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ABSTRACT: This paper deals with the design sensitivity of structural systems giving
as outline of a sensitivity algorithm for RC etructures. As an example a RC nuclear
sostainment vessel is choosen. The linear and nonlinear analyses are performed.

1. INTRODUCTION

design sensitivity results are useful for optimization problems, systems identifi-
and an estimation of the imperfections influence cn the structural behaviour.
jeal aspects of the sensitivity analysis are presented in detail in Refs 1, 2. As a
ly important aspect of the sensitivity analysis the possibility of comparison
significance of particular parameters for the structural behaviour is emphasized.

2. PROBLEM FORMULATION

ader a general constraint function defined over the domain of a structure {I and
a?' 81, with prescribed tractions. The function depends on the siresses §
isplacements q. both implicitly depending on the design vanable h and

mmed at time {+Atf (at the emf::-f the step). The function is of the form:

PS8, q:h) = jGE"""“S,'*‘“q'.h]dﬂ‘+LmE[”“'qih}d{'ﬂﬂil- (1)

nt

-+ Al referrinﬁ to the end of the typical time step. The ineremental equilibrium
s in the updated Lagrangian configuration is of the form:

fﬂ}‘_‘as d* = AQ (2)
n‘t

B is a linear operator such that By Aq denotes the corresponding linear strain
st AS ie the stresses increment and AQ is the external forces increment.

objective of the design sensitivity analysis is to caleulate the derivative of the
st function (1) w.r.t. the design variable, called the design derivative. as:

+4t (7 Ji+ot T At
d:d: _ f [E.'Fd S G d q+aG]dﬁ‘
ﬂl

55 dh T 8q dh | oh

dg d*tdtq & ,
+ fm [aq - +3h] (o). @)

smmerical example, a particular case of the function Eqn (1} will be taken in

®=¢gl-¢"<0 (4)
&g = a choosen displacement and ¢ is its allowable value.




3. DIRECT DIFFERENTIATION METHOD.

To obtain the increment of the displacement design derivative the incremental equli-
A

brium equation (5) is differentiated directly as follows:
dAS dAQ :
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To calculate the stress design derivative increment AS we consider explicitly integra-
ted constitutive equation where the linear strains increment Ae and elastic-plastic

matrix C'*~?) depend on the design variable. The elastic-plastic matrix is also a
funetion of total stresses S and internal variables vector 4, both beeing determined
at time ¢ (at the beginning of the step):

AS = CU"P)('S '~ h)Ae(h) . (6)

By design differentiating of Eqn (6) the following relation for the stress design deri-
vative 18 obtained:
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The incremental stresses design derivative is substituted in the differentiated incre-
mental equilibrinm equation kqn (5) resulting in the following sensitivity equation:
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where the first term in the above equation represents the elastic-plastic tangent stiff-
ness matrix and the last term iz the design derivative of the internal incremental force
taken at Aq treated formally as independent of h. Having solved Eqn (8] the design
derivatives of the displacements, stresses and internal variables increments must be
accumulated.

4. ADJOINT VARIABLE METHOD

The alternative way to calculate the sensitivity of the funetion Eqn (1) is the adjoint
variable method (AVM}. The objective of the method is to avoid the caleulation of
the displacement design derivative directly. The method may rationally be applied
only to the problems of (linear or nonlinear) elasticity problems.

Additionally to the original structure an adjoint structure is defined. The adljlc-int
structure has the same physical properties but is loaded by the adjoint load defined
as the partial derivative of the function (1) w.r.i. the corresponding displacements.

The AVM may be understood as the Lagrange multiplier method. Let us define
the augmented Lagrange function in the form:

L{q.Ah) =% - AT(Kq-Q), (9)

where A is the N—dimensional Lagrange multipliers vector (adjoint variables).
The stationary condition w.r.t. the displacements imposed on the Eqn (9) is of

the form:
al Fiyi 3 T
— — .’a. K = )
B A 0 (10}
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The stationary condition makes it possible to calculate A. By design differentiating
Eqn (9) w.r.t. the vector h we obtain:

dL  d® £ dA

T
= AT (Kq- Q) - E) (Kq-Q) . (11)

Noting that the equilibrium equation is fulfilled for the nominal and the perturbed
value of the parameter h the equation Eqn (11) takes the form:

dL _ d®

dh  dh (12)

The derivative of the augmented function Eqn (9) may be caleulated and is expressed

as follows:
E = ?EI. + E.Eﬂ + a_Lﬂ 134
dh = dh ' dqdh  GAdh (13)
Considering the Eqns (13, 1¥) and (9) the total derivative of the function Eqn (1)
takes the form:

d ; . E@' T di'.l .
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The last term in the equation given above Eqn (14) disappears because of the statio-

nary condition Eqn (10). It is clearly seen, that it is possible to calculaie the design

derivative of the functional Eqn (1) without calculation the displacement design de-

rivatives. However, it is necessary to solve the additional linear adjoint equation,
Eqn (15):

! B T
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The r.h.s of the equation Eqn (15) is the explicit partial derivative of the functional

tl‘iqnf[l]. Finally the expression for the design derivative of the function Eqn (1) takes
& TOrm.
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For the particular case of the functicn Eqn (1) in the form of Eqn (4) the r.hs. of
the adjoint equation, Eqn (15) is expressed as follows:

(1€)
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When applying the adjoint method it is necessary to solve as many adjoint equations
# the design constraints. So, it is worthy to apply the AVM if the number of the
eonstraints is lower than the number of the design variables. The direct differentiation
method is useful in the opposite case.

4. SENSITIVITY OF REINFORCED CONCRETE STRUCTURES

Since the reinforced concrete structures behave nenlinearly and are path depen-
dent, the direct differentiation method will be employed. An outline of an algorithm
%o obtain the design sensitivity gradients for reinforced concrete structures in the
plane stress state is presented. The Chan—Scordelis constitutive model for concrete
#nd an elastic—plastic with isotropic hardening model for steel are used, Ref 3.




The main assumption of the model is the concept of the uniaxial equivalent stra-
ins which allows to desecribe the behaviour of the material in the principal directions
by relations depending on the state of the material. The possible states of the ma-
terial are compression—compression, compression-tension and tension-tension. We
describe here only the compression-compression state. The concrete in compression
is described by the Saenz's equation, H.e}] 4
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where F, is the initial Young modulus, E, is the secant modulus, &, are the equivalent
uniaxial strains, £;. are the maximum uniaxial strains, and ;. are the maximum
uniaxial stresses. The relations for oy, and ¢,. for the compression—compression state
are defined according to the Kupfer-Gerstle curve, Ref 5:
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where 3 is the actual ratio of the principal stresses oy /73, The specific form of the
r.h.s. of the Eqn (8) for reinforced concrete structure in the plane stress staie takes

the form
dAF f Td‘ﬂl{El,E:;H] 11 i Tiﬂ{l—i"]
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(20)
where C is the crthotropic plane stress constitutive matrix depending on the Young

moduli in the principal directions and C*~#! ia the elastic—plastic matrix for the re-
inforcement in the uniaxial stress state. To calculate the r.h.s. of the above equations
it 18 necessary to know the derivatives of the tangent moduli depending on the state
of the material i.e. the total stresses and strains, and on the design variable h. The
stress increment may be expressed as follows:

Acy = Eilgi, €ic(8, h), 0:.(8, h))Acyy (211

The design derivative of the stress increment takes the form:

dAey | dAgy, | dE; _ n
ah C BT gy A (22)
The design derivative of Eqn (22) may be expressed as follows:
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The partial denivatives 8E;/8¢:., OE;/0e;., OE;/doi. and OE;/8h for the
compression—compression state may be obtained -:hﬂ'erentiating the Kupfer—Gerstle
i:urvea, Eqns (18, 19) and the total derivatives de,y /dh, def/dh have to be accumu-
ated in time,

5. REACTOR CONTAINMENT SHELL

As an example, the sensitivity analysis of a reactor containment sheil is choosen,
Ref 6. Displacement sensitivity of a horizontal displacement of a node placed at the
midspan of the wall of the cylinder is investigated.
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Figure 1. The vertical cross-section of ]t;he a:ll-u:tum and the typical cross—section of
the wall.

The containment shell consists of the 3 main parts: foundation with a place for the
reactor, cylinder and the dome (Figure 1, left).

The diameter of the cylinder is 40 m, the height of the structure 64 m, the thickness
of the wall 1.15 m. The thickness of the dome varies from 1.15 m at the connection
of the dome and the cylinder to 0.95 m at the top of the dome. The structure is
initially prestressed with cables. The reinforcement varies along the height of the
cylinder and the dome. The material properties are as follows: Young modulus of

concrete is 3.0E+7 kN/m®, Young moduli of the liner and the passive reinforcement are

2.1E+8 kN/m?. Young modulus of the prestressed reinforcement is 2.025E+8 kN /m2.
The computational model of the structure is presented in Fig. 2 (left). It consists of

640 isoparametric layered shell elements (Refs 7,8,9): the number of the d.o.fis 12500
The reinforcement is modelled using the smeared model.

At the presiressing stage the external equivalent pressure is calculated according
to the standards and the distribution of the pressure is given in Fig. 2.

During presiressing the structural materials behave elastically. The design deriva-
tives of the investigated displacement w.r.t. the design parameters of the equivalent
steel layers are considered. The design parameters are as follows: the equivalent steel
layers thicknesses, the Young moduli of steel and the distances of the steel layers from
the midsurface of the shell.
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Figure 2. External equivalent pressure.

We compare the importance of the design parameters using the logarithmic design de-
rivatives of the investigated displacement. Because of the fact that the stiffness matrix
depends linearly on the Young medulus and the thickness, the respective logarithmic
derivatives are equal. Thus, 1t is sufficiently to compare the logarithmic derivatives
with respect to either Young modulus or thickness (" E/th"} and the distance of the
steel layer from the midiu;ﬁct of the shell as is shown in Fig.3.
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Figure 3. Logarithmic design derivatives distribution, design parameters: a) Young
modulus or thickness of the layer b) the layer distance from the midurface of the
shell.

Concerning the investigated displacement design derivatives w.r.t. the distance of
a steel layer from the midsurface of the shell the highest sensitivity gradients are in
the liner. The absolute values of the design derivatives w.r.t. the layer distance from
the midsurface of the shell are lower than the design derivatives of the investigated
displacement with respect to " E/th” (particularly in the prestressed external layer
where the gradients are the highest). The highest values of the gradients are in the
circumferential external layer Lﬁaae to the midspan of the cylinder.

The logarithmic design derivatives distribution plots allow to establish the most
important place in the structure for the investi design condition. In the case of
a more complicated shape this may be a hint wﬂm a special care has to be taken on
the agreement of the with the project.




Figure 4 illustrates the application of the direct differentiation method. Applying

his method the displacement and stress sensitivity fields in the whole structure have
«en obtained.
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“igure 4. Displacement and hoop stress derivative (3rd concrete layer) fields due to
variation of the distance of the third steel layer from the shell midsurface.

Figure 5. Shapes of the structure: prestressing phase, and due to failure pressure.

The nonlinear analysis was peformed following the monotonic increase of the in-
=rnal pressure up to the failure of the structure. The initial and final sh of the
qucture are shown in Fig. 5. The equilibrium path of the investigated displacements

vertical displacement of the top of the dome and the horizontal displacement
sose Lo the midspan of the cylinder) is followed up to 20 em of the horizontal displa-
=ments and is presented in Fig. 6 (left). The sensitivity variation of the investigated
splacement is given in Figure 6 (right). The displacement design derivatives w.r.t.

thickness of the circumferential external equivalent steel layer in the element 141
e investigated.
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Figure 6. Equilibrium path (left) and the sensivity variation (right) of the
investigated displacements.

3. FINAL REMARKS

The computer program developed i= a significant extension of the program NASHL
Ref id!} whicE allows to analyse large shell structural systems. The program was tested
employing up to 30000 d.o.f.’s. Because of the memory dynamic allocation the only
limitation in use the program is the massive memory capacity. The computations were
performed on Sparc 2000 {(IFTR PAS), CRAY YMPA4E (Interdisciplinary Center of

Mathematical Modelling) and C56400 (Warsaw University of Technology).
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