
capacity of an eccentrically loaded shallow foundation 
on a purely cohesive soil was carried out. The soil was 
assumed to be weightless. The cohesion was modelled 
by an anisotropic random field, for which eight pairs of 
different vertical and horizontal SOFs were considered. For 
each of these cases, six different values of load eccentricity 
were assumed, resulting in a total of 48 problems. For 
each of these problems, N = 1000 MCSs were performed. 
The paper analyses the effect of the SOFs and eccentricity 
on the probabilistic characteristics of the bearing capacity 
results obtained. In the final part of the paper, the effect 

of eccentricity on the reliability index value (and failure 
probability) of the considered structure for the selected 
case of SOFs is shown. The following conclusions can be 
drawn from the paper:
i) Risk management for geotechnical structures requires 

modelling that includes the effect of spatial variability 
of soil parameters. A frequently used approach in 
this case is the RFEM, which allows the modelling 
of various structures located in soil, including strip 
footings (which were among the first to be modelled 
using this method). Although in typical structures, the 
loading of foundations almost always occurs with a 
certain eccentricity, this has, so far, rarely been taken 
into account in probabilistic studies. To the authors’ 

Table 3: Obtained and interpolated values of μQ and δQ.

θv (m) θh (m) μQ/δQ Eccentricity e (m)
0.00 0.01* 0.02* 0.10 0.20 0.30 0.4 0.5

0.5 2.0 μQ (kN/m) 210.19 - - 194.21 173.95 153.71 133.45 113.14

δQ (%) 3.65 - - 4.08 4.33 4.63 4.99 5.42

5.0 μQ (kN/m) 210.13 - - 193.88 173.78 153.66 133.52 113.29

δQ (%) 4.70 - - 5.24 5.51 5.81 6.17 6.60

10.0 μQ (kN/m) 210.24 - - 193.95 173.79 153.64 133.44 113.18

δQ (%) 5.27 - - 5.69 5.93 6.20 6.48 6.80

30.0 μQ (kN/m) 211.68 - - 194.51 174.27 154.02 133.72 113.33

δQ (%) 5.37 - - 5.67 5.90 6.16 6.47 6.85

1.0 2.0 μQ (kN/m) 209.72 - - 194.14 173.97 153.81 133.59 113.31

δQ (%) 4.51 - - 5.07 5.34 5.63 5.96 6.31

5.0 μQ (kN/m) 209.70 - - 194.03 173.92 153.78 133.60 113.33

δQ (%) 5.77 - - 6.13 6.38 6.65 6.95 7.25

10.0 μQ (kN/m) 209.88 208.32 206.75 194.25 174.18 154.07 133.89 113.60

δQ (%) 6.26 6.30 6.34 6.64 6.88 7.14 7.42 7.74

30.0 μQ (kN/m) 211.35 - - 194.66 174.53 154.38 134.19 113.90

δQ (%) 6.60 - - 6.86 7.06 7.27 7.52 7.79

*Values for these eccentricities were interpolated (only for θv = 1 m and θh = 10 m).

Table 4: The values of β and pf calculated (based on Table 3) for θv = 1 m θh = 10 m and Q = 159.95 kN/m.

Eccentricity e (m)

0.00 0.01 0.02 0.10 0.20 0.30 0.4 0.5

β (-) 3.80 3.69 3.57 2.66 1.19 -0.53 -2.62 -5.27

pf (-) 7.2×10-5 1.1×10-4 1.8×10-4 3.9×10-3 1.2×10-1 7.0×10-1 ≈1.0 ≈1.0
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knowledge, this paper is the first study to analyse the 
bearing capacity of eccentrically loaded strip footings 
on a soil modelled by an anisotropic random field.

ii) The presented results show that the mean, SD or 
CoV of the bearing capacity increases and stabilises 
with increasing values of SOFs, which is similar to 
the behaviour reported in the literature for random 
bearing capacity values. The linear decrease of the 
mean value of the bearing capacity with increasing 
eccentricity is consistent with Meyerhof’s theory. 
However, from the point of view of the reliability of the 
structure, it is important that the CoV of the bearing 
capacity increases with eccentricity. As shown above, 
the dependence of SD or (to a slightly lesser extent) 
CoV of the bearing capacity on eccentricity is non-
linear. However, this effect, especially visible for 
small eccentricities, needs further investigation.

iii) Analysis of the effect of eccentricity on the reliability 
index value, carried out in the final part of the paper, 
shows that even small load eccentricities (of the order 
of 0.01–0.02 m) may cause a significant decrease in 
the reliability index (or increase in the probability 
of failure). Although this effect is not surprising, as 
it is associated with a decrease in the mean value of 
bearing capacity according to Meyerhof’s theory, it 
can pose a problem if the allowable load of a strip 
footing was assessed without considering load 
eccentricity. Eccentricities of a few centimetres are 
common in practice, and with the typical accuracy 
assumed in civil engineering, they occur even if they 
were not planned. This shows the necessity of taking 
into account at least accidental random eccentricities 
in the probabilistic analysis of the foundation bearing 
capacity treated as a design method for real structures.

References
[1] Ali, A., Lyamin, A. V., Huang, J., Sloan, S. W., & Cassidy, M. 

J. (2016). Effect of spatial correlation length on the bearing 
capacity of an eccentrically loaded strip footing. In 6th 
Asian-Pacific Symposium on Structural Reliability and its 
Applications-APSSRA 2016 (pp. 312-317). Tongji University.

[2] Bagińska, I., Kawa, M., & Janecki, W. (2018). Estimation of 
spatial variability properties of mine waste dump using CPTu 
results—case study. In Cone Penetration Testing 2018 (pp. 109-
115). CRC Press.

[3] Cami, B., Javankhoshdel, S., Phoon, K. K., & Ching, J. (2020). 
Scale of fluctuation for spatially varying soils: estimation 
methods and values. ASCE-ASME Journal of Risk and 
Uncertainty in Engineering Systems, Part A: Civil Engineering, 
6(4), 03120002.

[4] Ching, J., Wu, T. J., Stuedlein, A. W., & Bong, T. (2018). 
Estimating horizontal scale of fluctuation with limited CPT 
soundings. Geoscience Frontiers, 9(6), 1597-1608.

[5] Chwała, M. (2020a). Soil sounding location optimisation for 
spatially variable soil. Géotechnique Letters, 10(3), 409-418.

[6] Chwała, M. (2020). On determining the undrained bearing 
capacity coefficients of variation for foundations embedded on 
spatially variable soil. Studia Geotechnica et Mechanica, 42(2).

[7] Chwała, M., & Kawa, M. (2021). Random failure mechanism 
method for working platform bearing capacity assessment 
with a linear trend in undrained shear strength. Journal of 
Rock Mechanics and Geotechnical Engineering. https://doi.
org/10.1016/j.jrmge.2021.06.004

[8] Doob, J. L. (1953). Stochastic processes (Vol. 10). Wiley: New 
York.

[9] EN 1990 (2002). Eurocode - Basis of structural design. 
European Committee for Standardization; 2002

[10] Fenton, G. A., & Griffiths, D. V. (2003). Bearing-capacity 
prediction of spatially random c φ soils. Canadian geotechnical 
journal, 40(1), 54-65.

[11] Fenton, G. A., Griffiths, D. V., & Williams, M. B. (2005). 
Reliability of traditional retaining wall design. Geotechnique, 
55(1), 55-62.

[12] Griffiths, D. V., & Fenton, G. A. (2001). Bearing capacity of 
spatially random soil: the undrained clay Prandtl problem 
revisited. Geotechnique, 51(4), 351-359.

[13] Griffiths, D. V., & Fenton, G. A. (2004). Probabilistic slope 
stability analysis by finite elements. Journal of geotechnical 
and geoenvironmental engineering, 130(5), 507-518.

[14] Huang, L., Cheng, Y. M., Leung, Y. F., & Li, L. (2019). Influence 
of rotated anisotropy on slope reliability evaluation using 
conditional random field. Computers and Geotechnics, 115, 
103133.

[15] ISO 2394: 2015 (2015) General principles on reliability for 
structures; International Standard Organization.

[16] Itasca. 2011. FLAC (Fast Largrangian Analysis of Continua) 
User’s Manuals. Minneapolis: Itasca Consulting Group, Inc

[17] Jha, S. K., & Ching, J. (2013a). Simplified reliability method 
for spatially variable undrained engineered slopes. Soils and 
Foundations, 53(5), 708-719.

[18] Jha, S. K., & Ching, J. (2013b). Simulating spatial averages 
of stationary random field using the fourier series method. 
Journal of Engineering Mechanics, 139(5), 594-605.

[19] Kawa, M., Bagińska, I., & Wyjadłowski, M. (2019). Reliability 
analysis of sheet pile wall in spatially variable soil including 
CPTu test results. Archives of Civil and Mechanical Engineering, 
19(2), 598-613.

[20] Kawa, M., & Puła, W. (2020). 3D bearing capacity probabilistic 
analyses of footings on spatially variable c–φ soil. Acta 
Geotechnica, 15(6), 1453-1466.

[21] Kawa, M., Puła, W., & Truty, A. (2021). Probabilistic analysis 
of the diaphragm wall using the hardening soil-small (HSs) 
model. Engineering Structures, 232, 111869.

[22] Li, Y., Fenton, G. A., Hicks, M. A., & Xu, N. (2021). Probabilistic 
Bearing Capacity Prediction of Square Footings on 3D 
Spatially Varying Cohesive Soils. Journal of Geotechnical and 
Geoenvironmental Engineering, 147(6), 04021035.

[23] Lloret-Cabot, M. F. G. A., Fenton, G. A., & Hicks, M. A. (2014). 
On the estimation of scale of fluctuation in geostatistics. 



Bearing capacity of eccentrically loaded strip footing on spatially variable cohesive soil    437

Georisk: Assessment and management of risk for engineered 
systems and geohazards, 8(2), 129-140.

[24] Meyerhof, G. (1953). The bearing capacity of foundations under 
eccentric and inclined loads. In Proc. of the 3rd Int. Conf. on 
SMFE (Vol. 1, pp. 440-445).

[25] Phoon, K. K., & Kulhawy, F. H. (1999). Characterization of 
geotechnical variability. Canadian geotechnical journal, 36(4), 
612-624.

[26] Pieczyńska-Kozłowska, J. M., Puła, W., Griffiths, D. V., & 
Fenton, G. A. (2015). Influence of embedment, self-weight and 
anisotropy on bearing capacity reliability using the random 
finite element method. Computers and Geotechnics, 67, 229-
238.

[27] Pieczyńska-Kozłowska, J., Bagińska, I., & Kawa, M. (2021). The 
Identification of the Uncertainty in Soil Strength Parameters 
Based on CPTu Measurements and Random Fields. Sensors, 
21(16), 5393.

[28] Puła, W., & Zaskórski, Ł. (2015). Estimation of the probability 
distribution of the random bearing capacity of cohesionless 
soil using the random finite element method. Structure and 
Infrastructure Engineering, 11(5), 707-720.

[29] Sert, S., Luo, Z., Xiao, J., Gong, W., & Juang, C. H. (2016). 
Probabilistic analysis of responses of cantilever wall-supported 
excavations in sands considering vertical spatial variability. 
Computers and Geotechnics, 75, 182-191.

[30] Soubra, A. H. (2009). Reliability-based analysis and design of 
eccentrically loaded footings. In Contemporary Topics in In Situ 
Testing, Analysis, and Reliability of Foundations (pp. 379-386).

[31] Vanmarcke, E. (2010). Random fields: analysis and synthesis. 
World scientific.

[32] Vessia, G., Cherubini, C., Pieczyńska, J., & Puła, W. (2009). 
Application of Random Finite Element Method to Bearing 
Capacity Design of Strip Footing. Journal of GeoEngineering, 
4(3), 103-112.

[33] Wyjadłowski, M., Bagińska, I., & Reiner, J. (2018). Probabilistic 
assessment of pile capacity based on CPTu probing including 
random pile foundation depth. In MATEC Web of Conferences 
(Vol. 196, p. 01058). EDP Sciences.


